Towards Light-Weight Intra-CMP Network Interfaces

Manolis Katevenis

Foundantion for Research & Technlogy - Hellas (FORTH)
Heraklion, Crete, Greece

O
N
F()R'l"l'l1 & P
X - H . Y

icS W
\

SCALABLE COMPUTER 1
ARCHITECTURE

Interprocessor Communication: End-to-End Performance

M

/O | Netw.
— ~—" ~—Switchlr ~——
bus| Intf. Network Link

& Protocols

Bridge

memBus

 As slow as the slowest component — the “bottleneck”

* Over decade-long periods, industry focuses on resolving
the currently perceived bottleneck...

« ... and then the next bottleneck is exposed!

7/0’s & 80’s: Bottleneck = Network Links

Bottleneck of the seventies & eighties

) |

/O | Netw.
N~ —~—_{switcht—~—

memBus bus| Intf. Network Link

Bridge

& Protocols

» Bottleneck = 10 Kb/s — 10 Mb/s WAN / LAN links, hence...
* Push for faster links; in the meanwhile...
* Networking protocols in software

—we still “suffer” from them...

90’s:

User-Level Communication

M

Bottlenecks of the nineties

' '

memBus

/O | Netw.
— ~—" ~—1Switchlr ~——
bus| Intf. Network Link

Bridge

& Protocols

* 100 Mb/s — 1 Gb/s Network Links required...
« Hardware support for switching; in the meanwhile...
« Operating System Call surfaced as the next bottleneck

— solution: User-Level (rather than kernel-mode)
access to the network interface device

Today: Network Thruput = Memory (L1) Thruput

Bottlenecks of the early 21st century
M e l
> 1/0 [Netw
P O ' ~— ~—Switch —~—
memBus | & |bus| Intf. Network Link wite

& Protocols

* 10 — 100 Gb/s Network or NoC — as fast as memory; hence...

* NI tightly-coupled to processor — no bridges or I/O buses

NI side-by-side with Cache Controller — convergence?
—send = write (store); receive = read (load)

In the Chip-Multiprocessor Environment

Processor || Processor || Processor || Processor || Processor
Local Local Local Local Local
Memory Memory Memory Memory Memory
Netw. Intf. (NI) || Netw. Intf. (NI)]| Netw. Intf. (NI) || Netw. Intf. (NI) || Netw. Intf. (NI)

Network-on-Chip

(NoC)

« Connect to all non-local memory (L2,...) via “the” network:
—Memory speed = Network speed

* Light-Weight Network Interface:
— NI cost must be quite less than processor & L1 cost

Thesis — Outline:

* NI cost & coupling to the processor

« Communication paradigm
— Cache-coherent shared memory, versus
— Message passing, versus
— Common hardware support for both?

« Hardware primitives
— Remote DMA
— Remote Queues

* NI side-by-side with Cache Controller — convergence?
—send = write (store); receive = read (load)
» Events triggering Actions

Thesis — Outline:

* NI cost & coupling to the processor

« Communication paradigm
— Cache-coherent shared memory, versus
— Message passing, versus
— Common hardware support for both?

« Hardware primitives
— Remote DMA
— Remote Queues

* NI side-by-side with Cache Controller — convergence?
—send = write (store); receive = read (load)
» Events triggering Actions

Undesirable: NI requires Dedicated Memory of its own

Processor

i

Proc Memory

i
1L
Network

< NI Memory

 Partitioned memory can provide sufficient throughput, but...
* Promotes data copying
« Underutilizes the total memory space

NI should use the Processor's Memory

2
C 5 X
Proc k=% " —8>— Y| NI =8
N 5 O ~1 =
_E% / <

=

« Space for the NI data structures (at least the large ones) should

be dynamically allocated in the processor’'s “local” memory

« Sufficient memory throughput provided through bank interleaving

10

Thesis — Outline:

* NI cost & coupling to the processor

« Communication paradigm
— Cache-coherent shared memory, versus
— Message passing, versus
— Common hardware support for both?

« Hardware primitives
— Remote DMA
— Remote Queues

* NI side-by-side with Cache Controller — convergence”?
—send = write (store); receive = read (load)
« Events triggering Actions

11

Communication Primitives

« Cache Coherent Shared Memory
— hope that data find their own way

— hard problem to solve in hardware, and hard to scale

 Explicit movement of data in a Global Address Space

— software guides the data to move
 application program(mer), and/or
* runtime system

— pairwise bulk movement: Remote DMA

— synchronization / collective op’s: Remote Queues

12

In-place Data Delivery: Remote DMA

Sender1
Remote DMA
| —
P1 « 4,\ . @
N\ o] 5
O
P3
N
A | & .
P2 < e 3 _g
o)
Multipath Routing OK; 8
Sender2 careful w. completion notification nd

 Allows zero-copy communication
 Allows adaptive (multipath) routing
* Requires buffer space allocation per producer-consumer pair

13

Multi-Party Synchronization: Remote Queues

P1 > M~ P3
//I
7
Remote Queue|.~ (multiple
. ~a ’
Multiple Senders v] 11 i receiv‘;rs)
/ \\\
\\
- then send A
P2 ~_ [m2}] P4
AN
first compose message in local memory...

« Remote Queues differ from RDMA as follows:
— receive buffer space shared among many senders
— speeds up polling of multiple receive channels
« Atomicity of multiplexing/demultiplexing: Synchronization Primitive

14

Thesis — Outline:

* NI cost & coupling to the processor

« Communication paradigm
— Cache-coherent shared memory, versus
— Message passing, versus
— Common hardware support for both?

« Hardware primitives
— Remote DMA
— Remote Queues

* NI side-by-side with Cache Controller — convergence?

—send = write (store); receive = read (load)
» Events triggering Actions

15

Queue Memory Similarities to Cache Memory

D

O

qV)

Traditional Cache Data Tags | >4
S o

23

Hd/Tail 5

NI Queue Data sointers) | . S
netlD O <

\ /

Local Memory

« Sender (tail end of queue):
— compose messages in local memory, then send

« Receiver (head end of queue):
—messages “appear’ in local memory

16

Message Send Similar to Cache Writes

Local Memory
/,Safﬁ?}_iﬂi__ﬂ‘#ﬁé‘ Through ___)
proc | o | Wrie Bufler_| NorCachechio Detal 2
Ny S
\,\I’I'QL;_U"(; _T;I" " Send Message -

* A message is sent as fast as executing one or a few store
Instructions that hit in L1 cache

« Comparable to write-update coherent cache protocols

17

Sequential Accesses — Prefetching — Queues

L2

L Long Queue —_

\

Middle

L1

array read [—

Bre-fetch
F)
J
‘?~ Head
q Bre-fetch
: >
Receiver T~

L1
Sender

.

(@)

o

o ©O

- C

23 P

O ¢
\\ §§
- —fe Talil 4/

//

~
Tt~ — e —

« Sequential array accesses:
— allow for optimized cache replacement — prefetching
* Queues —especially long ones— behave in the same way

—bypass when queue is short

18

Read Misses are like Remote Read DMA'’s

read miss

-

r_‘

fetch req. -

- fetch data
Local

Proc Memory ’
L RDMA

req.
Remote Read DMA req. t >

— /

Cache Citrl

to/from Network

=

« Unforeseen (hence, not pre-fetched) need to use an item
from a given place in global address space

19

Multiple Readers from a Shared Queue

fetch-&-incre

Queue shared among T p1
multiple readers - m?2
(e.g.job dispatch) ~ __—"
\

-
-
|~
e
-
s
-
-

m1
m2 | mij——"2"" |

\
— ™ T — P2

fetch-&-inml\—/

* Queue head must probably reside in a “nearby” memory,
normally not the local memory of most (or all) readers

* Request one message to be forwarded into a private,
local queue via a remote atomic operation

L4

20

Thesis — Outline:

* NI cost & coupling to the processor

« Communication paradigm
— Cache-coherent shared memory, versus
— Message passing, versus
— Common hardware support for both?

« Hardware primitives
— Remote DMA
— Remote Queues

* NI side-by-side with Cache Controller — convergence?
—send = write (store); receive = read (load)
« Events triggering Actions

21

Powerful Primitive: Events trigger Actions

« Action: compose and send one or
more packet(s)/message(s)

Access

Event

Msg.
Arrival

Data '\[A)%E' gﬁg Example 1.: Remote Read DMA
SO server: arrival of a request
[CLa_che 1 1ag :>§§ message i.n its que.ue triggers a
ine — =5 remote write DMA in response.
e N l_D': s Example 2: Write DMA
Actlist] ~ .2 completion notification: count
< arriving bytes (per session); when

counter expires, send (enqueue)
notification message(s).

« Example 3: barriers (see next).

22

Barrier Synchronization Example

R
* Detection Phase: _..%. w\
— action triggered when e.g. 3

messages received,; T . ‘~,‘
— action notifies a specific queue; T \
— notified queues form a tree. | Coun3 ‘
— |
* Notification Phase: M
— action triggered when one E < i"_ ;"
message is received; e

— action notifies e.g. 3 other

queues; E

— notified queues form a tree. E

Wait-on-Queues should replace most Interrupts

* Interrupts needed when (# ready tasks) > (# processors)
« CMP’s: (# processors) > (# ready tasks)
— many processors sit idle, waiting for work to arrive
—good for power consumption

— good for task latency

* Processor waits on a set of empty queues, for any of
them to become non-empty (like “select” system call)

— variation: message arrival at a queue triggers an
action to notify a central queue; processor waits on
that central queue, alone.

24

Hardware-Assisted Software Cache Coherence

hit hit
M1 M2 P2
RDMA

Pl

miss
——————

notify =
Queue| ©OS | Queue

— —— —— —

* Could be implemented using the above mechanism where
events may trigger actions / notifications

» Dedicated processors where the OS / runtime system runs

25

Acknowledgements

« European Union Funding:
— SARC
— HIPEAC
— UNiSIX

« Georgi Gaydadjiev, Delft
« Paul Kelly, Imperial College

Crete:

Angelos Bilas

Dionisis Pnevmatikatos
Sven Karlsson

Manolis Marazakis

Vassilis Papaefstathiou

George Kalokerinos
Angelos loannou

Stamatis Kavadias
Michalis Papamichael
George Mihelogiannakis
Evangelos Viahos

26

Conclusions

« High-Speed Interprocessor Communication

— hardware primitives: few, simple, general-purpose

« Cache Controller — Network Interface Convergence
— Message Send = a few store hits into L1 cache
— Message Receive = a few load hits from L1 cache
— Bulk transfers via RDMA

— Synchronization via Remote Queues and
automatic triggering of actions

27

