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Pipelining is Natural!

¢ Laundry Example

+ Ann, Brian, Cathy, Dave ““

each have one load of clothes
to wash, dry, and fold

+ Washer takes 30 minutes .

+ Dryer takes 40 minutes

+ “Folder” takes 20 minutes

Sequential Laundry
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+ Sequential laundry takes 6 hours for 4 loads

¢+ If they learned pipelining, how long would laundry
take?

Processor Designs So Far

+ We have Single Cycle Design with low
CPI but high CCT

+ We have Multicycle Design with low CCT
but high CPI

+* We want best of both: low CCT and low
CPI

+ Achieved using pipelining

Laundry Timing

+ How long does laundry take with a
“single cycle” (wash/dry/fold is one
clock) design? What is the clock cycle
time? “CPI”? How many clocks?

+ How long does laundry take with a
“multiple cycle” (longest of wash/dry/fold
is one clock) design? What is the CCT?
“CPI”? How many clocks?

Pipelined Laundry: Start work ASAP
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Laundry Timing Pipelined Laundry: Start work ASAP

+ How long does laundry take with a oM 7 g 1 L

“pipelined” (longest of wash/dry/fold is

one clock) design? What is the CCT? o e | | ||

How many clocks? é ‘-
» g
&
&

+ Pipelined laundry takes 3.5 hours for 4
loads

Pipelining Lessons Sandwich Bar Analogy

ripeliniﬂ? d_Oesln'lt hi'rl_l el + Pipelining: Multiple people going through the
atency of single task, I elps H . H

throughput of entire workload sandwich bar at the same time

Pineline rate limited by . gi)clﬁlliage in front of the pickles, but you don’t need the
slowest pipeline stage

Multiple tasks operating ¢ Car assembly line

simultaneously using
different resources

Potential speedup = Number
pipe stages

Unbalanced lengths of pipe
stages reduces speedup

Time to “fill” pipeline and
time to “drain” it reduces
speedup

Stall for Dependences

Digital System Efficiency Digital System Efficiency

+ A synchronous digital system doing too
much work between clocks can be
inefficient because logic can be static for
much of clock period

Latch




Digital System Efficiency

Latch

Pipeline Efficiency
+ Efficiency can be improved by

« |. subdividing logic into multiple stages and
shortening CCT

Latch Logic1l Latch Logic2 Latch Logic3 Latch

Single Pipelined Instruction

+ Efficiency executing single instruction is
even less efficient, why?

Latch Logicl Latch Logic2 Latch Logic3 Latch

Digital System Efficiency

Latch Logic

Single Pipelined Instruction

+ Efficiency executing single instruction is
even less efficient, why?

Latch Logic1 Latch Logic2 Latch Logic3 Latch

Single Pipelined Instruction

+ Efficiency executing single instruction is
even less efficient, why?

Latch Logicl Latch Logic2 Latch Logic3 Latch
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Pipeline Efficiency

+ Efficiency can be improved by

« |. subdividing logic into multiple stages and
shortening CCT

« |l. overlapping operation execution

Latch Logic1l Latch Logic2 Latch Logic3 Latch

L

Pipeline Efficiency

+ And by Il. overlapping operation execution

Latch Logic1l Latch Logic2 Latch Logic3 Latch

Why Pipeline?

+ Suppose we execute 100 instructions.
How long on each architecture?

+ Single Cycle Machine
* 4.5 ns/cycle, CPI=1

¢ Multicycle Machine
¢ 1.0 ns/cycle, CPI=4.1

+ Ideal pipelined machine
« 1.0 ns/cycle, CPI=1 (but remember fill cost!)

Pipeline Efficiency

+ And by II. overlapping operation execution

Latch Logic1l Latch Logic2 Latch Logic3 Latch

Pipeline Depth

+ |f three pipeline stages are better than
non-pipelined, are four stages better than
three?

* What is the limit to the number of
stages?

+* What is the CCT at that limit?

Why Pipeline?
* Suppose we execute 100 instructions

+ Single Cycle Machine
» 4.5 ns/cycle x 1 CPI x 100 inst = 450 ns

+ Multicycle Machine
» 1.0 ns/cycle x 4.1 CPI (due to inst mix) x 100
inst = 410 ns
+ |deal pipelined machine

» 1.0 ns/cycle x (1 CPI x 100 inst + 4 cycle fill) =
104 ns




Fill Costs

+ Suppose we pipeline different numbers
of instructions. What is the overhead of
pipelining?

+ |deal pipelined machine
* 1.0 ns/cycle, CPI=1, 10 instructions

* 1.0 ns/cycle, CPI=1, 1000 instructions

» 1.0 ns/cycle, CPI=1, 100,000 instructions

Pipelined Multiplier

+ We can take the Wallace tree multiplier
we developed in Chapter 3 and create a
two stage pipeline
¢ Reduce partial product terms

« Do final n-2 bit addition using carry look-
ahead adder

¢ The two operations are roughly
balanced, both take log(n) time

Wallace Tree Multiplier: 2-Stage Pipeline
Multiplicand Pesssevves] Pesssssssd Multiplier
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Fill Costs

+ Overhead: Ideal pipelined machine
* 1.0 ns/cycle, CPI=1, 10 instructions
* 10 ns runtime + 4 ns overhead: 40% overhead
» 1.0 ns/cycle, CPI=1, 1000 instructions

* 1000 ns runtime + 4 ns overhead: 0.4%
overhead

« 1.0 ns/cycle, CPI=1, 100,000 instructions

» 100,000 ns runtime + 4 ns overhead: 0.004%
overhead

Wallace Tree Multiplier: 2-Stage Pipeline
Multiplicand Multiplier
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Pipelined Processor Design

+ We'll take the single-cycle design and
transform it into a pipelined design

+ What we formally called a ‘phase’ of an
instruction’s execution will now become
a pipeline stage

Single-Cycle Design Phases
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Execution: Load Word Memory: Load Word

Read
Address R Address
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Write Back: Load Word Execution: Store Word
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Execution: R-type Memory: R-type

Read
Address R Address
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Write Back: R-type Execution: Branch
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Overlapping Instruction Execution
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* Parts of different inst

each pipeline stage during each cycle

Time (in clock cycles)

Time (in clock cycles)

Program

Program

execution
order

execution
order

Iw $1, 100($0)

Program

Iw $2, 200($0)

Iw $2, 200($0)

Iw $3, 300($0)

Iw $3, 300($0)

Iw $4, 400($0)

Iw $4, 400($0)

Iw $5, 500($0)

Iw $5, 500($0)

Overlapping Instruction Execution

Overlapping Instruction Execution

Time (in clock cycles)

Time (in clock cycles) ———————————————

Program

execution
order

execution
order

Iw $3, 300($0)

1

Iw $4, 400($0)

1w $4, 400($0)

Iw $5, 500($0)

Iw $5, 500($0)

Overlapping Instruction Execution

Overlapping Instruction Execution

Time (in clock cycles)

Time (in clock cycles)

Program

Program

execution

order

execution
order

Iw $5, 500($0)

Iw $5, 500($0)




Overlapping Instruction Execution

Time (in clock cycles) ——

Program cct ! cec2
execution i

order

Control Unit

Pipeline with Pipelined
Control

*

*

Control Lines

MEMWE

Pipelined Control

1DIEX

Instruction
Memory

Data Hazards

Data hazards can occur when:

1. Instructions I, and I, are both in the pipeline
2. 1, follows I,

3. I, produces aresult that is used by I,

The problem: because I, has not posted

its result to the register file, I, may read
an obsolete value.




register

and $2 is written to register

Data Hazards
Data Hazards
Data Hazards

Time (in clock cycleS) oo

Time (in clock cycles)
Time (in clock cycles)

2

2

And $12,

requires $2 at CC3, and $2 is written to

file at CC5.0: hazard

And $12, $2, $5
Or $13, $6, $2
Add $14, $2, $2
Sw $15, 100(52)
And $12, $2, $5
Or $13, $6,

Add $14, $2, $
Sw $15, 100($2)
Or $13, $6, $:
Add $14, $2, $2
Sw $15, 100($2)

Sw requires $2 at CC6, and $2 is written to register

file at CC5, so not a problem
Or requires $2 at CC4

file at CC5.0: hazard

execution

order
execution

order

Program
execution

Program
Program

And

and $2 is written to

register file at CC5.0, so not a problem
Data Hazards

Data Hazards
Data Hazards

Time (in clock cycles)
Time (in clock cycles)
Time (in clock cycles)

2

$2 is not written by sub until CC5, but following

instructions depend on $2 as soon as CC3

And $12, $2, $5
Sw $15, 100($2)

Or $13, $6, $2
Or $13, $6, $:
Add $14,

And $12, $2, $5
Or $13, $6,

Add $14, $2, $2
Sw $15, 100($2)
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Add requires $2 at CC5.5

Program
execution

Program
execution

order

Program
execution

order




Data Hazards

However $2 is available at CC4 from internal pipeline
latch

Time (in clock cycles)

Program
execution
order

Sub -, 81,83 [IM]
And $12, 52, $5
Or $13, $6, $2

Add $14, $2, $2

Sw $15, 100($2)

DataPath without Forwarding

Registers
Data
[— wmemory [ &]

|

Fowarding Path Control

+ Control used to decide whether to forward
from the Memory stage

If ((EX/MEM.RegWrite) #must be writing a register

and (EX/MEM.RegisterRd != 0) #$0 is always up to date

and (EX/MEM.RegisterRd = ID/EX.RegisterRs)

#stage 4 result and stage 3 source operand match
ForwardA = 10

Irite)

and (EX/MEM.RegisterRd = ID/EX.RegisterRt))
ForwardB = 10

Forwarding

+ Most data hazards can be resolved by
forwarding, sending the internal pipeline
result from I, to the stage where it is
needed by I, which is following in the
pipeline

+ Result is still posted to the register file
when I, reaches WB stage

+ Forwarding requires hardware
modifications to the datapath

DataPath with Forwarding

Forwarding data paths for results from Memory stage
and WriteBack stage to Execution stage

New ALU MUX to select operand from register file or
newest result via forwarding

—
.| Data
R Memory M
. v

om EX/MEM

Fowarding Path Control

+ Control used to decide whether to forward

from the Writeback stage:

If ((MEM/WB.RegWrite) #must be writing a register

and (MEM/WB.RegisterRd != 0) #$0 is always up to date

and '((EX/MEM.RegisterRd = ID/EX.RegisterRs) and
(EX/MEM.RegWrite))

# forward result from stage 4 is newer, has priority

and (MEM/WB_.RegisterRd = ID/EX.RegisterRs))

#stage 4 result and stage 3 source operand match
ForwardA = 01

IT  ((MEM/WB.RegWri
and (MEM/WB.
ID/EX.RegisterRt) and

ID/EX.RegisterRt))
ForwardB =




Complete Datapath with Forwarding

EXHEM

Registers

Forwarding (CC4)

Add $14, $2, Or $13, $6, And $12, $2, $5 Sub 7, $1, $3 Before<1>

EXEM

Registers

Forwarding)P®
Unit

Load Data Hazards

For loads most data hazards be resolved with

forwarding but some cannot

Time (in clock cycles)

Program
execution
order

Iw 7, 20($1)
and $4, $2, $
or $8, 52, $6
add $9, $4,

slt $1, $10, $7

Forwarding (CC3)

Or $13, $6, And $12, $2, $5 Sub 7, $1, $3 Before<1> Before<2>

EXIHEM

Data
memery

Forwarding (CC5)

Sw $15, 100($2) Add $14, 52, Or $13, $6, $2 And $12,52,$5 Sub

Instruction

Load Hazard Solution #1

+ Have compiler insert a NOP to space
instructions further apart

Iw ,20($1)
nop

and $4,%2,%$5
or $8,%2,%6
add $9,%4,
st $1,%$10,%7

. 81,83



Load Data Hazards

nop resolves load data hazard

Time (in clock cycles)

Program
execution
order

Iw 7, 20($1)

Load Hazard Solution #3

+ Have the pipeline detect hazard and
automatically inject a nop

 reduces size of program

« reduces cache misses

+ LW and instruction before advance in
next CC, following instructions stall, nop
injected into EX

IF 1D EX MEM WB
CC;z or | and | lw | before 1 | before 2

CCi1z or | and | ard| Iw | before 1

Hazard Detection Unit

Detection occurs in ID pipeline stage
@ E EXIMEM

Load Hazard Solution #2

+ Best solution: compiler reorders (schedules)
instructions to resolve hazard

* SLTis independent of all instruction except LW,
can move up to resolve hazard w/o nop

Iw ,20($1) Iw ,20($1)
nop slt $1,%$10,%7
and $4,%2,%5 and $4,%2,%$5
or $8,%2,%$6 — or $8,%2,%6
add $9,%4, add $9,%4,
st $1,%$10,%7

Detecting a Load Hazard

+ Need to add an new hazard detection unit.
Load hazard occurs under this condition:

ITf (ID/EX_MemRead) #LW in stage 3

and ((ID/EX.RegisterRt = IF/ID.RegisterRs)
or
(ID/EX.RegisterRt = IF/ID.RegisterRt))
#stage 2 Rs or Rt uses LW result
stall the pipeline

ic is correct but not precise (creates
too many stalls). Why?

Injecting A Nop (Pipeline Bubble)

Set instruction’s control bits to all zeros; stall IF, ID

U
Registers
o Data
vency




Refined NOP Injection Early Branch Resolution

« Setting all control bits to zero is correct * Branch resolved in stage 2 to reduce penalty

but is overkill. What is the minimum set
of control bits that must be set to zero?

Delayed Branches Delayed Branches Cont.

« Further reduce branch penalty by delaying the effect of branch one cycle beq r7,r0 beqz 7,10

l.e., always execute instruction after branch before PC = target =

L

branch delay slot

(b) from taken path: because lacking statistics for specific branch,

« Delay slot instruction must be independent of branch, "safe". taken is more likely (e.g., 2/3). Less valuable than (a) because
fraction of useful work is p rather than 1

« Independent instruction can be moved into delay slot from (a) above the

branch, (b) from taken path, or (c) from not-taken path beq 17,10 beq r7,r0
add r4.xy
>

add r6,x,y Load r: = Load r-
beq 1720 beq r7,r0 1p p _ 1p p _

dd r6,x,
NoP s

. . c) from not-taken path: Useful work fraction is 1-
(a) from above: best because instruction always useful © P

Branch Target Copying Branches in Delay Slot

: . —— . « Delay slot following Jump can almost always be filled
« If branch target instruction is accessed via other by moving or copying target
program paths, Instruction must be copied, not
moved.

» Branch retargeted to instruction after former target
. Dynamic instruction count decreases, although

static does not
22
Nop = X
X+4
IAL
.

_Load r4,... Load r4,...

add r4,... « Results in return to wrong address!!!

¢ Branch generally cannot fill delay slot.




Profiled Delayed Branch More Branch Optimizations

« Jump is eliminated if it is the only instruction left in block after move,
=> can eliminate two instructions. E.g., p=0.4
+ Where safe instruction can be moved from taken or not-taken, fill delay slot
based on profile statistics, maximizes useful work. E.g., forp = 0.38: beqz 17,...
Load r4,
=
Lp P 7 e P
[ vor |
> |__foo | |__foo |
bpy ¥ fo02 bpy ¥ fo02
Better still is to reverse the sense of the branch:

NOP

I

P - => p 1p
| _jump |

Delayed Branches & Exception Delayed Branching Performance

« Delayed branches must save PCs of next two instructions on
exception, rather than one . . . . .
+ For typical integer codes a useful instruction is
executed in delay slot about 70% of the time
thus branch cost is:
(cycles lost per branch = 0.3) x

memory (fraction of branches = 0.25) =
0/
access 8% performance loss

sourcel

decode
reg read

Significant reduction from 75%, but still want smaller
branch cost

NOTE

if you consider slides 46&47 as the baseline, then CPI
for branch instruction is 4 in baseline implementation
and 75% performance loss is correct. This is a bit
different than what we discussed in class.

branch

| __pc+4 [oprdes ALU result
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Early Branch Resolution Branch Prediction

¢ Branch resolved in stage 2 to reduce penalty S Uss A ‘magiC a5 it

« Determine the instruction being fetched is a
branch

* Predict the branch outcome (taken/not taken)
* Produce the target address

While the instruction is being fetched!




Branch Prediction Simple Branch Prediction Table
Branch Target Buffer (BTB)

+ Resolve branch in IF stage if prediction is correct
el Predictor module is a 2" entry table indexed

by n lower PC address bits. Fields are:
1. 32-n upper PC address bits

Instruction Instruction 2. IsBranch bit

Memory 3. Target Address (30 bits)
4. Prediction

¢ Table was filled during past executions of

Predictor
the branch
PTarget Address

Branch_Taken

Branch Target Buffer BTB in Context

¢ Because BTB is small, faster than
instruction memory

. Instruction
Instruction ]
Memory

Upr_PC
Is_Brch

Predict Branch_Taken

&

i PTarget Address

PTarget
Branch_Taken Add r%ss

Two-Bit Branch Predictor Two-Bit Branch Predictor

¢ Branch history using four states (two + Can think of this predictor as a saturating
bits) avoids loop problem: counter: +1 for taken, -1 for not taken

00 strong not-taken
01 weak not-taken

10 weak taken L NT v
—T°:>
,

11 strong taken
+ Implemented as a state machine WNT
NT

NT T

Weak Taken
- N\ NT
Strong NTaken )




Branch Target Buffer Complete Final BTB in Context

+ Because BTB is small, faster than
instruction memory

. Instruction
Instruction -

Memory

PTarget Address

PTarget
Branch_Taken
anch_raxe Address

Confirming Branch Prediction Confirming Branch Prediction

+ Prediction must be confirmed in ID stage, branch- ) . _ )
history state updated ¢+ Must consider pipeline action for following cases:
. No hit, no branch: do nothing
et . No hit, branch:
a. Nullify IF instruction
b. Branch to computed target address
. Hit, condition = prediction: do nothing
. Hit, condition = taken, prediction = not taken:
a. Nullify IF instruction
b. Branch to computer target address
. Hit, condition = not taken, prediction = taken
a. Nullify IF instruction
b. Branch to ID stage PC+4

@

Instruction —s|

Next PC using Branch Prediction BTB Updates

¢ Using branch prediction now have four choices
for next PC: IF_PC+4, PTarget address, + Must consider BTB updates for following cases:
ID_PC+4, Target address . No hit, no branch: do nothing
. No hit, branch:
» Write new BTB entry, set prediction to weak condition
. Hit, condition = taken: ++prediction
. Hit, condition = not taken: --prediction

Branch




