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Why interconnection networks will be of 

increasing importance…

� Systems becoming increasingly parallel…

General-Purpose Systems Application-Specific Systems

Microprocessors

Servers

Supercomputers

SoCs

Internet
Routers

Systems rely on networks to scale up
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Why we need low-power interconnection 

networks…
1. Systems are power-constrained due to cooling, power 

delivery & battery limits.
2. Networks consume significant power.

Microprocessors
[MIT Raw: 7/20W
IntelCMP: ~20%]

Supercomputers

SoCs

Servers 
[Alpha 21364: 

~23/125W]

Internet Routers
[~60/200W]
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Outline

� Brief survey of group’s research
� Power-driven network design tools

� ORION: Architectural network power models

� LUNA: High-level network power analysis

� Power-aware networks
� Dynamic voltage scalable networks

� Thermal modeling and management of on-chip 
networks

� Next: Network-driven computing
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ORION: Architectural network power 

models

� Validations: Alpha 21364, IBM InfiniBand switch (close to designers’ estimates); MIT Raw 
(3-11% error)

� Status:
� Used for network power estimation in CMPs, MPSoCs, network processors in academia and industry
� 100+ downloads (as of May 2005)
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LUNA: High-level network power analysis

� Link utilization as proxy for 
node power
� Input: Message flows between 

nodes
� Output: Individual link 

utilization

� Models contention and 
backpressure:
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LUNA: High-level network power analysis

� Link utilization as proxy for node 
power
� Input: Message flows between 

nodes
� Output: Individual link utilization

� Models contention and 
backpressure

� Validation: <9% relative error 
against ORION with up to 2 orders 
of magnitude speedup

� Status: 
� Used for rapid design space 

exploration of networks (Intel), 
compiler power management 
(Kandemir&Irwin, PLDI’06)

� Ongoing refinement and validation 
with Intel

� 50+ downloads

Eisley and Peh [CASES 2004]
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Dynamic voltage scalable networks

1. Explore potential 
power savings and 
latency impact
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Dynamic voltage scalable networks

1. Explore potential 
power savings and 
latency impact

2. Design DVS opto-
electronic networked 
system

Chen, Peh, Wei (Harvard), Huang, Prucnal [HPCA 2005]
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Dynamic voltage scalable networks

1. Explore potential power 
savings and latency impact

2. Design DVS opto-
electronic networked 
system

3. DVS link design
� Variable-voltage front-

end
� UMC 130nm: 

0.7-1.2V, 4-8Gb/s, 
6.7-40.8 mW

Chen, Wei (Harvard), Peh [work in progress]



14

Outline

� Brief survey of group’s research
� Power-driven network design tools

� ORION: Architectural network power models

� LUNA: High-level network power analysis

� Power-aware networks
� Dynamic voltage scalable networks

� Thermal modeling and management of on-chip 
networks

� Next: Network-driven computing
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Thermal modeling and 

management of on-chip networks

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]
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MIT Raw (0.18um, 300MHz)
First fabricated networked CMP

Core: 
8-stage in-order single-issue pipeline
4-stage single-precision FPU
32KB cache
32KB software-managed cache

Power and thermal-efficient on-chip networks:

A motivating example

On-chip interconnection network:
Four 32-bit 4x4 networks
2 static (8KB software-managed I$)
2 dynamic
Average: 7.2W, Peak: 14.8W
36% of avg chip power

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group
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Methodology

Raw BTL simulator

IBM layout tool

SIRIUS network thermal model

Application program(s)

Events and activities

Power profile across time

Thermal profile across time

Why a network thermal model?
•Lateral heat spreading is more 
critical in an on-chip network
•Need to model on-chip 
interconnects/links

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group
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� Capturing heat spreading effect 
among neighboring components
� Heat spreading angle

� Router thermal resistance

Ri = Ri_silicon + Ri_spreader + Ri_sink + Ri_ambient

� Thermal correlation
T1 = Q1R1+(Q1+Q2)R3
T2= Q2R2+(Q1+Q2)R3

SIRIUS: Modeling of inter-router 

thermal correlation

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group
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SIRIUS: Modeling of On-Chip Links

� Thermal impact of on-chip link circuitry
� Reduced metal pitch and increased metal layers

� High thermal resistance of silicon dioxide layers
� High thermal resistance of low-k insulator materials

� Thermal modeling of on-chip link circuitry
� Thermal impact of buffers

� Increased power consumption hence silicon 
temperature

� Copper vias have high thermal conductivity

� Buffer insertion estimation

� Temperature profile estimation

Buffers Buffers
Silicon

Metal wire

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group
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Thermal Model Validation

� Modeled actual chip design from IBM
� In-house finite-element based thermal simulator
� Our model: [70.2, 85.4] oC; IBM: [73.2, 87.8]oC
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Processor+network
Processor alone
Network alone

stream bit-level computations ILP-computations

Networks are significant power/thermal contributors
So, how can we target this?

Thermal characterization of RAW chip

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group
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Run-time network thermal management to 

guarantee safe on-line operation

Temperature at time t1 Temperature at time t2

High spatial and temporal variance in network temperature

Thermal design for worst-case no longer cost-effective

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group
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ThermalHerd: Let’s dynamically steer network 

traffic to avoid thermal hotspots

1. Temperature monitoring

2. Traffic estimation & prediction

3. Before emergencies
� Proactive thermal-aware routing

4. Upon emergencies
� Distributed traffic throttling
� Reactive thermal-aware routing

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group
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ThermalHerd: Thermal Correlation-Based 

Routing

� Chooses a route based on 
how thermally correlated it is 
with the hotspot
� Hotspot notification messages

� Pre-computed thermal 
resistance matrix (based on 
Sirius thermal model) stored at 
each router

� Choose minimal path where 
thermal correlation between 
source and every hop along the 
path is < threshold

� Threshold is less aggressive 
prior to thermal emergencies

Thermal
resistances

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group
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ThermalHerd: Temperature-Aware Traffic 

Throttling

� How much to throttle?
� Each router is assigned a quota: number of 

packets it is allowed to process within a time 
window

� Quota reduced exponentially as temperature 
rises

� Quota prioritizes local traffic over passing-by 
traffic

� How to throttle?
� Disable switch allocation

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group

xbarbuffers

arbiter
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ThermalHerd evaluation

(Austin TRIPS traces for 16 benchmarks)
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III:ThermalHerd (Distr Throttling + Reactive Routing)
IV:ThermalHerd (Distr Throttling + Proactive + Reactive Routing)

….with little performance degradation

Peak temp. without ThermalHerd (94 degrees)

Peak temp. constraint
Peak temp. as managed 
by ThermalHerd

ThermalHerd effectively regulates peak temperature…

Shang, Peh, Kumar, Jha [MICRO 2004, TopPicks 2005]; Ack: MIT RAW group, IBM’s H. Chen, UVA’s K. Skadron, TRIPS group
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Network-driven Computing

� Network-Driven Computing
� Where the on-chip 

network no longer 
handles just 
communication, but also 
drives all coordination
between cores 

� Why?
� Fast access
� In-transit adaptation
� Scalable complexity

� E.g. in-network cache coherence (poster)

� Sharers kept track of using trees within 
network routers: Network routes requests 
to nearest copy.

� Original directory protocol:
� Requestor (B) to Home Directory (H) to 

Sharer (A)
� In-network coherence:

� Enroute from Requestor (B) to Directory 
(H), network routes request to nearest 
Sharer (A) and back.

� Scalable:
� Lessen global traffic
� Storage overhead scales with number of 

ports instead of number of cores

Eisley, Peh, Shang [MICRO 2006]


