
Research Directions
for On-chip Network

Microarchitectures

Luca Carloni, Steve Keckler,
Robert Mullins, Vijay Narayanan,
Steve Reinhardt, Michael Taylor

12/7/06



Overview
 Minimizing latency & power are key

 Fundamental research needed in routers, interfaces,
electrical design

 Reliability and variability are emerging challenges
 Programming interface is key

 Must expose low latency to software
 Programmability drives network constraints & features

 Broader impact: making multicore systems
viable, usable, and effective



Outline
 Crosscutting issues

 Latency
 Power

 Other key issues
 Programmability
 Variability
 Technology
 System management
 Design tools



Driving Latency Down
 Motivation

 Lower overheads simplify programming
 Less need for programmers to avoid communication

 Exploit low fundamental latency of integration
 Don’t throw away benefit by imposing interface/routing overheads
 Enable closer cooperation between cores

 Enabling technologies
 Network interfaces

 Thin abstractions: expose hardware to software
 Integration with processor core
 Programming models to leverage abstractions (and vice versa)

 Router innovations
 Fewer pipe stages, higher frequency (within power envelope)
 Maintaining low latency under load
 Identifying/prioritizing latency critical communications
 Exploiting static information (e.g., circuit switching)



Power
 Different design points demand different solutions
 Absolute power

 Embedded vs. high performance
 Other intermediate points?

 Power/thermal-constrained routers & routing
 Stay within envelope

 Exploit static information / common cases
 Ratio of compute/network power

 Depends on compute/communicate ratio
 Can we trade this off dynamically?

 Across different apps
 Due to phase behavior within app
 E.g., DVFS in the network (as well as cores)



Programmer Support
 What does the programmer want?

 Fast and robust networks
 Easy to use (efficient network access, easy to program)
 Ability to reason about performance, etc.

 Performance and Robustness
 Low latency in hardware - fast routers, efficient NIs
 Latency in software (programming model support)

 Microarchitecture support for higher level mechanisms
 Examples: data transfer (small/large), synchronization, invocation, etc.

 Microarchitecture support for robustness
 Priority/QOS
 Microarchitecture support for end-to-end deadlock avoidance
 Example: network driven exceptions for unusual cases

 Pushing intelligence into the network
 Cache coherence just one example

 Common interface for different scales of network
 On-chip, off-chip, board, rack, system
 Can we unify to common protocols, user-interfaces?
 Can microarchitecture make unification efficient?

 Understanding network behavior
 Predictability / cost model for application programmer
 Measurement & feedback to programmer
 Is network power something that should be exposed for optimization in some way?



Variability
 Sources of variability

 Workload, across and within applications
 Burstiness, stream vs. unstructured, large vs. small messages

 Message classes (data, synch, etc.)
 Fabrication process

 Opportunities and challenges
 What are the message types, what are the networks

 How should individual networks be optimized based on different
traffic characteristics

 Variability provides opportunity to improve power efficiency
 Dynamically ride the pareto curve (power/performance)

 Shift power from network to execution (or vice versa)
 Can this be hidden from programmer?

 Fabrication process tolerant networks
 Post fabrication tuning, exploit elastic network properties



Technology
Current: How do design flow choices impact NOC

micro-architecture design?
 custom vs asic
 floorplan impact on micro-architecture effectiveness

Short-Term: What will be the impact of technology
scaling?
 router vs. link costs (delay/power)
 router vs. link features (diagnostics, error correction)

Long-Term: What will be the impact of emerging
technologies?
 3D integration, carbon nanotubes, optical communication
 new switching fabrics, arbitration, buffering



System Management
 NOC can facilitate distributed diagnostics and self-adaptation

 not just for NOC, but for the overall system
 process variations, reliability, dynamic variations, security, power

management
 architectural support

 sensing
 online monitors and performance counters for network traffic

 processing
 aggregation, system-state recognition and future-state prediction

 actuating
 [power] knobs for dynamic voltage/frequency scaling (DVFS) of

routers, cores, for dynamic shut-down of system subsets
 [security] on-demand encryption and link blocking for security

 Challenge: How to do all this while keeping overheads low?



Design tools

 Stochastic vs. realistic workloads
 How valid is trace-driven evaluation?
 Rapid evaluation

 FPGAs
 Analytical techniques

 Repeatability of research experiments


