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DSPs for Energy
Harvesting Sensors:
Applications and Architectures 

O
ver the past decade, embedded
digital electronics have prolifer-
ated in both number and variety.
Applications such as cellular
phones, portable multimedia de-

vices, and sensor networks have kept pace with
dramatic increases in comput-
ing power and functionality.
Battery technology, however,
has not. Batteries limit the oper-
ating lifetime of portable devices
and add undesirable weight and
volume. They can’t store suffi-
cient energy to support long-
lifetime embedded applications
such as monitoring civil infra-
structure or studying the envi-
ronment. Their replacement
cost poses a major barrier to

scaling wireless sensor networks to hundreds or
thousands of nodes. 

Energy harvesting from human or environ-
mental sources is a promising alternative to
address these limitations and open new frontiers
for integrating digital computation with sensing
and actuation. Several alternative energy har-
vesting paradigms are possible, as either a sub-
stitute or a complement for batteries. The com-
mercial sector has adopted mechanical energy
harvesting as a redundant power source. Prod-
ucts already on the market include radios, flash-

lights, and cell-phone chargers powered by hand-
cranked electrical generators or shake-to-recharge
electronics. But these mechanisms aren’t suitable
for all applications: first, they have low energy
and power densities; second, they require active
user involvement. 

Researchers have explored various passive
energy-harvesting power sources for portable or
wearable devices. These include gravity-driven
and vibration-driven electromagnetic generators,
piezoelectric shoe inserts, and thermocouples for
harvesting energy from human body thermal gra-
dients. Passive power sources for sensor net-
works, another target area for energy harvest-
ing,1 include ambient mechanical vibration. One
project, which some of us worked on, developed
a MEMS variable-capacitor transducer and
accompanying chips that could harvest machine
vibrations for sensor signal processing.2

Despite a promising start, energy harvesting is
still in its infancy. For current sensor network
nodes, vibration-based energy harvesting allows
an RF transmit duty cycle of less than 3 percent,
excluding any computation that occurs at the
transmitter.1 Communication typically dominates
power consumption, so many applications must
maximize the computation done at a particular
node.3 Required off-chip power electronics can
increase system cost and volume, and AC/DC
conversion losses can limit energy-harvesting
operation. 

Energy harvesting from human or environmental sources shows promise
as an alternative to battery power for embedded digital electronics.
Digital signal processors that harvest power from ambient mechanical
vibration are particularly promising for sensor networks.
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Much current work addresses these
problems from the power generation side
by developing and optimizing energy
harvesting transducers. However, the
desire for smaller devices and higher inte-
gration levels poses constraints that fun-
damentally limit output power. Our
work addresses the issues from the power
consumption standpoint by developing
digital signal processing (DSP) architec-
tures and circuits that are energy efficient,
energy scalable, and robust to transducer
output-voltage variations. 

Two applications
Sensor applications are particularly

well suited to energy harvesting because
they typically require low throughputs.
We explored two such applications for
energy harvesting: computing a fast
Fourier transform (FFT) to monitor a
shipboard gas turbine’s vibrations and
using data from a wearable acoustic bio-
medical sensor to analyze a user’s exer-
tion state.

Monitoring gas turbine vibration
Large machinery generates vibrations

during operation. These vibrations offer
a possible energy source, but the vibra-
tion signature can also indicate changes
in the machine’s performance or even
impending failure. The vibration spec-
trum supports analysis of sudden shifts
in vibration. An FFT is a computation-
ally elegant means of computing this
spectrum. 

Each FFT butterfly operation must read
four operands and write back two results.
Assuming a flat memory hierarchy (no
caching) and fully serial computation,
every operation requires one read-evalu-
ate-write cycle. The computation thus
requires a large number of cycles. This is

acceptable, however, because it also has
a low duty cycle, so an application can
spread the computation out in time.

This particular application must com-
pute one FFT every five minutes. Of
every 10 FFTs, nine are low-bandwidth
computations (1.8 kHz) and one is high-
bandwidth (18 kHz). Despite the high
cycle count, the processor idles with its
clock gated off for significant periods
thanks to the low throughput require-
ment. This implies that leakage power
becomes significant for low-threshold-
voltage complementary metal-oxide
semiconductor (CMOS) transistors.
Table 1 shows the specifications for
both FFTs, including spectral averaging.

The throughput requirement also sets
the clock rate. Five minutes is a very long
time to perform the computations re-
quired, even with the serial approach.

We assume a clock rate for each com-
putation equal to the sample rate. Each

FFT has 512 frequency points computed
with 12-bit fixed-point data. 

This FFT application is just one exam-
ple of computationally intensive signal
preprocessing. Further computation pro-
cesses this spectrum into a machine-state
diagnosis.

Signal processing for a wearable
physiological monitor

We explored a physiological monitor-
ing application that uses a wearable
microphone as a biomedical sensor to
determine the wearer’s physical condition
(exertion state). We estimated that 400
µW of power would be available from a
wearable AA battery-sized electromag-
netic generator,4 sufficient for recently
demonstrated biomedical devices. Figure
1 shows the demonstration system.5 The
system algorithm first detects heartbeats,
then uses them to determine heart rate
as the basis for a physiological assess-
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TABLE 1
FFT specifications for machine vibration monitoring.

Sample FFT size Number of Duty cycle 
Computation rate (n) n-point FFTs Operations (%)

Low-bandwidth FFT 1.8 kHz 512 13 542,464 2.5

High-bandwidth FFT 18 kHz 512 139 5,800,192 2.7

FFT total 10,682,368 5.2

Figure 1. Wearable biomedical acoustic
sensor demonstration system.
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ment. We used a similar system to exam-
ine the possibility of determining breath-
ing rate as a basis for assessment. 

Heartbeat detection. The basic algorithm
has three phases. First is preprocessing,
which also has three phases:

• Low-pass filtering. The data is band-
limited to below 200 Hz to eliminate
as much of the voice and breath
energy as possible.

• Matched filtering. The low-pass filter’s
output goes through a matched filter
to determine the candidate heartbeat
signals.

• Segmentation. The sensor output is
divided into overlapping segments at
least long enough to contain a full
heartbeat but short enough not to con-
tain more than one.

The algorithm’s second phase is fea-
ture extraction, which computes a vector
of seven features from the segmented,
matched filter output. The features are
scalar quantities helpful in recognizing
heartbeats—for example, filter output
peak values.

Finally, the classification phase uses a
parametric Gaussian multivariate clas-
sifier to classify each feature vector into
a heartbeat or nonheartbeat. 

Figure 2 summarizes the algorithm.
Assuming that antialiasing band-limits
the data, the first significant computa-
tion is the matched filtering. The matched
filter impulse response, or filter template,
is a denoised version of the acoustic
heartbeat signature. When convolved
with the input data, the filter produces
large correlation peaks at the input heart-
beats’ time locations. Figure 2 includes
a template and an example correlation
peak.

The segmentation phase localizes the
regions of this time series that have cor-
relation peaks. The algorithm then
extracts features from these regions,
labeled 1, 2, 3, 4, 5, and 7 in the figure,
and classifies them. (Feature 6 repre-
sents the total energy in the segment, so
its label doesn’t appear on the graph.)
The preprocessing steps, in particular
the matched filtering, require the most
operations and consume the most time,
as the algorithm specifications in table 2
show.

Breath detection. Breath and speech
acoustic energy is concentrated in the
high-frequency (> 200 Hz) portion of the
sensor data spectrum. Peaks in the mov-
ing average of the energy for narrow-
bandpass-filtered versions of the origi-
nal signal indicate fairly well when
breaths are occurring. Peak width indi-
cates breath duration. A “popping”
noise—indicated by sharp, narrow
spikes in the energy time series and prob-
ably representing a sensor artifact—con-
tributes extra energy in these bands that
might lead to a misclassification. As with
heartbeats, we use a classifier-based
approach for breath detection. 

The algorithm divides the time series
into short-duration nonoverlapping seg-
ments. Each segment is labeled accord-
ing to whether breathing (class 1), “pop-
ping” noise or speech (class 3), or
background noise (class 2) is occurring
during the segment. The extracted fea-
tures are basically the signal energy in
three different high-frequency bands,
normalized by the energy in the highest
band to eliminate misclassification of
broadband noise. This normalization fac-
tor and the total high-frequency energy
form the last two candidate features.

These five features are

• normalized energy in the 200 to 600
Hz band,

• normalized energy in the 600 Hz to 1
kHz band,

• normalized energy in the 1 to 1.4 kHz
band,

• normalization factor for energy in the
1.4 to 1.8 kHz band, and

• total energy in the 200 Hz to 1.8 kHz
band.

The 4 kHz sampling rate sets the upper
bound on frequency at 2 kHz, but the sig-
nal doesn’t have much energy at the edge
of the antialiasing passband. The feature
probability distributions indicate that
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they are basically Gaussian. Therefore,
we again use the multivariate Gaussian
parametric classifier as the breath detec-
tion engine. For simulation purposes, we
eliminated the speech and “pop” noise
classes, since a more sophisticated algo-
rithm will probably be needed to handle
these high-energy signals. 

The classifier recognition performance
for these candidate features is generally
poor (< 70 percent accurate), particu-
larly because the transition times when
a breath starts and stops are difficult to
classify accurately solely on the basis of
energy. However, if we can classify con-
secutive breath samples consistently, we
can construct a binary sequence that
determines when a breath is occurring.
Each breath would consist of several 1s
in a row, and each pause in breathing by
a string of 0s. Using the 0 to 1 and 1 to
0 transitions, we could estimate the
duration of the breath and pauses.
Counting the pulses of 1s would give a
good estimate of the breathing rate. This
would constitute a first step toward esti-
mating the wearer’s exertion state using
the breath signals. We could process this
stream of 1-bit samples serially.

Voice stress analysis. Voice stress might
also be a good indicator of physical exer-
tion state. Further research on low-
power speech algorithms might show the
feasibility of processing voice stress for
low- to medium-throughput low-power
DSPs. However, this analysis requires
complex algorithms that we have yet to
explore and might require unreason-
ably high performance from the signal-
processing engine, given the limited
available power.

Implications for architecture 
Two factors contribute to CMOS

power dissipation P. One is dynamic
power spent in switching capacitances
and the other is static power dissipated
during constant current flow: 

P = �CV2
ddf + IstatVdd (1)

where � represents the probability of a
particular node switching, C is the node
capacitance, Vdd is the supply voltage, f
is the clock frequency, and Istat accounts
for static current flowing from the sup-
ply to the ground, including analog bias
circuits and device leakage. 

A second equation

P = Ediss/�t (2)

expresses power as dissipated energy
Ediss divided by time �t.

As tables 1 and 2 show, the FFT and
heartbeat estimation applications repre-
sent two extremes of energy harvesting
sensor operation. The FFT application
requires a very low duty cycle, so static
power due to leakage will increase as
CMOS technology scales. We can
decrease leakage at the cost of increased
dynamic power by employing serial
computation. 

In contrast, the heartbeat detection
algorithm runs continuously and is dom-
inated by preprocessing steps, so a low-
power DSP architecture must optimize
its frequent computations.

Sensor DSP architecture
Because of the unknown and time-

varying nature of the power available
from energy harvesting, energy scala-
bility is a critical feature for energy har-
vesting sensor DSPs: they must be able to
trade energy dissipation for some qual-
ity metric of DSP output. Energy-scalable
hardware includes techniques for ap-
proximate processing, which treats
power and arithmetic precision as system
parameters that can trade off each other. 

We implemented an energy-scalable
serial computation technique as part of
a DSP chip. We called the chip Sensor-
DSP and measured its performance for
heartbeat detection.

Bit-serial computation and 
distributed arithmetic

Leakage currents are expected to con-
tribute an ever larger percentage of total
power as CMOS technologies scale.6 We
can address this by using serial arithmetic
techniques. Older CMOS processes used
bit-serial techniques to reduce the area of
large arithmetic structures such as multi-
pliers. These techniques use registers to
decrease the amount of combinational
logic needed to perform a computation.
To maintain a fixed throughput, we must
clock a bit-serial implementation at N
times the specified frequency, where N is
the data bitwidth. This increases the
dynamic power consumption (equation
1). However, the serial implementation’s
reduced area and transistor count also
decrease the static power consumption
due to leakage currents. 

Figure 3 shows the estimated total
power dissipation for serial and parallel
multipliers as frequency and technology
scale. At high throughputs, the serial
implementation’s dynamic power dom-
inates the total power because of higher
required clock frequencies. At low
throughputs, the implementation’s low
static power consumption presents a sig-
nificant advantage. So, it can be seen that
below a certain throughput threshold
serial computations have lower total
power, and this threshold increases as
technology scales due to increased leak-
age currents in deep-submicron CMOS.
At 130 nanometers, the throughput
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TABLE 2
Heartbeat detection algorithm specifications.

Computation Sample rate Clock rate Operations Duty cycle (%)

Heartbeat 160 Hz 1.2 kHz 18,170,000 99.8
preprocessing

Feature extraction Variable 250 kHz 110,000 0.2 
and classification

Heartbeat total 18,280,000 100.0



threshold is just below 100 kHz, about
four times faster than the maximum
throughput requirement for the FFT
application. At 18 kHz, a 130-nm serial
multiplier implementation for the FFT
will have three times less power than a
traditional array multiplier. 

Serial computation is also an elegant
approximate-processing technique. By
reducing the number of bits shifted in
during the computation (truncating the
input data), the dynamic power de-
creases linearly with the input bitwidth.
The resulting increased truncation error
also increases the quantization noise
that degrades the computation’s output.
Distributed arithmetic, a method of
computing vector dot products (equiv-
alent to finite-length impulse response
filters) without multipliers, offers an
energy-efficient serial DSP hardware
implementation.7 DA reorders the com-
putation by considering a bit slice
through all input samples rather than

each sample individually. Each bit slice
is an M-bit binary number correspond-
ing to a unique linear combination of
filter coefficients. The programmer pre-
computes all 2M possible combinations
and stores them in a lookup table.

The computation addresses the look-
up table with successive bit slices, then
shifts and accumulates the table’s read
data until the DA unit consumes all input
data bits. By truncating the computation
before reaching this condition, DA fea-
tures successive approximation proper-
ties. If a single table implemented a typ-
ical filter, the lookup table would grow
exponentially and would be unrealiz-
able. Instead, adders can accumulate
multiple smaller DA units’ outputs into
the final result.

This structure enables another power
performance trade-off. Enabling various
DA units allows the number of filter taps
to vary independently of the input bit-
width. The SensorDSP chip has demon-

strated this trade-off in energy harvesting
applications.8

SensorDSP implementation and
results

We developed the SensorDSP chip to
demonstrate low-power and energy-scal-
able signal processing for wearable bio-
medical sensors. Figure 4 shows the chip’s
architecture, which follows the algorithm
described earlier. We used energy-scalable
DA to implement the matched filter. Its
output feeds a nonlinear/short linear  fil-
tering unit, which calculates quantities
used in segmentation. The microcon-
troller performs the segmentation, feature
extraction, and classification. The buffer
provides synchronization between the
front-end filtering and back-end process-
ing and helps reduce power consumption.
The filtering front end must run continu-
ously to process input samples, which
arrive at a fixed rate. However, the back-
end classification must be performed only
for each segment, not each sample. 

The system first filters the input and
writes results to the buffer. The micro-
controller continuously executes a small
loop, checking to see if the preprocess-
ing logic has written a full segment to the
buffer. When the microcontroller detects
a segment, it executes the feature extrac-
tion and classification code on the
buffered data. 

Cycle-level chip simulations show that
the algorithm spends 99.8 percent of its
time executing the matched filtering and
other preprocessing functions. These
computations dominate both time and
power consumption and are optimized
by the specialized functional units. Mul-
tiple clock modes meet performance con-
straints by running the front-end filtering
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at 1.2 kHz and back-end processing at
250 kHz. Because device leakage is not
significant at the process node for this
chip, we used parallel arithmetic struc-
tures in the microcontroller to minimize
dynamic power.

Figure 5 shows the power versus
heartbeat recognition performance
trade-off from measurements of the
SensorDSP chip. As the serial input data
to the DA unit scales from 8 to 4 to 2
bits, the increased noise degrades recog-
nition accuracy from about 96 to 86 per-
cent. Power consumption when only the
DA and the microcontroller are on
decreases from 176 nanoWatts for 8 bits
to 133 nW for 4 bits and finally to 121
nW for 2 bits. When all functional units
are on, the power decreases from 299
nW for 8 bits to 239 nW for 4 bits, and
lastly to 229 nW for 2 bits. 

The figure shows the change in relative
power as quantization is scaled and
demonstrates that the fixed power of
some functional units limits the system’s
total energy scalability. The heart rate esti-
mation algorithm consumes 560 nW total
power when running on SensorDSP. This
corresponds to 26.6 picoJoules of energy
dissipated per input data sample. The
same algorithm running on a StrongARM
SA-1100 consumes 11 µJ of energy, about
six orders of magnitude more.8

These results demonstrate the dra-
matic energy efficiency gains enabled by
targeted DSP architectures.

Next-generation DSPs for
energy harvesting 

We are exploring new circuits for
next-generation energy harvesting DSPs.

Some applications require a DC supply
voltage, while others can use the AC
energy harvester output voltage directly.
This eliminates the need for power elec-
tronics and boosting the power avail-
able for computation. Self-timed circuits
offer a way to improve performance for
high-speed pipelined data paths and for
low-power applications because they
eliminate the need for power-hungry
clock buffers and clock distribution.
Self-timed circuit operation is also
robust to parameter variations, includ-
ing supply voltage. This robustness is
what makes self-timed circuitry a
promising design style for data paths in
energy harvesting applications.

Self-timed circuit design
Figure 6 shows a self-timed pipeline

that uses a replica critical path ring
oscillator to provide the clock. The
inverter chain represents the clock
buffer. 

In the SensorDSP chip, the critical
path consists of a tree of carry chains
for summing the DA outputs. To scale
the approach to more complicated data
paths, we can use multiplexors to add
more inverter stages to the oscillator.
This design style resembles traditional
synchronous design in that the worst-
case performance of the slowest pipe
stage dictates the operational fre-
quency. However, the ring oscillator
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frequency varies with supply voltage,
temperature, and other variables auto-
matically to ensure correct operation. 

We’ve demonstrated the data path’s
robustness to voltage variation in sim-
ulation using a ripple-carry adder
pipelined into two stages. The self-
timed data path’s performance will
degrade as supply voltage decreases,
but it will nevertheless operate cor-
rectly. In traditional synchronous
designs, the designer must eliminate
all types of timing violations because
the clock frequency is fixed; other-
wise, variations that exceed the
designed tolerances will cause the data
path to fail.

The self-timing structure in figure 6
includes power-on reset blocks. Because
the vibration’s frequency will periodi-
cally lower a vibration-based power sup-
ply’s output to zero, the circuit must han-
dle frequent power-up/power-down
cycles correctly. Conventional power-on
reset circuits use a resistor-capacitor net-
work to create the delay period.9 We’re
currently designing a power-on pulse
generator that does not depend on
capacitance and enables functionality
over a wider frequency range. We’re also
exploring the use of integrated dynamic
RAM for storing data between energy
harvester output voltage cycles.

Architectural support for energy
variability

Self-timed operation introduces jitter
in input sample processing. For many
sensor applications, this jitter will be
small compared to the system’s desired
sample rate, and overall signal process-
ing performance will not suffer. The
heartbeat example relies on a sample
rate of 160 Hz, which is likely to be
much slower than variations in self-
timed circuit operation. Larger jitters
lead to nonuniform sampling and
require more sophisticated processing
to compensate for the timing uncer-
tainty.10 This might require more flexi-
ble functional units in the DSP, includ-
ing energy-efficient implementation of
adaptive filters. 

Figure 5 shows that fixed power over-
head limits the DSP’s total energy scala-
bility. Converting more functional units
to energy-scalable processing (for exam-
ple, bit-serial computation) allows a
larger fraction of the DSP power to be
adjusted through software. The Sensor-
DSP chip relied on special registers to
configure the input data quantization,
number of matched filter taps, buffer
depth, and clock frequency. These regis-
ters will proliferate as the chip design
exposes more energy scalability options
to the programmer. 

Because leakage will dominate total
power dissipation in the future, next-
generation sensor DSPs might require
reduced memory size, perhaps by
increasing computation. Examples in-
clude decoding complex instruction
streams and compressing data before
storing it to memory. 

T
he past decade has seen
tremendous advances in low-
power and energy-efficient
design techniques for various

processors, including DSPs. As process
technology scales, power constraints will
limit achievable performance and put a
premium on energy-efficient architec-
tures.11 This premium will be even
higher for processors in energy harvest-
ing applications. 

In general, the lower the processor’s
peak performance, the higher its energy
efficiency. Specialized architectures are
typically more efficient than general-
purpose architectures. Figure 7 shows
summary energy-efficiency data (ex-
pressed as millions of operations per sec-
ond per watt (MOPS/W), equivalent to
µJ per operation) from a number of gen-
eral-purpose processors, DSPs, and the
SensorDSP specialized processor. It
shows SensorDSP chip data scaled from
the original 0.6 µm CMOS implemen-
tation to 0.25 µm and 0.18 µm. The
chip’s low peak performance ensures bet-
ter energy efficiency than chips targeting
higher performance.

The SensorDSP has greater energy effi-
ciency because of its specialized func-
tional units, such as the DA module. This
efficiency motivates our work on a next-
generation DSP architecture that com-
bines a reconfigurable DA array with a
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low-energy microcontroller. We are tar-
geting an energy efficiency of 107

MOPS/W, or 10 teraOPS/W (0.1 pJ/Op).
Achieving this unprecedented level of
energy efficiency will be challenging as
leakage power becomes significant
beyond the 130-nm process node and
requires new approaches such as self-
timed circuits and bit-serial arithmetic.
By exploring such innovative concepts
in circuits and DSP architecture, we hope
to enable the next generation of energy
harvesting sensors.
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