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Convergence to flexible parallel
architectures

« Power Efficient

— Better match application
G UQCL characteristics (streaming,
GPUs Bizliele-0 coarse-grain parallelism...)

L. SE=wiommm — Constraint-driven

execution
g Sl @R - simple
. T — Increased regularity

— S/W programmable
— Limited coreltile set
— Ease verification issues

* Flexible
— Multi-use platform

So




Our Group’s Research

* Now: support evolution of
existing platforms

— Low-latency and low-power

on-chip networks
Embedded — System-timing
GPUs Procnessors

considerations
foizncr — Networking communications

el within FPGAs
n 'ﬁ? .':-5’ — Flexible networked SoC
MU systems, virtual IP

— On-chip serial interconnects

— Multi-wavelength optical
communication (off-chip)

— Fault tolerant design

e Future:

— Networks of processors to
processing networks

— Processing Fabrics




Low-Latency Virtual-Channel
Packet-Switched Routers

Goal was to develop a virtual-channel
network for a tiled processor architecture

Collaboration with Krste Asanovic’'s
SCALE group at MIT

Problem faced is rising interconnect costs

Networking communications can increase
communication latencies by an order of
magnitude or more!
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The Lochside test chip (2004/5)

« UMC 0.18um Process
¢ 4x4 mesh network, 25mm?

« Single Cycle Routers i
(router + link = 1 clock) !
 May be clocked by both |
traditional H-tree and DCG -

« 4 virtual-channels/input TILE

« 80-bit links R
— 64-bit data + 16-bit control

+ 250MHz (worst-case PVT) Generator

16Gb/s/channel (~35 FO4) e
* Approx SM transistors

Mullins, West and Moore (ISCA’04, ASP-DAC’06)



ROUTER

ROUTER

IIIIIIIIIIIIIIIIII

-
|
|
|
|
|
|
|
1
|
L
|
|
|
|
|
|
|
|
|
-

VIRTUAL CHANNEL
BUFFER

VCi1

PHYSICAL
CHANNEL
LINK

ROUTING LOGIC
VC ALLOCATOR

SW. ALLOCATOR




o
® Allocatlo

LINK

4

Switch
llocatio

-

,(

Router
Datapath

-

LINK

* Router pipeline depth limits minimum latency
— Even under low traffic conditions
— Can make packet buffers less effective
— Incurs pipelining overheads
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« VC and switch allocation may be performed concurrently:
— Speculate that waiting packets will be successful in acquiring a VC
— Prioritize non-speculative requests over speculative ones

Li-Shiuan Peh and William ]. Dally, “A Delay Model and Speculative Architecture for Pipelined
Routers”, In Proceedings HPCA’01, 2001.
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* Once speculation mechanism is in place a
range of accuracy/cycle-time trade-offs
can be made

— Blocked VC, pipeline and speculate — use low
priority switch scheduler

— Switch and VC next request calculation

 Need to be more accurate for VC allocation
— Abort logic accuracy
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* Decreasing accuracy often leads to poorer
schedule and more aborts but reduces the
router’s cycle time

* Impact of speculation on single cycle
router:

* Need to be careful about updating arbiter
state correctly after speculation outcome is
Known
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_> r N
5-port router . - —P
4 VCs per port — B Router —{(  LINK )}
64-bit links, ~1.5mm  —P» >
90nm technology - \ L >

30-35 FO4 delays (~800MHz)

» Could move to router/link pipeline

« Option to pipeline control - maintaining single cycle best case
« Impact of technology scaling

* Scalability: doubling VCs to 8, only adds ~10% to cycle time
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* Local and global clock gating & signal
gating
— Global clock gating exploits early-request
signals from neighbouring routers

— Slightly pessimistic (based on what is
requested not granted)

— Factor 2-4 reduction power consumption

Mullins, SoC’06 15



22% StatIC pOWGI’ } Due to increase as %
11% Inter-Router Links J 29 technology scales

~1% Global Clock tree

65% Dynamic Power

— Power Breakdown
* ~50% local clock tree and input FIFOs
« ~30% on router datapath
« ~20% on scheduling and arbitration
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Exploits self-timed il il
circuitry to generate J_[ %Jr J’f %
and a clock in a A A

~—rts
‘lﬁia

distributed fashion -

Low-skew and low-
power solution to

providing global J_f .

synchrony Ejo J‘J‘ %

Mesh topology v il v
=i

Simple proof of concept
provided by Lochside

S. Fairbanks and S. Moore “Self-timed circuitry
for global clocking”, ASYNC'05

]

test chip
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Beyond global synchrony

* Clock distribution issues

— Challenge as network is physically distributed
 |Increasing process variation

« Synchronization
— Core clock frequencies may vary, perhaps adaptively
— Link and router DVS or other energy/perf. trade-offs

« Selecting a global network clock frequency
— Run at maximum frequency continuously?
— Use a multitude of network clock frequencies?
— Select a global compromise?

18



* A complete spectrum of approaches to system-timing exist

Timing Assumptions

%
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aperiodic)
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Mullins/Moore, ASYNC’07
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Example: AsAP project (UC Davis, 20006)
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Yu et al, ISSCC’06

21



« GALS architecture,

Reconfigurable

Network

- m FFGA
data-flow driven — ==
processing elements

(11 = b} ] MAC I_ ﬂl MAC Meml
(“satellites”) |
i T g o
Interface ARM
Enable Done
In-; Processor > In :X |
Module
NN
R 1 v Done \
eq= Lé)(:al CltOCk |, Clk m Zhang et al,
SRt ISSCC’00
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 Router should be clocked when one or
more inputs are valid (or flits are buffered)

* Free running (paternoster) elevator
— Chain of open compartments
— Must synchronise before you jump on!
* Traditional elevator
— Wait for someone to arrive
— Close doors, decide who is in and who is out
— Metastability issue again (potentially painful!)
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Data-Driven Clock Implementation

Incoming data

—

Sample inputs
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/ Low-latency and value-safe synchronisation
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__— Fully—synchronous routers

Tunable Self-Timed Channels
% Self-Timed Express Links

Self-timed power gating?

100MHz Stream

|
(=90 O

500MHz Bursts

DI barrier synchronisation and

scheduling extensions
NO GLOBAL CLOCK



Networks of processors to
processing networks

Embedded
* Will a single universal

parallel architecture
be the eventual

outcome of this
convergence?
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— Network of Processors
— Number of processors increase

— Core architectures tailored to “many-core”
environment

— Remove hard tile boundaries

« Why fix granularity of cores, communication and
memory hierarchies?

— Move away from processor + router model
» Everything is on the network
» Richer interconnection of components, increased
flexibility
— Add network-based services

* Network aids collaboration, focuses resources, supports
dynamic optimisations, scheduling, ...

 Tailor virtual architecture to application
— Processing Network or Fabric
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Thank You.
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