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Abstract-Increasing efficiencies in electronic devices have 

opened the door for energy harvesters to power wireless systems 

by scavenging energy from solar, thermal, or mechanical 

sources.  The design of an efficient power supply that can 

regulate scavenged energy to produce stable voltages for 

multiple loads is presented here. To limit energy dissipation and 

increase the flexibility of the regulator, a discrete-time sliding-

mode controller is presented. The performance of sliding-mode 

controllers is hard to predict because their switching frequency 

and output voltage ripple are dependent on duty cycle and load 

conditions. An analytical approach for the closed-loop steady-

state behavior of a discrete-time sliding-mode controller is 

presented here. The proposed analytical solution matches 

measured results to within 4% for duty cycles ranging between 

0.1 and 0.9.  

I. INTRODUCTION

 Today’s circuit designers can choose from an array of 

analog, digital, and mixed-signal voltage regulators. Each 

class of regulator has its own benefits and drawbacks. Figure 

1 illustrates the design tradeoffs for different regulators. 

There is an inherent tradeoff between performance (voltage 

ripple, rise time, offset, and overshoot) and efficiency. For 

instance, pulse width modulation (PWM) regulators, which 

are commonly used for digital circuits, can achieve very high 

efficiencies, but at the cost of significant output ripple. Low 

dropout (LDO) linear regulators, which are commonly used 

for sensitive RF and analog circuits, can achieve high 

tracking speeds without switching noise but with relatively 

poor efficiencies due to the static currents used to bias the 

analog circuits and the voltage drop across the power 

transistor.  

 In many systems, analog and digital circuits must work 

together, as in the energy harvesting wireless sensor node 

[1,2] shown in Fig. 2. Using separate regulators for the 

analog and digital subsystems can substantially increase area 

and cost. It is desirable to have a single regulator for the 

entire system which is highly flexible so that it can meet the 

requirements for analog and digital load circuits. A mixed-

signal sliding-mode (SM) regulator is highly flexible [3] and 

has the ability to trade off efficiency for performance.     

 This work analyzes the power supply needs for an energy 

harvesting wireless sensor node, and explores the tradeoffs 

between various power regulators for this application. A 

regulator that satisfies the flexibility, efficiency and 

performance requirements for energy harvesting is analyzed. 

Figure 1.Design tradeoffs for different regulator topologies 

Figure 2. Block diagram of an energy harvesting regulator with light and 

mechanical vibration energy sources. A discrete-time mixed-signal SM 

controller operates a buck converter, which supplies power for RF, digital, 

and analog circuitry. Vg is the control signal, which is used to modulate the 

state of the output transistors, switching Vd between the energy harvesting 

voltage Vin and ground. 

II. APPROACH 

A.  Mixed-Signal Sliding-Mode 

 Figure 3 shows a block diagram of a discrete-time mixed-

signal SM controller operating a buck converter, with a low- 

pass output filter G(jω). The simple model for G(jω) consists 

of a series inductor, shunt capacitor and load, as shown in 

Fig. 2. At first, ignore the filter H(z) in Fig. 3. The controller 

first samples the error signal, determines its polarity, and then 

drives the output as hard as it can in the opposite direction of 

the error. In steady-state, the SM controller signal (Vd)

ideally converges to a limit-cycle with a constant oscillation 

frequency and pulse width. An approximate expression for 

the switching at the output of the power transistors is 
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where D is the duty cycle and T is the limit-cycle oscillation 

period. G(jω) will attenuate the higher harmonics of the 

periodic signal in (1), leaving only the desired DC value and 

a residual ripple from the fundamental at the output of the 

regulator.  

 To improve the closed loop performance (higher switching 

frequency and smaller output ripple), the error signal Ve in 

Fig. 3  can be passed through a signal filter H(z) before 

reaching the comparator input Vx. To allow for the use of 

low-power passive switched-capacitor filter circuits, it is 

desirable to implement a discrete-time FIR signal filter H(z).  
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where z
-1

 equals the delay of the sampling interval, Ts=1/fs.

The last term in (2) is z
−2

, which models a two-sample-period 

parasitic delay in the signal path from Ve to the comparator 

input but does not affect the zero of the filter.  If the two 

coefficients in the filter are equal (k=1), the signal filter 

approximates a differentiator by computing an output that is 

the first difference between two consecutive input samples. 

When 0<k<1, the signal filter approximates a continuous 

time proportional plus derivative (PD) filter with the 

proportional term = 1-k and the derivative term = k.  

Figure 4 shows a graphical representation of an example 

course for the locus of a discrete-time SM controller in the 

phase plane [4]. If H(z) is tuned accurately,  it can provide a 

zero in the closed loop transfer function, which can be 

adjusted to cancel a pole from G(jω). Complete cancellation 

can depend on loading characteristics, which may be 

unknown in practice. It has been shown that a buck converter 

under SM control can be described by the error amplitude 

and its rate of change instead of the capacitor voltage and 

inductor current in G(jω) [5]. The resulting single-time-

constant response of the system can then be modeled with a 

first-order differential equation in terms of the error signal. 

The sliding surface is defined as 

ee VV λσ +=
•

                (3) 

where λ is the resulting eigenvalue of the simplified first-

order response.  

Figure 3. Block diagram of discrete-time mixed-signal SM controller with 

output stage. Vin is the unregulated power source, and Ve is the difference 

between the desired output voltage (Vref) and the actual output voltage 

(Vout).  G(jω) is a passive low pass output filter, which is used to smooth 

the output of the buck converter. Both the discrete time filter H(z) and 

comparator operate at a sampling rate of fs.

Figure 4. Graphical representation of the sliding condition in a phase plane. 

The origin of the phase plane represents a system that has Vout=Vref for

both error position and trajectory. The locus starts at initial condition and 

eventually stabilizes into a limit-cycle around an equilibrium point. 

An initial condition (IC) starts the system with a finite 

position and velocity error. The trajectory in time of the error 

will progress exponentially towards the sliding surface  = 0. 

This movement of the locus from the initial condition to the 

sliding surface is known as the reaching phase. Ideally, once 

the locus of the system has reached the sliding surface it 

would slide smoothly along the surface until reaching the 

equilibrium point (EQ), where Vout=Vref.

 Due to imperfect control switching, loop delay and other 

nonidealities, the trajectory of the tracking error vector will 

oscillate around the sliding surface creating a limit-cycle. A 

limit-cycle is defined as a closed-loop orbital trajectory in a 

phase space. The type of limit-cycles discussed here are 

stable which implies a self-sustained isolated oscillation. In 

many feedback controllers, a large loop gain at low 

frequencies is required to minimize the steady state error. For 

the proposed discrete-time SM controller, the gain is 

provided by the comparator.  

 In order to explore the design tradeoffs associated with 

different controller techniques, a comparison was conducted 

between different voltage regulators.  Figure 5 shows the 

block diagram of the test bench for the three additional 

voltage regulators, which were simulated and compared to 

the proposed discrete-time SM regulator. Here, we compare 

the SM controller against a LDO and two varieties of PWM 

control. 

B.  Design Space Comparison 

 Numerous analog and digital circuit implementations of 

PWM controllers have been published [6-9]. Analog PWM 

controllers are able to provide a very fine tuning granularity 

for the average output value, but require wasteful static 

power.  Digital PWM controllers can only tune the output to 

discrete values, and increasing the tuning precision will 

generally require additional circuitry and power 

consumption. Similar to the poly-phase sigma-delta 

modulator described in [10], the discrete time SM controller 

can only make switching transitions at intervals of Ts. In 

practice, this may limit the overall tunable step size of the 

regulator. If the discrete time SM controller in Fig. 3 is asked 

to produce a duty cycle D that corresponds to a  pulse width 

which is not an integer multiple of Ts, the controller will 

alternate between two or more separate pulse widths and 

limit-cycles, eventually averaging near the desired D. 
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 Table I compares the simulated performance of SM, 

analog PWM, digital 1-bit PWM, and LDO voltage 

regulators, which are shown in Fig. 3 and 5. All regulators 

were simulated with the same Vin, load resistance and output 

capacitance. The target output power for the comparison was 

1 mW at 1 V. The size of the CMOS output drivers were 

selected to give a conduction efficiency of 90% at the target 

power and voltage. To meet the target conduction efficiency 

in a 0.35 µm technology with a 2 V supply, the resulting 

symmetrical power transistors require widths of 135 µm and 

45 µm for the PMOS and NMOS devices, respectively. The 

switching losses of the power transistors will also impact the 

total efficiency of the regulator. A procedure to maximize the 

efficiency of a buck converter can be found in [11]. 

 From H(z), the 50 ns delay in the SM controller 

corresponds to a two-sample-period delay, which places the 

sampling rate for H(z) at 40 MHz. The PWM controllers 

operate at 1 MHz (fswitch in Fig. 5), while SM controller has a 

limit-cycle frequency of fswitch. The SM and digital PWM 

controllers offer the most power efficient regulation 

techniques since they require no static currents. For k=0, the 

mixed-signal SM controller in Fig. 3 consists only of analog 

circuitry to generate the error signal and a comparator. A 1-

bit digital PWM controller [8] will require the same analog 

error signal and comparator as the SM controller plus 

additional circuitry to generate the PWM waveform. The SM 

controller needs a higher clock rate than the 1-bit digital 

PWM, but requires less circuitry.  The question then becomes 

which controller consumes less energy, and the answer 

depends on the resolution of the digital PWM regulator. 

From [8], each output voltage level (corresponding to a 

discrete duty cycle) requires 136 nW of power at 1 MHz in a 

0.35 µm CMOS technology.  Transistor-level simulations 

from layouts including extracted parasitics suggest that the 

entire SM controller will consume 26 µW of power with a 

sampling rate of 40 MHz in the same technology. We can 

then estimate a consumption of 650 nW to generate the 1-bit 

error-signal for the PWM generator at 1 MHz. Therefore, if 

more than 186 distinct output levels (7.5-bit resolution) are 

required, the SM controller will result in a more efficient 

control technique.  

 Mechanical vibration energy harvesters can potentially 

generate open-circuit voltages greater than 30V [12]. 

Assuming the analog subsystem requires a supply voltage of 

0.9-1.1V (1V±10%), the regulator for the mechanical energy 

harvester described in [12] will require more than 300 

distinct output levels (8.2-bit resolution). For this dynamic 

range and resolution, an SM controller is the most efficient 

technique for regulating the harvested mechanical energy. 

 The digital SM controller in [13] targets adaptive power 

supply regulation for digital systems based on critical path 

delays. It consumes as little as 400 µW with 40 distinct 

output levels in 0.25 µm CMOS. The discrete-time mixed-

signal SM controller described above can provide much 

higher output resolution (ultimately limited by comparator 

offset and the sampling rate) while consuming less power, 

and is suitable for analog and digital loads. Many of the 

performance requirements for the voltage regulator in the 

energy harvesting wireless sensor node will be determined by 

the subsystem with the highest supply voltage sensitivity, 

which is often an analog-to-digital converter (ADC).  A 

possible ADC for this application is an energy efficient 8-bit 

successive approximation ADC operating at 200 kS/s [14]. If 

this ADC has a full scale voltage of 1V and a power supply 

rejection ratio (PSRR) of 0 dB to 30 dB, it will require less 

than 2 to 60 mV of supply noise, respectively. 

 Figure 6 shows MATLAB simulations for a 1V 35µs pulse 

at Vref for the SM controller in Fig. 3 and the analog PWM 

(APWM) controller in Fig. 5. The SM controller was 

modeled with a parasitic loop delay, which was chosen to set 

the limit-cycle frequency close to 1 MHz, with k=0. The 

analog PWM controller has a gain that was chosen to set the 

overshoot to 1% (close to the overshoot for the SM). For 

these simulations, Vin and G(jω) were the same for all 

switching regulators. It is important for a regulator which 

handles multiple loads to have a fast transient response. 

Otherwise, considerable time and energy are spent switching 

between subsystems with different voltage and ripple 

requirements. The ADC in [13] requires 40 µs to process a 

single input sample at 200 kHz. The rise and fall times of the 

voltage regulator will increase the total power-on time of the 

ADC subsystem operating on a single sample to 108 µs for 

the 1-bit digital PWM controller. The SM controller with an 

identical voltage ripple can accomplish the same task in 46 

µs, an improvement of 2.3x. Furthermore, for the SM 

controller, very little dynamic power is dissipated during 

large voltage steps since the output transistors will not be 

continuously switching on and off. 

TABLE I
REGULATOR COMPARISON RESULTS (Vin = 2 V, Pout = 1 mW, 0.35 µm)

Parameter SM LDO 1b PWM APWM 

f switch 980 kHz N/A 1 MHz 1 MHz 

f (-3dB)  167 kHz 209 kHz 167 kHz 167 kHz 

Ripple 51 mV N/A 50 mV  50 mV  

Overshoot 8 mV 10 mV 30 mV 10 mV 

Delay (Td) 50 ns N/A 0.5 µs N/A 

Offset 17 mV 1 mV 5 mV 5 mV 

Rise Time 3 µs 2.6 µs 34 µs 14 µs

Gain (A) N/A 1 V/µs * 15.6 k ** 85.5 k 

Efficiency 86% 70% 89% 73% 

** Gain = Switching Frequency / Number of Steps (64 step PWM) 

* Slew rate at gate of PMOS power transistor 

Figure 5. Block diagram of test bench for comparing various regulators.

VLDO, V1BIT and VPWM are the regulated output voltages for the linear 

regulator, digital 1-bit PWM and analog PWM regulators, respectively.
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III. ANALYSIS OF SM CONTROLLER

A.  Free Running Frequency 

 In many wireless applications, a highly efficient regulator 

will need to supply power for a communication system [15]. 

Due to poor power supply rejection, which is common in low 

power transceivers, the transmitted signal is susceptible to the 

switching noise from the power supply. Furthermore, a mixer 

could modulate the switching noise to an undesired region of 

the transmitted spectrum where it could further corrupt the 

integrity of the signal. When the switching frequency is 

known (as is the case with PWM), it is possible to devise a 

system-level approach that will place the switching noise of 

the regulator in a benign spectral location, enabling looser 

ripple requirements. In practice, the limit-cycle frequency of 

an SM voltage regulator is not well controlled, and this 

unknown switching frequency can complicate integrating the 

controller with other circuitry. It is therefore desirable to 

have an understanding of the limit-cycle frequency and its 

dependencies on controller and load parameters. This section 

analyzes the steady state operation of an SM controller, and 

outlines an estimation technique for the limit-cycle frequency 

as a function of multiple circuit parameters. 

 Previous works have pioneered the understanding of SM 

controllers [16-20]. To analyze the closed-loop behavior of 

the SM controller, we will start with the assumption that the 

limit-cycle oscillation frequency ω is the product of a free 

running frequency ωo and a nonlinear function of the duty 

cycle f(D),

( ) oDf ωω =                    (4)

 Since the phase shift around the loop depends on the 

period of oscillation, determining the free running frequency 

requires solving a transcendental equation. The free running 

limit-cycle period To is equal to twice the loop delay when 

D=1/2 [16]. Summing the phase shifts from H(z) and G(jω)

yields an equation that can be used to find the free running 

period for the discrete-time mixed-signal SM controller: 
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here we assume the output filter G(jω) can be modeled as a 

second-order filter with real pole magnitudes p1 and p2. Note 

that (5) is only accurate when a single frequency is present in 

the comparator input voltage Vx, which is a good assumption 

when D=1/2. In order to incorporate hysteresis into this 

analysis, an additional positive phase shift of sin
−1

(δ/M) 

could be added within the brackets of (5), where δ is the 

width of the hysteresis and M is the amplitude of the limit-

cycle frequency at the input of the comparator [21]. 

Figure 6. Simulated results comparing SM and analog PWM regulators. SM 

and PWM are the darker and lighter Vout traces, respectively. The two lower 

traces Vd and VdPWM are the control signals for the SM and analog PWM 

regulators from Fig. 3 and 5, respectively. 

B.  Two-Sinusoid-Input Describing Function

 Describing Function (DF) analysis can be used to analyze 

a system which has a strongly nonlinear element, such as a 

comparator [4]. The DF is based on a quasi-linearization 

technique that replaces the nonlinear element under 

consideration with an element that is linear except for a 

dependence on the amplitude of the input waveform.  For the 

proposed SM controller, traditional DF analysis will only 

account for the effects from the fundamental component of 

the square wave in (1).  

 Bulga [22] pioneered the Two-Sinusoid-Input Describing 

Function (TSIDF), which is generated from extending the DF 

to include a second term from the Fourier series created by 

the nonlinearity. From [21], the TSIDF for an ideal 

comparator that considers input frequencies from a 

fundamental and its n
th

 harmonic is an elliptic integral of the 

first kind. The TSIDF for a comparator whose output 

switches between 0 and Vin and whose input has an 

amplitude of M is 

( ) ψψ
π

π

dm
M
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Nm −=

2/

0

22

2
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4          (6) 

where m is the ratio of amplitudes between the n
th

 harmonic 

and the fundamental at the input of the comparator, and ψ is a 

term relating the relative phase between the two tones at Vx.

By expanding the TSIDF into a power series, the following 

expression may be obtained [23]: 
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Since the comparator is assumed to be memoryless the 

equivalent transfer function in (7) has no phase shift, hence 

the TSIDF is purely real. It can also be seen that the TSIDF 

is independent of frequency, depending instead on amplitude. 

Assuming that the error signal is small, (7) may be

approximated for the case when n = 2 and k = 0 by truncating 

to the first two terms [24]. Eq. (7) can be written in terms of 

duty cycle D by assuming a linear mapping between the 
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range of D (0 < D < 1) and the range of m (-1 < m < 1) [10], 

yielding: 

( )1
2

1
+= mD                  (8) 

The resulting pseudo-linear equivalent gain for the 

comparator with a duty-cycle dependency is 

−+= 2
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32
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M
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          (9) 

The resulting ripple amplitude can be computed with the 

knowledge of the magnitude response of G(jω) and the limit-

cycle frequency.  

 Johnson [25] outlines an approach to determine f(D) from 

the TSIDF, which results in the following power series [22]: 
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where λn are frequency correction terms. By factoring the 

second-order term from the parenthesis in (10) we arrive at:  
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Assuming m=0.5 (average value for sin
2ωt) within the 

summation, the power series converges to a constant value 

that can be found using a best fit to simulation results.  This 

value corresponds to the frequency correction terms (λn’s) 

being approximately 1. By applying (8), the resulting 

estimation for the limit-cycle frequency as a function of duty 

cycle is obtained: 
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where To may be determined from (5). 

 Fig. 7 shows an example plot of the limit-cycle frequency 

normalized to 5 MHz vs. load resistance and duty cycle. The 

oscillation frequency increases with a shrinking load 

resistance due to the phase shift in G(jω). In order to explore 

the validity of the model derived for f(D), an SM controller 

was built from discrete components. Figure 8 shows a 

schematic of the prototype built from discrete components 

using a breadboard. The signal filter H(z) was omitted for 

these experiments since the goal was to observe only the 

effects due to the changes in D. Figure 9 shows the measured 

waveforms from the discrete prototype.  

Figure 7. Analytical model of the normalized limit-cycle frequency plotted 

vs. load resistance and duty cycle.  

Figure 8. Schematic of test setup with discrete components, biasing circuitry 

omitted. 

Figure 9. Measured steady-state output and gate voltages.   

V.  RESULTS AND CONCLUSION

 Figure 10 shows a comparison between measured, 

analytical, and simulated limit-cycle oscillation frequencies 

vs. duty cycle for the circuit in Fig. 8. The model-to-error 

ratio, defined as the power in the analytical results divided by 

the power in the difference between the measured and 

analytical results, is 28dB and 43dB for conversion-ratio 

ranges of 80% and 20% percent, respectively. The slight 

asymmetry of the plots in Fig. 10 is largely caused by 

unequal charge and discharge time constants for the buck 

converter. If the on-resistances of the power transistors are 

made to be equal and much smaller than the load resistance, 

this asymmetry can be minimized. 

 For the configuration in Fig. 8, measurements show a 2x 

peak variation in switching frequency due to changes in D. 

Simulations suggest that by adaptively changing k in (2) to 

compensate for the limit-cycle dependence on D, a decrease 

in limit-cycle sensitivity can be obtained. Altering k will also 

allow controller flexibility and enable a tradeoff between 

efficiency (small k, low ω, high ripple) and performance 

(large k, high ω, low ripple).  

 Figure 11 shows a plot of the simulated limit-cycle 

frequency vs. duty-cycle for various signal filters. The solid 

line is the SM controller with k=0, the dashed line has k 
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equal to a continuous function of D, and the dotted line has k 

equal to a discrete function of D. The discrete function of k is 

equivalent to digitally trimming the ratio of capacitor values 

in a switched-capacitor circuit. Here, a 2b digital trim varies 

the amount of k symmetrically around D=1/2 with equally 

spaced thresholds.   

 For a 5% variance in the limit-cycle frequency from the 

free running frequency, an SM controller with k=0 can only 

achieve a conversion-ratio range of 30%, while the 

continuously variable k controller achieves a conversion-ratio 

range of 60%. When allowing for a 10% variance in 

switching frequency the conversion-ratio range for the 

continuously tunable and discrete signal filter with 2b trim is 

near 70% and 60%, respectively. Increasing the resolution of 

the digital trim to 3b expands its conversion range to 65%. 

 By dynamically changing the value of k as a function of D, 

the variance in the switching frequency of the discrete-time 

SM controller has been shown to be reduced by as much as a 

factor of 2x. A continuously variable k will yield the best 

results, but a programmable k using a 2b or 3b digital trim 

may also be sufficient for certain applications.  
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Figure 10. Limit-cycle frequency (normalized to 5 MHz) vs. duty cycle for 

measured, analytical and simulated data points with k=0. 

Figure 11. Simulated limit-cycle frequency vs. duty cycle for various signal 

filters adapting k. Continuous and discrete values of k are compared.
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