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Interprocessor Communication: End-to-End Performance
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 As slow as the slowest component — the “bottleneck”

* Over decade-long periods, industry focuses on resolving
the currently perceived bottleneck...

« ... and then the next bottleneck is exposed!



7/0’s & 80’s: Bottleneck = Network Links

Bottleneck of the seventies & eighties
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» Bottleneck = 10 Kb/s — 10 Mb/s WAN / LAN links, hence...
* Push for faster links; in the meanwhile...
* Networking protocols in software

—we still “suffer” from them...



90’s:

User-Level Communication
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Bottlenecks of the nineties
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* 100 Mb/s — 1 Gb/s Network Links required...
« Hardware support for switching; in the meanwhile...
« Operating System Call surfaced as the next bottleneck

— solution: User-Level (rather than kernel-mode)
access to the network interface device



Today: Network Thruput = Memory (L1) Thruput

Bottlenecks of the early 21st century
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* 10 — 100 Gb/s Network or NoC — as fast as memory; hence...

* NI tightly-coupled to processor — no bridges or I/O buses

NI side-by-side with Cache Controller — convergence?
—send = write (store); receive = read (load)



In the Chip-Multiprocessor Environment
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« Connect to all non-local memory (L2,...) via “the” network:
—Memory speed = Network speed

* Light-Weight Network Interface:
— NI cost must be quite less than processor & L1 cost




Thesis — Outline:

* NI cost & coupling to the processor

« Communication paradigm
— Cache-coherent shared memory, versus
— Message passing, versus
— Common hardware support for both?

« Hardware primitives
— Remote DMA
— Remote Queues

* NI side-by-side with Cache Controller — convergence?
—send = write (store); receive = read (load)
» Events triggering Actions
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Undesirable: NI requires Dedicated Memory of its own
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 Partitioned memory can provide sufficient throughput, but...
* Promotes data copying
« Underutilizes the total memory space



NI should use the Processor's Memory
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« Space for the NI data structures (at least the large ones) should

be dynamically allocated in the processor’'s “local” memory

« Sufficient memory throughput provided through bank interleaving
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Thesis — Outline:

* NI cost & coupling to the processor

« Communication paradigm
— Cache-coherent shared memory, versus
— Message passing, versus
— Common hardware support for both?

« Hardware primitives
— Remote DMA
— Remote Queues

* NI side-by-side with Cache Controller — convergence”?
—send = write (store); receive = read (load)
« Events triggering Actions
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Communication Primitives

« Cache Coherent Shared Memory
— hope that data find their own way

— hard problem to solve in hardware, and hard to scale

 Explicit movement of data in a Global Address Space

— software guides the data to move
 application program(mer), and/or
* runtime system

— pairwise bulk movement: Remote DMA

— synchronization / collective op’s: Remote Queues
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In-place Data Delivery: Remote DMA
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 Allows zero-copy communication
 Allows adaptive (multipath) routing
* Requires buffer space allocation per producer-consumer pair
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Multi-Party Synchronization: Remote Queues
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« Remote Queues differ from RDMA as follows:
— receive buffer space shared among many senders
— speeds up polling of multiple receive channels
« Atomicity of multiplexing/demultiplexing: Synchronization Primitive
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Queue Memory Similarities to Cache Memory
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« Sender (tail end of queue):
— compose messages in local memory, then send

« Receiver (head end of queue):
—messages “appear’ in local memory
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Message Send Similar to Cache Writes

Local Memory
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* A message is sent as fast as executing one or a few store
Instructions that hit in L1 cache

« Comparable to write-update coherent cache protocols
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Sequential Accesses — Prefetching — Queues
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« Sequential array accesses:
— allow for optimized cache replacement — prefetching
* Queues —especially long ones— behave in the same way

—bypass when queue is short
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Read Misses are like Remote Read DMA'’s

read miss

-

r_‘

fetch req. -

- fetch data
Local

Proc Memory ’
L RDMA

req.
Remote Read DMA req. t >

— /

Cache Citrl

to/from Network

=

« Unforeseen (hence, not pre-fetched) need to use an item
from a given place in global address space

19



Multiple Readers from a Shared Queue

fetch-&-incre
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* Queue head must probably reside in a “nearby” memory,
normally not the local memory of most (or all) readers

* Request one message to be forwarded into a private,
local queue via a remote atomic operation

L4
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Powerful Primitive: Events trigger Actions

« Action: compose and send one or
more packet(s)/message(s)

Access

Event

Msg.
Arrival

Data '\[A)%E' gﬁg  Example 1.: Remote Read DMA
SO server: arrival of a request
[ CLa_che 1 1ag :>§§ message i.n its que.ue triggers a
ine — =5  remote write DMA in response.
e N l_D': s Example 2: Write DMA
Actlist] ~ .2 completion notification: count
< arriving bytes (per session); when

counter expires, send (enqueue)
notification message(s).

« Example 3: barriers (see next).
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Barrier Synchronization Example
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— notified queues form a tree. E




Wait-on-Queues should replace most Interrupts

* Interrupts needed when (# ready tasks) > (# processors)
« CMP’s: (# processors) > (# ready tasks)
— many processors sit idle, waiting for work to arrive
—good for power consumption

— good for task latency

* Processor waits on a set of empty queues, for any of
them to become non-empty (like “select” system call)

— variation: message arrival at a queue triggers an
action to notify a central queue; processor waits on
that central queue, alone.
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Hardware-Assisted Software Cache Coherence
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* Could be implemented using the above mechanism where
events may trigger actions / notifications

» Dedicated processors where the OS / runtime system runs
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Conclusions

« High-Speed Interprocessor Communication

— hardware primitives: few, simple, general-purpose

« Cache Controller — Network Interface Convergence
— Message Send = a few store hits into L1 cache
— Message Receive = a few load hits from L1 cache
— Bulk transfers via RDMA

— Synchronization via Remote Queues and
automatic triggering of actions
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