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MultiMulti--Core Transition AcceleratingCore Transition Accelerating

“Azul has been able to pack an industry-leading 
24 processor cores on a single-chip, which 
means that each processor is able to run 24 
simultaneous parallel threads”

“We notified customers we're pulling in both 
the desktop and server (launch) of the first 
quad-core processors into the fourth quarter 
of this year from the first half of 2007”

“The UltraSPARC T1 processor with CoolThreads
technology is the highest-throughput and most 
eco-responsible processor ever created.”

*Third party marks and brands are the property of their respective owners
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What will we do with this Compute Power?What will we do with this Compute Power?

MiningMining SynthesisSynthesisRecognitionRecognition

Emerging Emerging ‘‘KillerKiller’’ ApplicationsApplications
The RMS SuiteThe RMS Suite

Source : “Cool Codes for Hot Chips” Keynote by 
Justin Rattner, CTO, Intel, Aug. 2006
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Scalable OneScalable One--Die FabricDie Fabric
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Source : “Cool Codes for Hot Chips” Keynote by 
Justin Rattner, CTO, Intel, Aug. 2006
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Overview of TalkOverview of Talk

Establish Importance of OnEstablish Importance of On--die Interconnectsdie Interconnects

Walk through Case Study of a router designWalk through Case Study of a router design

Evaluate against GoalsEvaluate against Goals

ConclusionsConclusions

Overview of TalkOverview of Talk
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iRMSiRMS Data Size estimatesData Size estimates

On-chip caching is effective
for these apps

Primarily running at off-die B/W

* Data collected on 
complete application 
run on a hardware 
cache emulator
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CPU Private
Cache

CPU Private
Cache

CPU Private
Cache

CPU Private
Cache

High OnHigh On--Die B/WDie B/W

Low offLow off--die B/Wdie B/W

Low OnLow On--Die B/WDie B/W

High offHigh off--die B/Wdie B/W

No data replication
All data goes over on-die 

interconnect

Possible data replication
primarily dirty blocks go over 

on-die interconnect



8

bin
om

ial
so

m sv
d

ga
us

s
pc

g
mmm sv

m
km

ea
ns

O
ff-

D
ie

 B
an

dw
id

th

bin
om

ial
so

m sv
d

ga
us

s
pc

g
mmm sv

m
km

ea
ns

O
n-

D
ie

 B
an

dw
id

th Shared

Private

High OnHigh On--Die b/wDie b/w

Low offLow off--die b/wdie b/w

Low OnLow On--Die b/wDie b/w

High offHigh off--die b/wdie b/w

Manage Off-Die bandwidth via better On-Die Network

sharing exists in some of 
the RMS kernels



9

Bandwidth
Components

Bandwidth 
Growth over 

time

• Data grows 
with cores

• Protocol 
grows faster 
than cores

• Error 
growing due to 

process 

Need for ScalabilityNeed for Scalability

Protocol, 15%

Data, 74%

Flow Ctrl & Error, 
11%
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Bandwidth
Components

2D Mesh 
For CMP

Need Need 
scalable scalable 
networknetwork

Bandwidth 
Growth over 

time

• Data grows 
with cores

• Protocol 
grows faster 
than cores

• Error 
growing due to 

process 

Need for ScalabilityNeed for Scalability

Protocol, 15%

Data, 74%

Flow Ctrl & Error, 
11%

Size 6x6 mesh
Link Sizing 16B, >3Ghz
Traffic Classes Request, response, data
Data Block Size 64 Bytes
Switching & 
Flow Control Wormhole w/VC flow control

Error Control end-to-end

Network Parameters
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Overview of TalkOverview of TalkCase Study of a RouterCase Study of a Router
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55--port Switch (overview)port Switch (overview)

Design/uArchitecture Goals:

• Reduce Crossbar area (and power)

• Reduce Buffer power

• Maximize throughput of network

Power Breakdown

Crossbar
35%

arb
3%

Buffers
46%

Clock Buffer
16%

Router Area

Misc
31%

Buffers
15%

crossbar
54%
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DoubleDouble--pumped Crossbarpumped Crossbar

Source : Vangal 
et al “A six-port 
57GB/s double 
pumped non-
blocking router 
core”
Sym. On VLSI 
Circuits, June 2005

Potential 
Reduction

Channel 
Width 50%

Channel 
Area 25%

Channel 
Power 17%

Channel 
Delay 17%
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Buffer ManagementBuffer Management
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Buffer ManagementBuffer Management

Statically Assigned 
Buffers

SAMQ with simple 
(VCT) flow control
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Buffer ManagementBuffer Management

Ptr0 Ptr1 Ptr2 Ptr3 Ptr4VCi  Block Info

Ptr0 Ptr1 Ptr2 Ptr3 Ptr4VCo  Block Info

Header Control Block
(Packet Tracker)

PayLoad
Buffer
read

F0

F1

F2

F3

F4

Statically Assigned 
Buffers

(SAMQ with VCT 
flow control)

Dynamically Assigned Buffers 
DAMQ-WormHole with 

Virtual Channel Flow Control

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

30 45 60 75 105
Addition of Flit Buffers

Fr
ac

tio
n 

of
 N

et
w

or
k 

C
ap

ac
ity

Achieve High Throughput 
@ low(er) power/area

SAMQ with 
VCT flow 
control

DAMQ - 
Wormhole/

VC
0

20

40

60

80

Fl
it 

B
uf

fe
rs

/In
pu

t P
or

t



17

Switch Switch AllocatorAllocator
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Pipeline DesignPipeline Design

• 4-stage pipeline

• Buffer Read not in parallel with 
Switch Arbitration 
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Pipeline DesignPipeline Design

Base 
Pipeline

• Choose Pipeline 
frequency to    
Maximize Switching 
rate

• Optimize for load 
conditions

Request Set 
Up

Crossbar
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links power18%

router power 
82%

Power Challenges for ODIPower Challenges for ODI

Interconnect Power 
Currently Exceeding 

budget!

8 units of 
power 

overhead 
per unit of 

bit 
transferred

256KB 
Cache
64%

Router + link 
power
36%Dense 

Compute 
Unit
80%

Router + 
link 

power
20%
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Miscellaneous IssuesMiscellaneous Issues

Increased Soft Error and Process Variability impacts Increased Soft Error and Process Variability impacts 
designdesign

–– design to detect and/or correct errors (latency, bandwidth impadesign to detect and/or correct errors (latency, bandwidth impact)ct)

–– routing for fault tolerancerouting for fault tolerance

Clocking power is high (16%)Clocking power is high (16%)
With wide links cost of GALS approaches may be higherWith wide links cost of GALS approaches may be higher
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ConclusionsConclusions

Scalable High Performance onScalable High Performance on--die interconnect would be die interconnect would be 
required in future required in future CMPsCMPs

We do achieve high network throughput We do achieve high network throughput 
Many of the techniques are borrowed from previous Many of the techniques are borrowed from previous 
researchresearch

But significant challenge is to fit within power and areaBut significant challenge is to fit within power and area
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