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Motivations

 Limitations of monolithic processors and memories
 Wires, design complexity, port limits

 Goal: scalable processor and memories
 Design complexity scalability
 Ability for more resources to work together

 Approach
 Recast as distributed systems
 Tiles connected via a collection of networks

 Micronet = microarchitectural network
 “Just” a network tightly integrated into processor/memory
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TRIPS Tiled and Networked Processor

 SOC-like design style
  Individually

designed tiles
  3-8 mm2 each
  170M transistors

 Networks
  Memory
  Operands
  Control

 Networks enable
  Distributed and

scalable design
  Fast design cycle
  Configurability
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Outline

TRIPS architecture overview
 Integrated processor network (OPN)

 Replaces bypass and processor/cache bus
 Reflection on design

Memory network (OCN)
 NUCA cache
 System interconnect
 Extendable to multiple chips (C2C)
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TRIPS Prototype Chip

 2 TRIPS Processors
 16 FPUs each
 Explicit Data Graph

Execution (EDGE)
 NUCA L2 Cache

 1 MB, 16 banks
 On-Chip Network (OCN)

 2D mesh network
 Replaces on-chip bus

 Controllers
 2 DDR SDRAM controllers
 2 DMA controllers
 External bus controller
 C2C network controller

 Fabricated in 130nm ASIC
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TRIPS Tile-level Microarchitecture

TRIPS Tiles
G: Processor control - TLB w/ variable size pages, dispatch,

next block predict, commit

R: Register file - 32 registers x 4 threads, register forwarding

 I: Instruction cache - 16KB storage per tile

D: Data cache - 8KB per tile, 256-entry load/store queue, TLB

E: Execution unit - Int/FP ALUs, 64 reservation stations

M: Memory - 64KB, configurable as L2 cache or scratchpad

N: OCN network interface - router, translation tables

DMA: Direct memory access controller

SDC: DDR SDRAM controller

EBC: External bus controller - interface to external PowerPC

C2C: Chip-to-chip network controller - 4 links to XY neighbors
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TRIPS Execution Model
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Distributed Execution

Basic block Registers

Registers

Coarse-grained program sequencing using blocks
Dataflow execution within one block, instructions encode communication

Spatial distribution exposed to the compiler
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TRIPS Processor Tiles and Networks

 Control Networks
 Instruction fetch/dispatch

(GDN)
 Completion/commit/flush

network (GCN)
 Operand network

 Bypass network among ALUs
 Register file inputs
 Load/store access

 Memory network (OCN)
 I/D cache misses to L2/memory
 Read/write to remote memory
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TRIPS Operand Network (OPN)

 Topology
 5x5 mesh network
 1 cycle per hop
 140 bit channels

 Routing
 Y-X dimension order
 4 entry input FIFOs
 Destination from

instruction targets
 Flow control

 1 physical channel (no VCs)
 On-off link control
 Deadlock free as storage

at target is pre-allocated
 Lightweight and tightly

coupled to processor core
 Takes place of bypass bus
 Bisection BW 80GB/sec at

500MHz

Processor 0

Processor 1
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Obligatory Router Diagram

5x5
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Processor Architecture Influences NW

 Latency critical to performance (1 cycle per hop)
 Simple routers, no VCs

 Deadlock avoidance
 Easy because destination buffers pre-allocated

 Y-X routing
 Avoid bottlenecks from RTs and to DTs

 2-flit messages (sort of)
 Control header leads data payload by 1 cycle
 110 bit payload (64-bit datum plus 40-bit address)
 But - separate control/data wires

 Speculative header injection
 Can be canceled by null data flit

 Network selectively flushed when block flushed
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OPN Integration to Processor Core

 2 parallel networks
  Control (30 bits) for

routing and wakeup
  Data (110 bits)

 Includes 40 bit address
and 64 bit operand for
store

 Bypassed directly into
ALU at target

 Speculative injection of
control packet
  For early wakeup at

target
  May require cancel on

next cycle
  Control/data interleaved

across operand messages
 Block flush includes

flushing block’s state in
router
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Design Experience

 Area - remember ASIC standard cell design
 1 OPN router = 0.25mm2 in 130nm

 A little larger than a 64-bit integer multiplier
 25 OPN routers = 14% of processor area
 Area breakdown of OPN router

 Static timing estimates - nominal corner
5%Arbitration/routing logic

20%Crossbar
75%FIFOs

1.7nsTotal
367psLatch setup, clock uncertainty
473psFIFO muxing
187psCrossbar
253psArbitration
386psFIFO read
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Performance Observations

Average number of hops in network = 2
 Compiler controls instruction placement

Average network latency = ~2
 But can have high variance
 Small number of critical messages can degrade

performance

Load varies across network node and across
applications
 Depends on concurrency profile

Standard NW loads are not representative
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Highly Non-uniform Injection

 Uniform in RT/DT
due to interleaving or
registers and data
cache

 High injection rates
in ETs near registers
and data
 Injection rate

reflects instruction
placement
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Network Protocol Overheads
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Block
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Contention
OPN
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mcf and twolf compiled but not hand-optimized

Columns show percentage of critical path (methodology adapted from Fields, et al.)
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Operand Network Enhancements

 Operand multicast
  Instructions have limited number of targets (2, 3, or 4)
  Network injects one copy per cycle
  Tree of instructions required for high-fanout operands
  Optimization we are studying

  Instruction specifies bit-mask of targets
  Operand network replicates copies

 Bulk operand movement (i.e. L/S multiple)
  Current architecture transmits one operand per message

 Streaming data into arithmetic array is difficult
  Optimizations we are studying

 Single load request fetches multiple operands into successive
reservation stations

 Saves headers and streamlines return of data

 Replicating network to provide more link BW
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 Topology
 4x10 mesh network
 1 cycle per hop
 128-bit x 2 links

 Routing
 Y-X dimension order
 2 entry input FIFOs
 Destination memory

address
 Flow control

 1-5 128-bit flits/msg
 4 VCs for 4 priorities
 Wormhole routed
 Credit-based flow

control
 Pipelined credit return

 Replaces memory bus
 Bisection BW 64

GB/sec at 500MHz

TRIPS Memory Network (OCN)

DMA

DMA

DRAM
controller

16 64KB Banks
(L2 cache)

Chip-to-chip Link

DRAM
controller

router embedded 
in memory tile

network interface
(router + route table)
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Non-Uniform L2 Cache (NUCA)

 Exploit physical locality in
cached data

 N-tile
 Resolves address to coordinate

 M-tile or SDC if on this chip
 C2C controller if on another chip

 Injects ld/st request on VC0
 1-byte up to full cache line

 M-tile performs lookup and
returns response on VC3
 64KB per M-tile

 Hop count depends on
destination
 Static NUCA
 Total Unloaded latency 7-22

cycles
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Network Based Memory Configuration

N-tile mechanisms
 Split mode to adjust cache

line address interleaving
1.  Interleaved across 16 tiles
2. Interleaved across 8 tiles (split

cache)

 16-entry translation table
 Indexed w/ 4 bits of PA
 Produces X/Y coordinate of MT

 Convert cache banks to
scratchpad
 Remap address range from one

MT to another
 Create new TLB entry to map

new physical region into VA space
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OCN Design Observations
 Bandwidth and Latency

 Peak injection BW: 74GB/sec, but load is
much less

 Unloaded hit latency: 7-22 cycles
 Area

 FIFO buffers: 75% of router area
 OCN routers/wires: 32% of L2 area, 10% of

die area
 Opportunity to economize design

 Timing
 Control was the critical path for the router
 Timing path: 1.5ns (nominal case)

 400ps: VC arbitration
 427ps: crossbar arbitration
 393ps: FIFO control
 247ps: latch setup, skew
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Chip-to-Chip Network
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Ethernet Switch

Board 0 Board 1 Board 2 Board 3 Board 4 Board 5 Board 6 Board 7

HOST PC

 On-chip 4-port router for C2C mesh network
 32-bit x 2 links at 1/2 core clock speed
 Protocol is direct extension of OCN
 Global memory addressing identifies target

32-bit x 2 link



23TRIPS
10/7/06

23

Summary

 Fast dynamic networks enable:
 Distributed processor and memory architectures
 Configurability

 Design experience
 Networks were easy to build and verify
 Larger than expected, but optimization possible

 Future challenges
 Better traffic management w/out increasing latency
 Drive router power down to beat other network topologies
 How many different NWs and types of NWs are needed

 TRIPS has 3 routed data networks
 Multiple control networks

 Does it make sense to design for worst case?
 Better workloads for network analysis

 Network interface primitives to the programmer
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