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Announcements

• Work on Lab 5 this week

• Quiz 3 Monday

• Midterms back at end of class
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Outline

• Finish: Interconnect

• Memories: Rabaey 12.1-12.2 (Kang & Leblebici, 
10.1-10.6)
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Memory and Performance Trend I

• Memory is becoming a key factor in the performance of 
a computer

• 1st generation computers had just system memory
– Very slow DRAM
– As microprocessors got faster, the bottleneck in 

performance was data access
• 2nd generation computers added cache memory

– This provided faster access to small localized memory 
that was being read or written

• Memory placed on front side bus (off-chip)
• Performance increased

– As processors got faster memory access again became 
the bottleneck
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Memory and Performance Trend II

• 3rd generation computers added on chip cache

– These caches started out 16K and were termed level 1 
cache

– Soon we had level 1 and level 2 cache

– Currently we have three levels of cache on chip that run 
at processor frequency, then access main memory if 
data can’t be found in any of these caches

– Moving to stacking memory die on top of processor
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Types of Memory I
• ROM: read-only memory

– Non-volatile – mask programmed

• RWM: read-write memory (RAM, random access 
memory)
– SRAM: static memory

• Data is stored as the state of a bistable circuit
• State is retained without refresh as long as power is 

supplied
– DRAM: dynamic memory

• Data is stored as a charge on a capacitor
• State leaks away, refresh is required
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Types of Memory II
• NVRWM: non-volatile read-write memory (also called 

NVRAM, non-volatile random access memory)
– Flash (EEPROM): ROM at low voltages, writable at high 

voltages (Electrically Erasable Programmable Read-
Only Memory)

– EPROM: ROM, but erasable with UV light (falling out of 
common usage)
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Memory Usage in Computers

• DRAM Memory
– Main memory storage. Used for data and programs

• SRAM Memory
– Faster than DRAM, however, uses more transistors

• Used to be used for external cache
• Variant used in internal cache (on chip cache)

• FLASH Memory and ROM
– Used for BIOS data storage in PCs
– Also used to store pictures, MP3 files for digital 

cameras and MP3 players – eventually for hard disk
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Basic Memory Array Structure
• Memory cells 
arranged in a 
rectangular array

• Rows correspond 
to data words
– Accessed through 

a row decoder

• Columns to 
individual bits
– Selected through 

a column mux

• Bit voltage 
amplified by sense 
amplifier
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Memory Circuit Operation
• Wordlines (WL) control row (word) access

– Usually control gates of pass transistors
• Bitlines (BL) route column data (individual bits)

– Bitlines usually precharged high (like dynamic logic)
– Memory cells discharge bitline depending on stored 

data (bitline left high if cell stores 1, bitline discharged 
if cell stores 0)

– Bitline swings usually small (10s – 100s of mV) and 
must be amplified by sense amplifiers

– Synchronous or asynchronous timing can be used
• Memory cells store data value

– Static vs. dynamic, single or multiple bits, etc.
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DRAM

• Smaller cell size (1 transistor or 1T cell)
– Reason for inexpensive memory in computers

– Tradeoff of area (memory density) vs. speed and 
complexity (refreshing)

BL
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Q
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DRAM Issues

• Must be periodically refreshed
– Reads are destructive (modify voltage stored on 

capacitor)
– Every read followed by a refresh of the bit (write back of 

read value)
• No static power dissipation
• Output voltage is charge sharing result of storage 

capacitor and bitline capacitance
– More complex sense amplifiers
– Higher noise susceptibility

• Requires different CMOS process than high performance 
logic
– Not compatible with cache in microprocessors
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3T DRAM Cell

Read

Store

M3

M1

M2

3T DRAM
Write

• Early DRAM technology
• Gate cap of M1 stores bit
• Nondestructive reads
• Storage node voltage < VDD

– Compensate with boosted 
wordline

Bit 
Line
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Advanced DRAM Process

• Vertical transistor, trench capacitor (Beintner, JSSC 04) 
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BL

WL

Q

ROM

• Dotted lines refer to 
either set at ‘1’ or ‘0’

– PROM: Replace 
dotted lines with 
fuses

• Small cell size (1T cell)

• Not necessary to 
refresh

• No static power 
dissipation

• Output voltage is set 
by WL duration

Either
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SRAM Cell

• Cross-coupled inverters: bistable element
• Density is important in memories

– Single NMOS pass transistor used for reading/writing
– Transistor sizes should take up minimum area

• Faster than DRAM since typically fewer cells
• No refresh required (nondestructive reads)

BL BL

WL

Q Q
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SRAM Design: Read “0”

• Prior to read operation, voltage at node Q = 0V and Q = 
Vdd, bit lines precharged to Vdd

• Transistors M3 and M4 are turned on by word line 
(WL) select circuitry

Vdd Vdd

WL

Q Q

M5

M1 M2

M6

M3 M4

Cc Cc

BL BL
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SRAM Design: Read “0”

• Transistors M3 and M4 are turned on by WL line select 
circuitry

– Cc = Vdd to start…capacitance discharges through M1. 

– Need to make sure the ratio between M1 and M3 does not 
allow Q to go above Vtn. 

• Otherwise node Q accidentally discharged
• Conservative since there will also be charge sharing at 

that node as well between small internal node 
capacitance and large bitline capacitance

– Sense amp detects that node Q was a stored 0 due to the 
minor drop of voltage on the bitline
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SRAM Design: Read “0”

• Data must not be destroyed when bitline voltage different 
than storage node

– VQ must not exceed the threshold of the inverter (assumed 
to be VDD/2), more conservative to keep it below VTN

• Assume VBL initially remains at VDD: M3 in saturation, M1 
in linear
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SRAM Design: Write “0” (1st Analysis)

• Assume VQ =  Vdd and VQ = 0V
• Data must be forced into the cell

– VQ must fall below the threshold of the inverter to turn M2 off.
– This allows VQ to go high enough to go above the Vt of M1

• This discharges node Q and stores a 0
• Assume VBL remains at 0V: M3 linear, M5 linear (VQ=VDD/2)

WL
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SRAM Design: Write “0” (1st Analysis)

WL

Q Q
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M6

M3 M4

Cc

BL = 0V BL = Vdd

Cc

VBL

• Conditions for this to happen: requires M5 to M3 ratio to 
be relatively small (VDS = VQ = VDD/2)
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SRAM Design: Write “0” (1st Analysis)

WL

Q Q
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VBL

• Required sizing (size M5 below mobility ratio):
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SRAM Design: Write “0” (2nd Analysis)

• Assume VQ =  Vdd and VQ = 0V
• Data must be forced into the cell

– VQ must fall below the threshold of the NMOS (turns M2 off).
– This allows VQ to go high enough to go above the Vt of M1

• This discharges node Q and stores a 0
• Assume VBL remains at 0V: M5 sat., M3 linear (VQ = VTN)

WL
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SRAM Design: Write “0” (2nd Analysis)

WL

Q Q

M5

M1 M2

M6

M3 M4

Cc

BL = 0V BL = Vdd

Cc

VBL

• Desired current conditions, want VQ < VTN (M3 lin., M5 sat.):

( )( ) ( )25,23, 0
2

2
2 TPDD

p
TNTNTNDD

n VV
k

VVVV
k

−−=−−



Amirtharajah/Parkhurst, EEC 116 Fall 2011 25

SRAM Design: Write “0” (2nd Analysis)
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• Required sizing (make M5 relatively weaker than 1st case):
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• SRAM cell stability and writability quantitatively 
specified by static noise margin (SNM)
– Dependent on mode of operation (Hold, Read, or Write)

• Hypothetical noise sources added to inverter inputs
• SNM corresponds to largest noise disturbances which 

won’t disrupt cell operation
• SNM can be determined graphically by butterfly plot

SRAM Static Noise Margins

1NV

+-
+ -2NV



Amirtharajah/Parkhurst, EEC 116 Fall 2011 27

Hold Static Noise Margin

Hold SNM Half Circuit

Vin Vout

Vdd

Gnd

Hold SNM Butterfly Plot

• Plot two mirrored Vin/Vout curves
• SNM = side of largest inscribed 

square

SNM
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Read Static Noise Margin

Read SNM Half Circuit

Vin

Vout

Vdd

Gnd

Read SNM Butterfly Plot

• Diode-connected access NMOS 
simulates precharged bitline

SNM
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Write Static Noise Margin

Write 0 SNM Half Circuit

Vin

Vout

Vdd

Gnd

Write SNM Butterfly Plot

• Always-on ground-connected 
access NMOS simulates bitline
driven low, use Read Ckt for Write 1

SNM
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Memory Peripherals

• Memory core (memory cells) largely determined by 
technological considerations
– Emphasizes reduced area, sacrifices speed, reliability
– Peripheral circuits can recover some of the lost 

performace
• Address Decoders

– Row Decoders: one-hot decoding for word lines
– Column Decoders: 2L-to-1 multiplexers for bit lines

• I/O Buffers and Drivers
• Sense Amplifiers
• Memory Timing and Control
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Flash Memory Transistor With Floating Gate

S D

Control Gate

B

• Threshold voltage of device adjusted by placing 
charge on floating gate

Floating Gate

n+ n+

p substrate
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Flash Memory Operation
• Two threshold voltages correspond to two states (1 bit)

– Bitline is precharged high before a read

– Low VT state, when wordline (control gate) is high the bitline
is discharged and a “0” is read

– High VT state, the wordline (control gate) can’t go high 
enough to turn on transistor, bitline stays high and a “1” is 
read

• Writing a “1”: electrons are accelerated by a high field 
until they accumulate on the floating gate, raising VT

• Writing a “0”: electrons driven off floating gate by a 
reverse gate-source bias through Fowler-Nordheim
tunneling, lowering VT
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Next Topics: Low Power Circuits and Limits

• Low power design principles and circuit techniques

– Voltage scaling, activity factor reduction, clock gating, 
leakage reduction

• Implementation strategies

– Full Custom

– ASIC (synthesis plus place & route)

– Gate Array

• Design for manufacturability
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