
EEC170
Computer Architecture

Lecture 2: Instruction Set Architectures

October 10, 2005
Soheil Ghiasi

Electrical and Computer Engineering
University of California, Davis

Review: What is a Computer?

Processor

(where
programs,

data
live when
running)

(where
programs,

data
live when
running)

Computer

Control
“brains”

Datapath
“brawn”

Memory Devices

Input

Output

•It has storage (data, programs)
• It has a language. Programs are expressed in that language

•It has a Processor (Datapath + Control unit)
•It has an input/output mechanism

Program

Data

Keyboard,
Mouse

Display,
Printer

Disk
(where
programs,
data
live when
not running)

Review: What is "Computer Architecture"

° Co-ordination of levels of abstraction

I/O systemInstr. Set Proc.

Compiler
Operating

System

Application

Digital Design
Circuit Design

Instruction Set
Architecture

Assembler

EEC170

Review: Levels of Representation
High Level Language

Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

lw$15, 0($2)
lw$16, 4($2)
sw$16, 0($2)
sw$15, 4($2)

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

ALUOP[0:3] <= InstReg{9:12] & MASK

Computer Technology - Dramatic Change!

Processor
2X in speed every 1.5 years (since ‘85);
100X performance in last decade.

Memory
DRAM capacity: 2x / 2 years (since ‘96);
64x size improvement in last decade.

Disk
Capacity: 2X / 1 year (since ‘97)
250X size in last decade.

Review: Moore’s Law
In 1965, Gordon Moore predicted that the
number of transistors per chip would double
every 18 months (1.5 years)

Types of Machine Organization

Memory-to-Memory Machines
Accumulator
Stack
General Purpose Register Machines

Memory to Memory Machine
Every instruction contains a full
memory address for each operand
Assumptions

two operands per operation
second operand is also the destination
memory address 16 bits (2 bytes)
operand size 32 bits (4 bytes)
instruction code 8 bits (1 byte)
we want to evaluate A ← (B+C+D+E)/X

Memory to Memory Machines
A ← (B+C+D+E)/X

Hypothetical assembly language code
move B, A; A ← B
add C, A; A ← A + C (B+C)
add D, A; A ← A + D (B+C+D)
add E, A; A ← A + E (B+C+D+E)
div X, A; A ← A / X

An add or divide instruction results in the transfer of 17 bytes
between memory and CPU

5 bytes for instruction (opcode + 2 memory addresses)
4 bytes each to fetch 1st and 2nd operands (8 bytes total)
4 bytes to store result

Move requires 13; Total memory traffic = 4*17 + 13 = 81 bytes

How many bytes transferred between memory + CPU for
Add? Divide?

How many bytes transferred between memory + CPU for
move?

Why use CPU Storage?
Consider the idea of providing a small
amount of storage in the CPU

Goal To reduce memory traffic by
keeping repeatedly used operands in the
CPU and thus

Avoid re-referencing memory
Avoid having to specify full memory
address of the operand

This is a perfect example of optimizing
the frequent case (Amdahl’s Law)

Accumulator Machines

CPU storage consists of a single accumulator
Accumulator is an (implicit) operand for most
instructions
Memory is source of 2nd operand for 2 operand
instructions
Cheap (in terms of CPU hardware) and simple
Memory traffic can be reduced significantly more
if more local storage is available

Accumulator Machine
Consider a machine with 1 cell of CPU storage: the
accumulator
Assumptions

two operands per operation
1st operand is in the accumulator (implicit)
2nd operand is in memory
accumulator is also the destination of the operation

except for store
memory address 16 bits (2 bytes)
operand size 32 bits (4 bytes)
instruction code 8 bits (1 byte)

we want to evaluate A ←(B + C + D + E) / X

Accumulator Machine
Assembly language code hypothetical

load B; acc ← B
add C; acc ← acc + C (B+C)
add D; acc ← acc + D (B+C+D)
add E; acc ← acc + E (B+C+D+E)
div X; acc ← acc / X
store A; A ← acc

Each of the above instructions results in the transfer of 7
bytes between memory and CPU

3 bytes for instruction 4 bytes to fetch or store 2nd operand
Total memory traffic 6x7 = 42 bytes

Moral: local CPU storage reduces memory traffic and also
effects the instruction set design

How many bytes transferred between memory + CPU for
load? add? div? store?

Stack Machine
Most instructions manipulate the top few data items
(mostly top 2) of a pushdown stack
Additional instructions are provided to move data between
memory and top of stack
Top few items of the stack are kept in the CPU
Instructions manipulate the top of the stack implicitly
Ideal for evaluating expressions (stack holds intermediate
results)
Were thought to be a good match for high level languages
Awkward:

become very slow if stack grows beyond CPU local storage
no simple way to get data from middle of stack

Stack Machines
Binary arithmetic and logic operations

operands: top 2 items on stack
operands are removed from stack
result is placed on top of stack

Unary arithmetic and logic operations
operand: top item on the stack
operand is replaced by result of operation

Data move operations
push: place memory data on top of stack
pop: move top of stack to memory

Stack Machines: Example Program
Evaluate expression A ←(B + C + D + E) / X

push B; top of stack “tos”: B
push C; tos: B, C
add; tos: B+C
push D; tos: B+C, D
add; tos: B+C+D
push E tos: B+C+D, E
add; tos: B+C+D+E
push X; tos: B+C+D+E, X
div; tos: B+C+D+E/X
pop a; A ← (B+C+D+E)/X

An add/divide instructions results in the transfer of 17 bytes between
memory and CPU

1 bytes for instruction opcode
0 bytes for data transfer

Push/pop requires 7
Total memory traffic = 6*7 + 4*1 = 46 bytes

How many bytes transferred between memory + CPU for
Add? Divide?

How many bytes transferred between memory + CPU for
move?

General Purpose Register Machine

With stack machines only the top two
elements of the stack are directly available to
instructions. In general purpose register
machines the CPU storage is organized as a
set of registers which are equally available to
the instructions
Frequently used operands are placed in
registers (under program control)

Reduces instruction size
Reduces memory traffic

GPR Machine: Example Program
Evaluate A ←(B + C + D + E) / X on a hypothetical machine with 16
registers R0 to R15 and 2 operand register-register ALU operations

load B, R1; R1 ← B
load C, R2; R2 ← C
load D, R3; R3 ← D
load E, R4; R4 ← E
load X, R5; R5 ← X
add R1, R2; R1 ← B+C
add R1, R3; R1 ← B+C+D
add R1, R4; R1 ← B+C+D+E
div R1, R5 R1 ← (B+C+D+E)/X
store R1, A; A ← (B+C+D+E)/X

How many bytes for load/store? 7 ½ bytes
How many bytes for add/div? 2 bytes
Total mem. Xfer = 6*7 ½ + 4 *2 = 53 bytes

Classifying GPR Machine
GPR machines are subclassifed based on whether
or not memory operands can be used by typical
ALU instructions
Register-memory machines: machines where some
ALU instructions can specify at least one memory
operand and one register operand
Load-store machines: register-register machines
with the restriction that the only instructions that
can access memory are the load and the store
instructions

load transfers data from memory to a register
store transfers data from a register to memory

Classification of Instruction Set Architectures

Classification of stored programs computers
based on CPU storage organization
Characterize instructions and machines by
the number of explicit memory addresses of
operands in its instructions excluding data
move instructions

Stack machines: 0 address machines
Accumulator machines: 1 address machines
General purpose register machines 1, 2, 3 (or
more) address machines

Recap: Basic ISA Classes
Memory to Memory:

2 address add A B mem[A] ← mem[A] + mem[B]
3 address add A B C mem[A] ← mem[B] + mem[C]

Accumulator:
1 address add A acc ← acc + mem[A]
1+x address addx A acc ← acc + mem[A + x]

Stack:
0 address add tos ← tos + next

General Purpose Register:
2 address add A B reg[A] ← reg[A] + reg[B]
3 address add A B C reg[A] ← reg[B] + reg[C]

Comparison:
Bytes per instruction? Number of Instructions? Cycles per instruction?

Instruction Classes, Format, Addressing Modes

Instruction Classes
Expect new instruction set architectures to use general purpose register

Instruction Format
If code size is most important, use variable length instructions
If performance is most important, use fixed length instructions

Data Addressing Modes
Frequent: Displacement, Immediate, Register Indirect
Displacement size should be 12 to 16 bits
Immediate size should be 8 to 16 bits

Operand Sizes
Support these data sizes and types:
8-bit, 16-bit, 32-bit, 64-bit integers and
32-bit and 64-bit IEEE 754 floating point numbers

Conclusion

Instruction Set Architecture is the key
abstraction between hardware designer and
software developers

Machine Organizations
Memory-to-Memory Machines
Accumulator
Stack
General Purpose Register Machines

