
PipeliningPipelining
An Instruction Assembly LineAn Instruction Assembly Line

EEC170 EEC170
Computer ArchitectureComputer Architecture

FQ 2005FQ 2005

Courtesy of Prof. Kent Courtesy of Prof. Kent WilkenWilken and Prof. John Owensand Prof. John Owens

Processor Designs So FarProcessor Designs So Far

We have Single Cycle Design with low We have Single Cycle Design with low
CPI but high CCTCPI but high CCT

We have We have MulticycleMulticycle Design with low CCT Design with low CCT
but high CPIbut high CPI

We want best of both: low CCT and low We want best of both: low CCT and low
CPICPI

Achieved using Achieved using pipeliningpipelining

A B C D

Pipelining is Natural!Pipelining is Natural!

Laundry ExampleLaundry Example

Ann, Brian, Cathy, Dave Ann, Brian, Cathy, Dave
each have one load of clothes each have one load of clothes
to wash, dry, and foldto wash, dry, and fold

Washer takes 30 minutesWasher takes 30 minutes

Dryer takes 40 minutesDryer takes 40 minutes

““FolderFolder”” takes 20 minutestakes 20 minutes

Laundry TimingLaundry Timing

How long does laundry take with a How long does laundry take with a
““single cyclesingle cycle”” (wash/dry/fold is one (wash/dry/fold is one
clock) design? What is the clock cycle clock) design? What is the clock cycle
time? time? ““CPICPI””?? How many clocks?How many clocks?

How long does laundry take with a How long does laundry take with a
““multiple cyclemultiple cycle”” (longest of wash/dry/fold (longest of wash/dry/fold
is one clock) design? What is the CCT? is one clock) design? What is the CCT?
““CPICPI””?? How many clocks?How many clocks?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

Sequential LaundrySequential Laundry

Sequential laundry takes 6 hours for 4 loadsSequential laundry takes 6 hours for 4 loads

If they learned pipelining, how long would laundry If they learned pipelining, how long would laundry
take?take?

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Pipelined Laundry: Start work ASAPPipelined Laundry: Start work ASAP

Laundry TimingLaundry Timing

How long does laundry take with a How long does laundry take with a
““pipelinedpipelined”” (longest of wash/dry/fold is (longest of wash/dry/fold is
one clock) design? What is the CCT? one clock) design? What is the CCT?
How many clocks?How many clocks?

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Pipelined Laundry: Start work ASAPPipelined Laundry: Start work ASAP

Pipelined laundry takes 3.5 hours for 4 Pipelined laundry takes 3.5 hours for 4
loads loads

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

Pipelining LessonsPipelining Lessons

Pipelining doesnPipelining doesn’’t help t help
latencylatency of single task, it helps of single task, it helps
throughputthroughput of entire workloadof entire workload

Pipeline rate limited by Pipeline rate limited by
slowestslowest pipeline stagepipeline stage

Multiple tasks operating Multiple tasks operating
simultaneously using simultaneously using
different resourcesdifferent resources

Potential speedup = Potential speedup = NumberNumber
pipe stagespipe stages

Unbalanced lengths of pipe Unbalanced lengths of pipe
stages reduces speedupstages reduces speedup

Time to Time to ““fillfill”” pipeline and pipeline and
time to time to ““draindrain”” it reduces it reduces
speedupspeedup

Stall for DependencesStall for Dependences

Sandwich Bar AnalogySandwich Bar Analogy

Pipelining: Multiple people going through the Pipelining: Multiple people going through the
sandwich bar at the same timesandwich bar at the same time

•• If youIf you’’re in front of the pickles, but you donre in front of the pickles, but you don’’t need the t need the
pickles pickles ……

Car assembly lineCar assembly line

Digital System EfficiencyDigital System Efficiency

A synchronous digital system doing too A synchronous digital system doing too
much work between clocks can be much work between clocks can be
inefficient because logic can be inefficient because logic can be staticstatic for for
much of clock periodmuch of clock period

LatchLatch LatchLatchLogicLogic

Digital System EfficiencyDigital System Efficiency

LatchLatch LatchLatchLogicLogic

Digital System EfficiencyDigital System Efficiency

LatchLatch LatchLatchLogicLogic

Digital System EfficiencyDigital System Efficiency

LatchLatch LatchLatchLogicLogic

Pipeline EfficiencyPipeline Efficiency

Efficiency can be improved by Efficiency can be improved by
•• II. subdividing logic into multiple . subdividing logic into multiple stagesstages and and

shortening CCTshortening CCT

LatchLatch LatchLatchLogic 1Logic 1 LatchLatchLogic 2Logic 2 LatchLatchLogic 3Logic 3

Single Pipelined InstructionSingle Pipelined Instruction

Efficiency executing single instruction is Efficiency executing single instruction is
even less efficient, why?even less efficient, why?

LatchLatch LatchLatchLogic 1Logic 1 LatchLatchLogic 2Logic 2 LatchLatchLogic 3Logic 3

Single Pipelined InstructionSingle Pipelined Instruction

Efficiency executing single instruction is Efficiency executing single instruction is
even less efficient, why?even less efficient, why?

LatchLatch LatchLatchLogic 1Logic 1 LatchLatchLogic 2Logic 2 LatchLatchLogic 3Logic 3

Single Pipelined InstructionSingle Pipelined Instruction

Efficiency executing single instruction is Efficiency executing single instruction is
even less efficient, even less efficient, whywhy??

LatchLatch LatchLatchLogic 1Logic 1 LatchLatchLogic 2Logic 2 LatchLatchLogic 3Logic 3

Pipeline EfficiencyPipeline Efficiency

Efficiency can be improved by Efficiency can be improved by
•• II. subdividing logic into multiple stages and . subdividing logic into multiple stages and

shortening CCTshortening CCT
•• IIII. overlapping operation execution. overlapping operation execution

LatchLatch LatchLatchLogic 1Logic 1 LatchLatchLogic 2Logic 2 LatchLatchLogic 3Logic 3

Pipeline EfficiencyPipeline Efficiency

Efficiency can be improved by I.
subdividing logic into multiple stages and
shortening CCT

And by And by IIII. overlapping operation execution. overlapping operation execution

LatchLatch LatchLatchLogic 1Logic 1 LatchLatchLogic 2Logic 2 LatchLatchLogic 3Logic 3

Pipeline EfficiencyPipeline Efficiency

Efficiency can be improved by I.
subdividing logic into multiple stages and
shortening CCT

And by And by IIII. overlapping operation execution. overlapping operation execution

LatchLatch LatchLatchLogic 1Logic 1 LatchLatchLogic 2Logic 2 LatchLatchLogic 3Logic 3

Pipeline Pipeline DepthDepth

If three pipeline stages are better than If three pipeline stages are better than
nonnon--pipelined, are four stages better than pipelined, are four stages better than
three?three?

What is the limit to the number of What is the limit to the number of
stages?stages?

What is the CCT at that limit?What is the CCT at that limit?

Why Pipeline?Why Pipeline?

Suppose we execute 100 instructions. Suppose we execute 100 instructions.
How long on each architecture?How long on each architecture?

Single Cycle MachineSingle Cycle Machine
•• 4.5 ns/cycle, CPI=14.5 ns/cycle, CPI=1

MulticycleMulticycle MachineMachine
•• 1.0 ns/cycle, CPI=4.1 1.0 ns/cycle, CPI=4.1

Ideal pipelined machineIdeal pipelined machine
•• 1.0 ns/cycle, CPI=1 (but remember fill cost!)1.0 ns/cycle, CPI=1 (but remember fill cost!)

Why Pipeline?Why Pipeline?

Suppose we execute 100 instructionsSuppose we execute 100 instructions

Single Cycle MachineSingle Cycle Machine
•• 4.5 ns/cycle x 1 CPI x 100 inst = 450 ns4.5 ns/cycle x 1 CPI x 100 inst = 450 ns

MulticycleMulticycle MachineMachine
•• 1.0 ns/cycle x 4.1 CPI (due to inst mix) x 100 1.0 ns/cycle x 4.1 CPI (due to inst mix) x 100

inst = 410 nsinst = 410 ns

Ideal pipelined machineIdeal pipelined machine
•• 1.0 ns/cycle x (1 CPI x 100 inst + 4 cycle fill) = 1.0 ns/cycle x (1 CPI x 100 inst + 4 cycle fill) =

104 ns104 ns

Fill CostsFill Costs

Suppose we pipeline different numbers Suppose we pipeline different numbers
of instructions. What is the overhead of of instructions. What is the overhead of
pipelining?pipelining?

Ideal pipelined machineIdeal pipelined machine
•• 1.0 ns/cycle, CPI=1, 10 instructions1.0 ns/cycle, CPI=1, 10 instructions

•• 1.0 ns/cycle, CPI=1, 1000 instructions1.0 ns/cycle, CPI=1, 1000 instructions

•• 1.0 ns/cycle, CPI=1, 100,000 instructions1.0 ns/cycle, CPI=1, 100,000 instructions

Fill CostsFill Costs

Overhead: Ideal pipelined machineOverhead: Ideal pipelined machine
•• 1.0 ns/cycle, CPI=1, 10 instructions1.0 ns/cycle, CPI=1, 10 instructions
•• 10 ns runtime + 4 ns overhead: 40% overhead10 ns runtime + 4 ns overhead: 40% overhead
•• 1.0 ns/cycle, CPI=1, 1000 instructions1.0 ns/cycle, CPI=1, 1000 instructions
•• 1000 ns runtime + 4 ns overhead: 0.4% 1000 ns runtime + 4 ns overhead: 0.4%

overheadoverhead
•• 1.0 ns/cycle, CPI=1, 100,000 instructions1.0 ns/cycle, CPI=1, 100,000 instructions
•• 100,000 ns runtime + 4 ns overhead: 0.004% 100,000 ns runtime + 4 ns overhead: 0.004%

overheadoverhead

Pipelined MultiplierPipelined Multiplier

We can take the Wallace tree multiplier We can take the Wallace tree multiplier
we developed in Chapter 3 and create a we developed in Chapter 3 and create a
two stage pipelinetwo stage pipeline
•• Reduce partial product termsReduce partial product terms
•• Do final nDo final n--2 bit addition using carry look2 bit addition using carry look--

ahead adder ahead adder

The two operations are roughly The two operations are roughly
balanced, both take balanced, both take log(nlog(n) time) time

Wallace Tree Multiplier: 2Wallace Tree Multiplier: 2--Stage PipelineStage Pipeline
x x x x x x x x y y y y y y y y

1414--Bit AdderBit Adder
ResultResult

ReduceReduce
PartialPartial
ProductsProducts

Pipeline LatchPipeline Latch

MultiplicandMultiplicand MultiplierMultiplier

x x x x x x x x y y y y y y y y

1414--Bit AdderBit Adder
ResultResult

ReduceReduce
PartialPartial
ProductsProducts

Wallace Tree Multiplier: 2Wallace Tree Multiplier: 2--Stage PipelineStage Pipeline

Pipeline LatchPipeline Latch

MultiplicandMultiplicand MultiplierMultiplier x x x x x x x x y y y y y y y y

1414--Bit AdderBit Adder
ResultResult

ReduceReduce
PartialPartial
ProductsProducts

Wallace Tree Multiplier: 2Wallace Tree Multiplier: 2--Stage PipelineStage Pipeline

Pipeline LatchPipeline Latch

MultiplicandMultiplicand MultiplierMultiplier

Pipelined Processor DesignPipelined Processor Design

WeWe’’ll take the singlell take the single--cycle design and cycle design and
transform it into a pipelined designtransform it into a pipelined design

What we formally called a What we formally called a ‘‘phasephase’’ of an of an
instructioninstruction’’s execution will now become s execution will now become
a pipeline stagea pipeline stage

SingleSingle--Cycle DesignCycle Design

Instruction
Memory

Address
M
U
X

1

0

PC

44

Add

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

SingleSingle--Cycle Design PhasesCycle Design Phases

Address
M
U
X

1

0

PC

44

Add

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction FetchInstruction Fetch ExecutionExecutionInstruction DecodeInstruction Decode MemoryMemory WBWB

Instruction
Memory

Pipelined DesignPipelined Design

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction FetchInstruction Fetch ExecutionExecutionInstruction DecodeInstruction Decode MemoryMemory WBWB

Instruction
Memory

Instruction Fetch & PC + 4Instruction Fetch & PC + 4

Address
M
U
X

1

00
PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Instruction Decode & Instruction Decode & RegReg ReadRead

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Execution: Load WordExecution: Load Word

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X

11

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Memory: Load WordMemory: Load Word

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Write Back: Load WordWrite Back: Load Word

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

00

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Execution: Store WordExecution: Store Word

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X

11

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Memory: Store WordMemory: Store Word

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Write Back: Store WordWrite Back: Store Word

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Execution: RExecution: R--typetype

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

00

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Memory: RMemory: R--typetype

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Write Back: RWrite Back: R--typetype

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

11

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Execution: BranchExecution: Branch

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

00

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Memory: BranchMemory: Branch

Address
M
U
X

11

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Write Back: BranchWrite Back: Branch

Address
M
U
X

1

0

PC

44

Add

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

M
U
X
1

0

Write
data

Address Read
data

Data
Memory

M
U
X

1

0

Sign
Extend

32321616

Read
register 1

Read
register 2

Write
register

Write
data

Read
data 1

Read
data 2

Registers

ALU
result

Zero
ALU

ALU
result

Add

Shift
left 2

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Instruction
Memory

Overlapping Instruction ExecutionOverlapping Instruction Execution

Parts of different instruction execute at Parts of different instruction execute at
each pipeline stage during each cycle each pipeline stage during each cycle

lwlw $1, 100($0)$1, 100($0)

lwlw $2, 200($0)$2, 200($0)

lwlw $3, 300($0)$3, 300($0)

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

IM Reg ALU DM Reg

CC9CC9

lwlw $4, 400($0)$4, 400($0)

lwlw $5, 500($0)$5, 500($0)

Overlapping Instruction ExecutionOverlapping Instruction Execution

lwlw $1, 100($0)$1, 100($0)

lwlw $2, 200($0)$2, 200($0)

lwlw $3, 300($0)$3, 300($0)

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

lwlw $4, 400($0)$4, 400($0)

lwlw $5, 500($0)$5, 500($0)

Overlapping Instruction ExecutionOverlapping Instruction Execution

lwlw $1, 100($0)$1, 100($0)

lwlw $2, 200($0)$2, 200($0)

lwlw $3, 300($0)$3, 300($0)

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM Reg ALUALU DMDM RegReg

IM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

lwlw $4, 400($0)$4, 400($0)

lwlw $5, 500($0)$5, 500($0)

Overlapping Instruction ExecutionOverlapping Instruction Execution

lwlw $1, 100($0)$1, 100($0)

lwlw $2, 200($0)$2, 200($0)

lwlw $3, 300($0)$3, 300($0)

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALU DMDM RegReg

IMIM Reg ALUALU DMDM RegReg

IM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

lwlw $4, 400($0)$4, 400($0)

lwlw $5, 500($0)$5, 500($0)

Overlapping Instruction ExecutionOverlapping Instruction Execution

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DM RegReg

IMIM RegReg ALU DMDM RegReg

IMIM Reg ALUALU DMDM RegReg

IM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

lwlw $4, 400($0)$4, 400($0)

lwlw $5, 500($0)$5, 500($0)

lwlw $1, 100($0)$1, 100($0)

lwlw $2, 200($0)$2, 200($0)

lwlw $3, 300($0)$3, 300($0)

Overlapping Instruction ExecutionOverlapping Instruction Execution

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM Reg

IMIM RegReg ALUALU DM RegReg

IMIM RegReg ALU DMDM RegReg

IMIM Reg ALUALU DMDM RegReg

IM RegReg ALUALU DMDM RegReg

CC9CC9

lwlw $5, 500($0)$5, 500($0)

lwlw $4, 400($0)$4, 400($0)

lwlw $1, 100($0)$1, 100($0)

lwlw $2, 200($0)$2, 200($0)

lwlw $3, 300($0)$3, 300($0)

Overlapping Instruction ExecutionOverlapping Instruction Execution

lwlw $1, 100($0)$1, 100($0)

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM Reg

IMIM RegReg ALUALU DM RegReg

IMIM RegReg ALU DMDM RegReg

IMIM Reg ALUALU DMDM RegReg

CC9CC9

lwlw $5, 500($0)$5, 500($0)

lwlw $4, 400($0)$4, 400($0)

lwlw $2, 200($0)$2, 200($0)

lwlw $3, 300($0)$3, 300($0)

Control LinesControl Lines

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

Registers

Add

Instruction
Memory

SLL
2

Data
Memory

Add

P
C

RegWriteRegWrite

RegDstRegDst

ALUOpALUOp

ALU

MemWriteMemWriteALUSrcALUSrc

BranchBranch

Ze
ro

Ze
ro

MemtoRegMemtoReg

MemReadMemRead

ALU
Control

Sign
Extend

PCSrcPCSrc

44

Control UnitControl Unit

IF/IDIF/ID ID/EXID/EX EX/MEMEX/MEM MEM/WBMEM/WB

Registers

Add

PCSrcPCSrc

Instruction
Memory

SLL
2

Data
Memory

Add

P
C

R
eg

W
rit

e
R

eg
W

rit
e

RegDstRegDst

ALUOpALUOp

ALU

M
em

W
ri

te
M

em
W

ri
te

ALUSrcALUSrc

B
ra

nc
h

B
ra

nc
h

Ze
ro

Ze
ro

M
em

to
R

eg
M

em
to

R
eg

MemReadMemRead

ALU
Control

Control

Sign
Extend

44

Pipelined ControlPipelined Control

IF/IDIF/ID

ID/EXID/EX

EX/MEMEX/MEM
MEM/WBMEM/WB

PCSrcPCSrc

Instruction
Memory

WB

WB

MEX

M

WB

P
C

RegWriteRegWrite RegDstRegDst

ALUOpALUOp

MemWriteMemWrite

ALUSrcALUSrc

B
ra

nc
h

B
ra

nc
h

Ze
ro

Ze
ro

MemtoRegMemtoReg

MemReadMemRead

Control

Pipeline with Pipelined Pipeline with Pipelined
ControlControl

IF/IDIF/ID

ID/EXID/EX

EX/MEMEX/MEM
MEM/WBMEM/WB

Registers

Add

PCSrcPCSrc

Instruction
Memory

SLL
2

WB

WB

MEX

M

WB

Data
Memory

Add

P
C

R
eg

W
rit

e
R

eg
W

rit
e

RegDstRegDst

ALUOpALUOp

ALU

M
em

W
ri

te
M

em
W

ri
te

ALUSrcALUSrc

B
ra

nc
h

B
ra

nc
h

Ze
ro

Ze
ro

M
em

to
R

eg
M

em
to

R
eg

MemReadMemRead

ALU
Control

Control

Sign
Extend

44

Data HazardsData Hazards

Data hazards can occur when:Data hazards can occur when:
1.1. Instructions Instructions II11 and and II22 are both in the pipelineare both in the pipeline
2.2. II22 follows follows II11

3.3. II11 produces a result that is used by produces a result that is used by II22

The problem: because The problem: because II11 has not posted has not posted
its result to the register file, its result to the register file, II22 may read may read
an obsolete value.an obsolete value.

Data HazardsData Hazards

Sub Sub $2$2, $1, $3, $1, $3

And $12, And $12, $2$2, $5, $5

Or $13, $6, Or $13, $6, $2$2

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

Add $14, Add $14, $2$2, , $2$2

SwSw $15, 100($15, 100($2$2))

$2 is not written by sub until CC5, but following $2 is not written by sub until CC5, but following
instructions depend on $2 as soon as CC3instructions depend on $2 as soon as CC3

Data HazardsData Hazards

Sub Sub $2$2, $1, $3, $1, $3

And $12, $2, $5And $12, $2, $5

Or $13, $6, $2Or $13, $6, $2

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

Add $14, $2, $2Add $14, $2, $2

SwSw $15, 100($15, 100($2$2))

Sw requires $2 at CC6, and $2 is written to register
file at CC5, so not a problem

Data HazardsData Hazards

Sub Sub $2$2, $1, $3, $1, $3

And $12, $2, $5And $12, $2, $5

Or $13, $6, $2Or $13, $6, $2

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

Add $14, Add $14, $2$2, , $2$2

SwSw $15, 100($2)$15, 100($2)

Add requires $2 at CC5.5, and $2 is written to
register file at CC5.0, so not a problem

Data HazardsData Hazards

Sub Sub $2$2, $1, $3, $1, $3

And $12, And $12, $2,$2, $5$5

Or $13, $6, Or $13, $6, $2$2

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

Add $14, $2, $2Add $14, $2, $2

SwSw $15, 100($2)$15, 100($2)

Or requires $2 at CC4, and $2 is written to register
file at CC5.0: hazard

Data HazardsData Hazards

Sub Sub $2$2, $1, $3, $1, $3

And $12, And $12, $2$2, $5, $5

Or $13, $6, Or $13, $6, $2$2

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

Add $14, $2, $2Add $14, $2, $2

SwSw $15, 100($2)$15, 100($2)

However $2 is available at CC5 from internal pipeline
latch

Data HazardsData Hazards

Sub Sub $2$2, $1, $3, $1, $3

And $12, And $12, $2$2, $5, $5

Or $13, $6, Or $13, $6, $2$2

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

Add $14, $2, $2Add $14, $2, $2

SwSw $15, 100($2)$15, 100($2)

And requires $2 at CC3, and $2 is written to register
file at CC5.0: hazard

Data HazardsData Hazards

Sub Sub $2$2, $1, $3, $1, $3

And $12, And $12, $2$2, $5, $5

Or $13, $6, Or $13, $6, $2$2

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

Add $14, $2, $2Add $14, $2, $2

SwSw $15, 100($2)$15, 100($2)

However $2 is available at CC4 from internal pipeline
latch

ForwardingForwarding

Most data hazards can be resolved by Most data hazards can be resolved by
forwardingforwarding, sending the internal pipeline , sending the internal pipeline
result from result from II11 to the stage where it is to the stage where it is
needed by needed by II22 which is following in the which is following in the
pipelinepipeline

Result is still posted to the register file Result is still posted to the register file
when when II11 reaches WB stagereaches WB stage

Forwarding requires hardware Forwarding requires hardware
modifications to the modifications to the datapathdatapath

DataPathDataPath without Forwardingwithout Forwarding

Registers

MUX

ALU Data
Memory

DataPathDataPath with Forwardingwith Forwarding

Registers

M
U
X

M
U
X

M
U
X

M
U
X

ALU
Data

Memory

RsRs
RtRt
RtRt
RdRd

Forwarding
Unit

MEM//MEM//WB.RegisterRdWB.RegisterRd

EX/EX/MEM.RegisterRdMEM.RegisterRd

Forward FromForward From
MEM/WBMEM/WB Forward from EX/MEMForward from EX/MEM

ForwardAForwardA

ForwardBForwardB

Forwarding data paths for results from Memory stage Forwarding data paths for results from Memory stage
and and WriteBackWriteBack stage to Execution stage stage to Execution stage

New ALU MUX to select operand from register file or New ALU MUX to select operand from register file or
newest result via forwardingnewest result via forwarding

FowardingFowarding Path ControlPath Control

Control used to decide whether to forward Control used to decide whether to forward
from the Memory stagefrom the Memory stage

If ((EX/If ((EX/MEM.RegWriteMEM.RegWrite)) #must be writing a register#must be writing a register
and (EX/and (EX/MEM.RegisterRdMEM.RegisterRd != 0)!= 0) #$0 is always up to date #$0 is always up to date
and (EX/and (EX/MEM.RegisterRdMEM.RegisterRd = ID/= ID/EX.RegisterRsEX.RegisterRs))
#stage 4 result and stage 3 source operand match#stage 4 result and stage 3 source operand match
ForwardAForwardA = 10= 10

If ((EX/If ((EX/MEM.RegWriteMEM.RegWrite))
and (EX/and (EX/MEM.RegisterRdMEM.RegisterRd != 0)!= 0)
and (EX/and (EX/MEM.RegisterRdMEM.RegisterRd = ID/= ID/EX.RegisterRtEX.RegisterRt))))
ForwardBForwardB = 10= 10

FowardingFowarding Path ControlPath Control

Control used to decide whether to forward Control used to decide whether to forward
from the from the WritebackWriteback stage:stage:

If ((MEM/If ((MEM/WB.RegWriteWB.RegWrite)) #must be writing a register#must be writing a register
and (MEM/and (MEM/WB.RegisterRdWB.RegisterRd != 0) != 0) #$0 is always up to date#$0 is always up to date
and !((EX/and !((EX/MEM.RegisterRdMEM.RegisterRd = ID/= ID/EX.RegisterRsEX.RegisterRs) and) and

(EX/(EX/MEM.RegWriteMEM.RegWrite))))
forward result from stage 4 is newer, has priority# forward result from stage 4 is newer, has priority
and (MEM/and (MEM/WB.RegisterRdWB.RegisterRd = ID/= ID/EX.RegisterRsEX.RegisterRs))))
#stage 4 result and stage 3 source operand match#stage 4 result and stage 3 source operand match

ForwardAForwardA = 01= 01

If ((MEM/If ((MEM/WB.RegWriteWB.RegWrite))
and (MEM/and (MEM/WB.RegisterRdWB.RegisterRd != 0)!= 0)
and !((EX/and !((EX/MEM.RegisterRdMEM.RegisterRd = ID/= ID/EX.RegisterRtEX.RegisterRt) and) and

(EX/(EX/MEM.RegWriteMEM.RegWrite))))
and (MEM/and (MEM/WB.RegisterRdWB.RegisterRd = ID/= ID/EX.RegisterRtEX.RegisterRt))))

ForwardBForwardB = 01= 01

Complete Complete DatapathDatapath with Forwardingwith Forwarding

InstructionMemoryPC

IF/IDIF/ID

ID/EXID/EX

EX/MEMEX/MEM

MEM/WBMEM/WB

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Registers

MUX

MUX

MUX

MUX

ALU Data
Memory

Control

WB

M

EX

RsRs
RtRt
RtRt
RdRd

IF/IF/ID.RegisterRsID.RegisterRs
IF/IF/ID.RegisterRtID.RegisterRt
IF/IF/ID.RegisterRtID.RegisterRt
IF/IF/ID.RegisterRdID.RegisterRd

Forwarding
Unit

MEM//MEM//WB.RegisterRdWB.RegisterRd

EX/EX/MEM.RegisterRdMEM.RegisterRd

WB

M WB

Forwarding (CC3)Forwarding (CC3)

InstructionMemoryPC

IF/IDIF/ID

ID/EXID/EX

EX/MEMEX/MEM

MEM/WBMEM/WB

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Registers

MUX

MUX

MUX

MUX

ALU Data
Memory

Control

WB

M

EX

11
33

22

22
55

44

Forwarding
Unit

MEM//MEM//WB.RegisterRdWB.RegisterRd

EX/EX/MEM.RegisterRdMEM.RegisterRd

WB

M WB

Sub Sub $2$2, $1, $3, $1, $3And $12, And $12, $2$2, $5, $5Or $13, $6, Or $13, $6, $2$2 Before<1>Before<1> Before<2>Before<2>

22

55

$5$5

$2$2

$3$3

$1$1

Forwarding (CC4)Forwarding (CC4)

InstructionMemoryPC

IF/IDIF/ID

ID/EXID/EX

EX/MEMEX/MEM

MEM/WBMEM/WB

In
st

ru
ct

io
n

In
st

ru
ct

io
n

Registers

MUX

MUX

MUX

MUX

ALU Data
Memory

Control

WB

M

EX

22
55

1212

66
22

1313

Forwarding
Unit

MEM//MEM//WB.RegisterRdWB.RegisterRd

EX/EX/MEM.RegisterRdMEM.RegisterRd

WB

M WB

And $12, And $12, $2$2, $5, $5Or $13, $6, Or $13, $6, $2$2Add $14, $2, Add $14, $2, $2$2 Sub Sub $2$2, $1, $3, $1, $3 Before<1>Before<1>

66

22

$2$2

$6$6

$5$5

$2$2

22

Forwarding (CC5)Forwarding (CC5)

Instruction
Memory

PC

IF/IDIF/ID

ID/EXID/EX

EX/MEMEX/MEM

MEM/WBMEM/WB
In

st
ru

ct
io

n
In

st
ru

ct
io

n

Registers

M
U
X

M
U
X

M
U
X

M
U
X

ALU
Data

Memory

Control

WB

M

EX

66
22

1313

22
22

1414

Forwarding
Unit

MEM//MEM//WB.RegisterRdWB.RegisterRd

EX/EX/MEM.RegisterRdMEM.RegisterRd

WB

M WB

Or $13, $6, Or $13, $6, $2$2Add $14, Add $14, $2$2, , $2$2SwSw $15, 100$15, 100(($2$2)) And $12, And $12, $2$2, $5, $5 Sub Sub $2$2, $1, $3, $1, $3

22

22

$2$2

$2$2

$2$2

$6$6

1212

22

Load Data HazardsLoad Data Hazards

lwlw $2$2, 20($1), 20($1)

and $4, and $4, $2$2, $5, $5

or $8, or $8, $2$2, , $6$6

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

add $9, $4, add $9, $4, $2$2

sltslt $1, $1, $10$10, $7, $7

For loads most data hazards can be resolved with
forwarding but some cannot

Load Hazard Solution #1Load Hazard Solution #1

Have compiler insert a NOP to space Have compiler insert a NOP to space
instructions further apartinstructions further apart

lwlw $2$2,20($1),20($1)
nopnop
and $4,and $4,$2$2,$5,$5
or $8,or $8,$2$2,,$6$6

add $9,$4,add $9,$4,$2$2
sltslt $1$1,$10,$10,$7,$7

Load Data HazardsLoad Data Hazards

lwlw $2$2, 20($1), 20($1)

and $4, and $4, $2$2, $5, $5

or $8, or $8, $2$2, , $6$6

ProgramProgram
executionexecution
orderorder

CC1CC1 CC2CC2 CC3CC3 CC6CC6CC4CC4 CC5CC5 CC7CC7

Time (in clock cycles)Time (in clock cycles)

CC8CC8

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

IMIM RegReg ALUALU DMDM RegReg

CC9CC9

add $9, $4, add $9, $4, $2$2

nopnop resolves load data hazardresolves load data hazard

nopnop

Load Hazard Solution #2Load Hazard Solution #2

Best solution: compiler reorders (schedules) Best solution: compiler reorders (schedules)
instructions to resolve hazardinstructions to resolve hazard
•• SLT is independent of all instruction except LW, SLT is independent of all instruction except LW,

can move up to resolve hazard w/o can move up to resolve hazard w/o nopnop

lwlw $2$2,20($1),20($1)
nopnop
and $4,and $4,$2$2,$5,$5
or $8,or $8,$2$2,,$6$6
add $9,$4,add $9,$4,$2$2

sltslt $1$1,$10,$10,$7,$7

lwlw $2$2,20($1),20($1)
sltslt $1$1,$10,$10,$7,$7
and $4,and $4,$2$2,$5,$5
or $8,or $8,$2$2,,$6$6
add $9,$4,add $9,$4,$2$2

Load Hazard Solution #3Load Hazard Solution #3

Have the pipeline detect hazard and Have the pipeline detect hazard and
automatically inject a automatically inject a nopnop
•• reduces size of programreduces size of program
•• reduces cache missesreduces cache misses

LW and instruction before advance in LW and instruction before advance in
next CC, following instructions next CC, following instructions stallstall, , nopnop
injected into EX injected into EX

IF ID EX MEM WBIF ID EX MEM WB
CCCCii:: or or || and and || lwlw || before 1 before 1 || before 2before 2

CCCCi+1i+1: or : or || and and || andand|| lwlw || before 1before 1

Detecting a Load HazardDetecting a Load Hazard

Need to add an new hazard detection unit. Need to add an new hazard detection unit.
Load hazard occurs under this condition:Load hazard occurs under this condition:

If (ID/If (ID/EX.MemReadEX.MemRead)) #LW in stage 3#LW in stage 3
and ((ID/and ((ID/EX.RegisterRtEX.RegisterRt = IF/= IF/ID.RegisterRsID.RegisterRs))

oror
(ID/(ID/EX.RegisterRtEX.RegisterRt = IF/= IF/ID.RegisterRtID.RegisterRt))))
#stage 2 #stage 2 RsRs or or RtRt uses LW resultuses LW result
stall the pipelinestall the pipeline

This logic is correct but not precise (creates This logic is correct but not precise (creates
too many stalls). Why? too many stalls). Why?

Hazard Detection Unit Hazard Detection Unit
Detection occurs in ID pipeline stageDetection occurs in ID pipeline stage

InstructionMemory

IF/IDIF/ID

ID/EXID/EX

EX/MEMEX/MEM

MEM/WBMEM/WB

PC
W

rit
e

PC
W

rit
e

Registers

M
U
X

M
U
X

MUX

MUX

ALU Data
Memory

Control

WB

M

EX

RsRs
RtRt

IF/IF/ID.RegisterRsID.RegisterRs
IF/IF/ID.RegisterRtID.RegisterRt
IF/IF/ID.RegisterRtID.RegisterRt
IF/IF/ID.RegisterRdID.RegisterRd

Forwarding
Unit

MEM//MEM//WB.RegisterRdWB.RegisterRd

EX/EX/MEM.RegisterRdMEM.RegisterRd

WB

M WB

Hazard
Detect

PC

ID/ID/EX.MemReadEX.MemRead

ID/ID/EX.RegisterRtEX.RegisterRt

In
st

ru
ct

io
n

In
st

ru
ct

io
n

IF
/

IF
/ ID

W
rit

e
ID

W
rit

e

IF
/

IF
/ ID

.R
s/

R
t

ID
.R

s/
R

t

Injecting A Injecting A NopNop (Pipeline Bubble) (Pipeline Bubble)
Set instructionSet instruction’’s control bits to all zeros; stall IF, IDs control bits to all zeros; stall IF, ID

InstructionMemory

IF/IDIF/ID

ID/EXID/EX

EX/MEMEX/MEM

MEM/WBMEM/WB

PC
W

rit
e

PC
W

rit
e

Registers

M
U
X

M
U
X

MUX

MUX

ALU Data
Memory

Control

WB

M

EX

RsRs
RtRt

IF/IF/ID.RegisterRsID.RegisterRs
IF/IF/ID.RegisterRtID.RegisterRt
IF/IF/ID.RegisterRtID.RegisterRt
IF/IF/ID.RegisterRdID.RegisterRd

Forwarding
Unit

MEM//MEM//WB.RegisterRdWB.RegisterRd

EX/EX/MEM.RegisterRdMEM.RegisterRd

WB

M WB

Hazard
Detect

PC

0

ID/ID/EX.MemReadEX.MemRead

ID/ID/EX.RegisterRtEX.RegisterRt

In
st

ru
ct

io
n

In
st

ru
ct

io
n

IF
/

IF
/ ID

W
rit

e
ID

W
rit

e

IF
/

IF
/ ID

.R
s/

R
t

ID
.R

s/
R

t

M
U
X

Refined NOP InjectionRefined NOP Injection

Setting all control bits to zero is correct Setting all control bits to zero is correct
but is overkill. What is the minimum set but is overkill. What is the minimum set
of control bits that must be set to zero?of control bits that must be set to zero?

Early Branch ResolutionEarly Branch Resolution
Branch resolved in stage 2 to reduce penaltyBranch resolved in stage 2 to reduce penalty

M
U
X

1

0

B
ra

nc
h

B
ra

nc
h

PC
Instruction

Memory

TakenTaken

Registers

Sign
Extend

Control

SLL
2

44

+

=

+

ID/EXID/EX

IF/IDIF/ID

EX

M

WB

Delayed BranchesDelayed Branches
• Further reduce branch penalty by delaying the effect of branch oFurther reduce branch penalty by delaying the effect of branch one cyclene cycle

I.e., always execute instruction after branch before PC = targetI.e., always execute instruction after branch before PC = target

•• Delay slot instruction must be independent of branch, "safe".Delay slot instruction must be independent of branch, "safe".

•• Independent instruction can be moved into delay slot from (a) abIndependent instruction can be moved into delay slot from (a) above the ove the
branch, (b) from taken path, or (c) from notbranch, (b) from taken path, or (c) from not--taken pathtaken path

(a) (a) from abovefrom above: best because instruction always useful: best because instruction always useful

beq r7,r0
NOP

add r6,x,y
=>

beq r7,r0
add r6,x,y

branch delay slotbranch delay slot
beq r7,r0

foo

Delayed Branches Cont.Delayed Branches Cont.

(b) (b) from taken pathfrom taken path: because lacking statistics for specific branch, : because lacking statistics for specific branch,
taken is more likely (e.g., 2/3). Less valuable than (ataken is more likely (e.g., 2/3). Less valuable than (a) because) because
fraction of useful work is p rather than 1fraction of useful work is p rather than 1

beq r7,r0
NOP

add r4,...

Load r4,...
foo11--pp pp

beqz r7,r0

add r4,...

Load r4,...

foo
11--pp pp

(c) from notfrom not--taken pathtaken path: Useful work fraction is 1Useful work fraction is 1--pp

beq r7,r0

Load r4,...
11--pp pp

foo

add r4,x,y
beq r7,r0

NOP

add r4,x,y

Load r4,...
11--pp pp

foo

=>=>

=>=>

Branch Target CopyingBranch Target Copying

=>=>
beq r7,r0

NOP

add r4,...

Load r4,...
foo2

foo1 beq r7,r0

add r4,...

Load r4,...
Load r4,...

foo2

foo1

•• If branch target instruction is accessed via other If branch target instruction is accessed via other
program paths, Instruction must be copied, not program paths, Instruction must be copied, not
moved. moved.

•• Branch retargeted to instruction after former target Branch retargeted to instruction after former target

•• Dynamic instruction count decreases, although Dynamic instruction count decreases, although
static does notstatic does not

Branches in Delay SlotBranches in Delay Slot

=>=>

•• Delay slot following Jump can almost always be filledDelay slot following Jump can almost always be filled
by moving or copying target by moving or copying target

•• Branch generally cannot fill delay slot. Branch generally cannot fill delay slot.

????NOP

JAL
foo2

foo1

jump
JAL foo1

jump

JAL
foo2

xx
x+4x+4

•• Results in return to wrong address!!!Results in return to wrong address!!!

Profiled Delayed BranchProfiled Delayed Branch

•• Where safe instruction can be moved from taken or notWhere safe instruction can be moved from taken or not--taken, fill delay slot taken, fill delay slot
based on profile statistics, maximizes useful work. E.g.,based on profile statistics, maximizes useful work. E.g., for for pp = 0.38:= 0.38:

beqz r7,...
NOP

add r4,...

Load r4,...
foo211--pp pp

beqz r7,...
add r4,...

foo1
11--pp pp

=>=>

foo1

Load r4,...
foo2

More Branch OptimizationsMore Branch Optimizations

beqz ...

Load r4,...
11--pp pp
add r4,...

=>=>
jump

NOP

foo

beqz r7,...
Load r4,...

11--pp pp
add r4,...

foo

•• Jump is eliminated if it is the only instruction left in block Jump is eliminated if it is the only instruction left in block after move, after move,
=> can eliminate two instructions. E.g., => can eliminate two instructions. E.g., pp=0.4=0.4

•• Better still is to reverse the sense of the branch:Better still is to reverse the sense of the branch:

beqz ...

Load r4,...11--pp pp
add r4,...

jump

NOP

foo

bnez ...

Load r4,...

11--pppp
add r4,...

jump

NOP

foo

=>=> =>=>
Load r4,...

11--pppp

add r4,...

foo

bnez ...

Delayed Branches & ExceptionDelayed Branches & Exception

pc
 +

4
in

st
ru

ct
io

n

pc
 +

 4
op

r d
es

t
so

ur
ce

2
so

ur
ce

1

decodedecode
regreg readread

pc
 +

 4
op

rd
es

t
A

LU
 re

su
lt

memory memory
accessaccessALUALU

re
su

lt
op

rd
es

t

branchbranchLoad
(delay slot)

foo1
(target)

foo2

• Delayed branches must save PCs of next two instructions on Delayed branches must save PCs of next two instructions on
exception, rather than oneexception, rather than one

savesave

savesave

Page Page
FaultFault

Delayed Branching PerformanceDelayed Branching Performance

For typical integer codes a useful instruction is For typical integer codes a useful instruction is
executed in delay slot about 70% of the time executed in delay slot about 70% of the time
thus branch cost is:thus branch cost is:

(cycles lost per branch = 0.3) x(cycles lost per branch = 0.3) x
(fraction of branches = 0.25) =(fraction of branches = 0.25) =
8% performance loss8% performance loss

Significant reduction from 75%, but still want smaller Significant reduction from 75%, but still want smaller
branch costbranch cost

NOTE:NOTE:
if you consider slides 46&47 as the baseline, then CPI if you consider slides 46&47 as the baseline, then CPI
for branch instruction is 4 in baseline implementation for branch instruction is 4 in baseline implementation
and 75% performance loss is correct. This is a bit and 75% performance loss is correct. This is a bit
different than what we discussed in class.different than what we discussed in class.

Early Branch ResolutionEarly Branch Resolution
Branch resolved in stage 2 to reduce penaltyBranch resolved in stage 2 to reduce penalty

M
U
X

1

0

B
ra

nc
h

B
ra

nc
h

PC
Instruction

Memory

TakenTaken

Registers

Sign
Extend

Control

SLL
2

44

+

=

+

ID/EXID/EX

IF/IDIF/ID

EX

M

WB

Branch PredictionBranch Prediction

Use a Use a ‘‘magic boxmagic box’’ to:to:
•• Determine the instruction being fetched is a Determine the instruction being fetched is a

branchbranch
•• Predict the branch outcome (taken/not taken)Predict the branch outcome (taken/not taken)
•• Produce the target addressProduce the target address

While the instruction is being fetched! While the instruction is being fetched!

Branch PredictionBranch Prediction

Instruction
Memory

Predictor

PC

InstructionInstruction

PTargetPTarget AddressAddress

M
U
X

1

0

Branch_TakenBranch_Taken

44

Resolve branch in IF stage if prediction is correct Resolve branch in IF stage if prediction is correct
IF/IDIF/ID

Simple Branch Prediction TableSimple Branch Prediction Table
Branch Target Buffer (BTB)Branch Target Buffer (BTB)

Predictor module is a 2Predictor module is a 2nn entry table indexed entry table indexed
by n lower PC address bits. Fields are:by n lower PC address bits. Fields are:
1.1. 3232--n upper PC address bitsn upper PC address bits
2.2. IsBranchIsBranch bitbit
3.3. Target Address (30 bits)Target Address (30 bits)
4.4. PredictionPrediction

Table was filled during past executions of Table was filled during past executions of
the branch the branch

=

Branch Target BufferBranch Target Buffer
Because BTB is small, faster than Because BTB is small, faster than
instruction memoryinstruction memory

nn

3232--nn

Upr_PC

Is_Brch

00 22nn--11

T_Addr

Predict Branch_TakenBranch_Taken

PTargetPTarget AddressAddress

PCPC

HitHit

BTB in ContextBTB in Context

Instruction
Memory

PC

InstructionInstruction

PTargetPTarget
AddressAddress

M
U
X

1

0

Branch_TakenBranch_Taken

44

IF/IDIF/ID

TwoTwo--Bit Branch PredictorBit Branch Predictor

Branch history using four states (two Branch history using four states (two
bits) avoids loop problem:bits) avoids loop problem:

0000 strong notstrong not--takentaken
0101 weak notweak not--takentaken
1010 weak takenweak taken
1111 strong takenstrong taken

Implemented as a state machineImplemented as a state machine

Strong TakenWeak Taken

Weak NTaken Strong NTaken

TT

TT

TTTTNTNT

NTNT

NTNT

NTNT

TwoTwo--Bit Branch Predictor Bit Branch Predictor

Can think of this predictor as a saturating Can think of this predictor as a saturating
counter: +1 for taken, counter: +1 for taken, --1 for not taken1 for not taken

1110

01 00

TT

TT

TTTTNTNT

NTNT

NTNT

NTNT

=

Branch Target Buffer CompleteBranch Target Buffer Complete
Because BTB is small, faster than Because BTB is small, faster than
instruction memoryinstruction memory

nn

3232--nn

Upr_PC

Is_Brch

00 22nn--11

T_Addr

Branch_TakenBranch_Taken

PTargetPTarget AddressAddress

PCPC

HitHit

S1

S0

StateState

Final BTB in ContextFinal BTB in Context

Instruction
Memory

PC

InstructionInstruction

M
U
X

1

0

Branch_TakenBranch_Taken

44

IF/IDIF/ID

HitHit

PTargetPTarget
AddressAddress

StateState

Confirming Branch PredictionConfirming Branch Prediction
Prediction must be confirmed in ID stage, branchPrediction must be confirmed in ID stage, branch--
history state updatedhistory state updated

B
ra

nc
h

B
ra

nc
h

TakenTaken

Registers

Sign
Extend

Control

SLL
2

+

=

ID/EXID/EX

IF/IDIF/ID

EX

M

WB

PC + 4PC + 4

InstructionInstruction

TargetTarget
AddressAddress

StateState
HitHit

Confirming Branch PredictionConfirming Branch Prediction

Must consider pipeline action for following cases:Must consider pipeline action for following cases:
1.1. No hit, no branch: do nothingNo hit, no branch: do nothing
2.2. No hit, branch:No hit, branch:

a.a. Nullify IF instructionNullify IF instruction
b.b. Branch to computed target address Branch to computed target address

3.3. Hit, condition = prediction: do nothingHit, condition = prediction: do nothing
4.4. Hit, condition = taken, prediction = not taken:Hit, condition = taken, prediction = not taken:

a.a. Nullify IF instructionNullify IF instruction
b.b. Branch to computer target addressBranch to computer target address

5.5. Hit, condition = not taken, prediction = takenHit, condition = not taken, prediction = taken
a.a. Nullify IF instructionNullify IF instruction
b.b. Branch to ID stage PC+4Branch to ID stage PC+4

Next PC using Branch PredictionNext PC using Branch Prediction
Using branch prediction now have four choices Using branch prediction now have four choices
for next PC: IF_PC+4, for next PC: IF_PC+4, PTargetPTarget address, address,
ID_PC+4, Target addressID_PC+4, Target address

2

0

B
ra

nc
h

B
ra

nc
h

PC
Instruction

Memory

TakenTaken

Registers

Sign
Extend

Control

SLL
2

44

+

=

+

ID/EXID/EX

IF/IDIF/ID

EX

M

WB

BTB

1

3

PTargetPTarget
AddressAddress

TargetTarget
AddressAddress

IF_PC+4IF_PC+4ID_PC+4ID_PC+4

BTB UpdatesBTB Updates

Must consider BTB updates for following cases:Must consider BTB updates for following cases:
1.1. No hit, no branch: do nothingNo hit, no branch: do nothing
2.2. No hit, branch: No hit, branch:

•• Write new BTB entry, set prediction to weak condition Write new BTB entry, set prediction to weak condition

3.3. Hit, condition = taken: ++predictionHit, condition = taken: ++prediction
4.4. Hit, condition = not taken: Hit, condition = not taken: ----predictionprediction

