Technology and Circuits for On-Chip Networks

Dave Albonesi, Keren Bergman, Nathan Binkert, Shekhar Borkar, Chung-Kuan Cheng, Danny Cohen, Jo Ebergen, Ron Ho

Technology drivers for networks

Consider two systems as drivers

- Enterprise-class, large-scale CMP-style machine
 - > Willing to spend on power to get performance (150W budget)
 - > Cost is important
- Hand-held personal electronics gizmo
 - > Cost is primary (\$25)
 - > Battery life drives a hard power limit (0.2W budget)

Characteristics and constraints

How technology and circuits affect systems

- Bandwidth density
- Power & power density
 Check if this is possit
- Design time and cost
 - Innovations require technology and CAD ecosystems
- Reliability and fault tolerance

- Establish this first

Enterprise-class CMP system

Assumptions for year 2015

- 22nm technology, 256 cores on a 400mm² die
- Mesh-style routing grid with 2*15*16=480 total links
- 150W total power, ~20% due to network
 - > Of this 20%, 1/3 is the channel, 1/3 is the switch, 1/3 is the buffe
 - > This turns out to be ~10W for each of the components
- 0.7V power supply, 150ps clock period (7GHz)
- Wires use 0.25mW/Gbps/mm & travel at 100ps/mn

CMP system network channel

Application requirement: 2TBps bisection BW

- Latency?
 - > 1.25mm at 100ps/mm = 125ps < 150ps cycle time</p>
 - > 1 cycle per link hop: latency is not an immediate problem
- Power?
 - > 2TBps = 16Tbps \rightarrow 1Tbps per individual link
 - > In a 16x16 grid, there are 2*15*16=480 individual links, each 1.25mm long
 - > 480Tbps at 1.25mm \rightarrow 150W @ 0.25mW/Gbps/mm
 - > And 150 >> 10: Power is a problem!

CMP system network buffers

- Buffers needed at each router
 - > Flits are 16B wide, we have 5 bidirectional ports \rightarrow 160B = 128(
 - > Depth set by timing: 4 flits deep (2 cycles FC, 2 cycles CRC)
 - > So need 1280*4 = 5120b. 8X: 40Kb/router, or 10Mb/chip
- Latency okay: SRAM access time < 150ps
- Power?
 - > 22nm technology: assume a 0.16µm² SRAM cell (2-port)
 - > Equivalent switching cap of 15% of the area \rightarrow 2fF/cell
 - > Over 10Mb, this is $20nF \rightarrow CV^2 f$ gives 20*0.7*0.7*7 GHz = 70W
 - > 70W > 10W
 - > Need low nower, high performance memories

Research Agenda

- General areas to be addressed
 - > Lower power communication
 - > Lower power, fast memory
- Areas for future research (for year 2015 systems)
 - > Low swing wires
 - > Role of 3D integration for on-die interconnects
 - > Role of photonics for on-die interconnects
 - > Optimized metalization
 - > Tradeoff high C lower layers for upper level layers

Personal electronics gizmo

- A heterogenous mix, few cores connected together
- Look at having 5% of power be network power
 - > Assume 200mW is the hard power limit, so 10mW in network
 - > Assume 5mW of this is for the channel (simple network)
- Assume 50mm² die (from Wingard), so links ~ 7mn
 - > 0.25 mW/Gbps/mm = 1.75mW/Gbps at 7mm links
 - > For 5mW we can afford 2.8Gbps total bandwidth
 - > This seems thin...