
1

Towards Light-Weight Intra-CMP Network Interfaces

Manolis Katevenis

Foundantion for Research & Technlogy - Hellas (FORTH)
Heraklion, Crete, Greece

2

Interprocessor Communication: End-to-End Performance

• As slow as the slowest component – the “bottleneck”

• Over decade-long periods, industry focuses on resolving
the currently perceived bottleneck…

• … and then the next bottleneck is exposed!

SwitchP

B
rid

ge

memBus bus
I/O Netw.

Intf. Network Link
& Protocols

M

3

70’s & 80’s: Bottleneck = Network Links

• Bottleneck = 10 Kb/s – 10 Mb/s WAN / LAN links, hence…
• Push for faster links; in the meanwhile…
• Networking protocols in software

– we still “suffer” from them…

SwitchP

B
rid

ge

memBus bus
I/O Netw.

Intf. Network Link
& Protocols

M
Bottleneck of the seventies & eighties

4

90’s: User-Level Communication

• 100 Mb/s – 1 Gb/s Network Links required…
• Hardware support for switching; in the meanwhile…
• Operating System Call surfaced as the next bottleneck

– solution: User-Level (rather than kernel-mode)
access to the network interface device

SwitchP

B
rid

ge

memBus bus
I/O Netw.

Intf. Network Link
& Protocols

M
Bottlenecks of the nineties

5

Today: Network Thruput ≈ Memory (L1) Thruput

• 10 – 100 Gb/s Network or NoC – as fast as memory; hence…
• NI tightly-coupled to processor – no bridges or I/O buses
• NI side-by-side with Cache Controller – convergence?

– send ≈ write (store); receive ≈ read (load)

SwitchP

B
rid

ge

memBus bus
I/O Netw.

Intf. Network Link
& Protocols

M
Bottlenecks of the early 21st century

6

In the Chip-Multiprocessor Environment

• Connect to all non-local memory (L2,…) via “the” network:
– Memory speed ≈ Network speed

• Light-Weight Network Interface:
– NI cost must be quite less than processor & L1 cost

Processor

Memory
Local

Netw. Intf. (NI)

Processor

Memory
Local

Netw. Intf. (NI)

Processor

Memory
Local

Netw. Intf. (NI)

Processor

Memory
Local

Netw. Intf. (NI)

Processor

Memory
Local

Netw. Intf. (NI)
N e t w o r k - o n - C h i p (N o C)

7

Thesis – Outline:

• NI cost & coupling to the processor
• Communication paradigm

– Cache-coherent shared memory, versus
– Message passing, versus
– Common hardware support for both?

• Hardware primitives
– Remote DMA
– Remote Queues

• NI side-by-side with Cache Controller – convergence?
– send ≈ write (store); receive ≈ read (load)

• Events triggering Actions

8

Thesis – Outline:

• NI cost & coupling to the processor
• Communication paradigm

– Cache-coherent shared memory, versus
– Message passing, versus
– Common hardware support for both?

• Hardware primitives
– Remote DMA
– Remote Queues

• NI side-by-side with Cache Controller – convergence?
– send ≈ write (store); receive ≈ read (load)

• Events triggering Actions

9

Undesirable: NI requires Dedicated Memory of its own

• Partitioned memory can provide sufficient throughput, but…
• Promotes data copying
• Underutilizes the total memory space

Proc NI

N
et

w
or

k

Memory
Processor

N
I M

em
or

y

10

NI should use the Processor’s Memory

• Space for the NI data structures (at least the large ones) should
be dynamically allocated in the processor’s “local” memory

• Sufficient memory throughput provided through bank interleaving

Proc NI

N
et

w
or

k

In
te

rle
av

ed
M

em
or

y
B

an
ks

11

Thesis – Outline:

• NI cost & coupling to the processor
• Communication paradigm

– Cache-coherent shared memory, versus
– Message passing, versus
– Common hardware support for both?

• Hardware primitives
– Remote DMA
– Remote Queues

• NI side-by-side with Cache Controller – convergence?
– send ≈ write (store); receive ≈ read (load)

• Events triggering Actions

12

Communication Primitives

• Cache Coherent Shared Memory
– hope that data find their own way

– hard problem to solve in hardware, and hard to scale

• Explicit movement of data in a Global Address Space
– software guides the data to move

• application program(mer), and/or

• runtime system

– pairwise bulk movement: Remote DMA

– synchronization / collective op’s: Remote Queues

13

In-place Data Delivery: Remote DMA

• Allows zero-copy communication
• Allows adaptive (multipath) routing
• Requires buffer space allocation per producer-consumer pair

Sender1

P3

P1

P2

bu
ffe

r1
bu

ffe
r2

R
ec

ei
ve

r

Multipath Routing OK;
careful w. completion notification

Remote DMA

Sender2

14

Multi-Party Synchronization: Remote Queues

• Remote Queues differ from RDMA as follows:
– receive buffer space shared among many senders
– speeds up polling of multiple receive channels

• Atomicity of multiplexing/demultiplexing: Synchronization Primitive

P2

Multiple Senders receivers)
(multiple

Remote Queue

P1 P3

P4

m1 m2

m1

m2

first compose message in local memory...

... then send

15

Thesis – Outline:

• NI cost & coupling to the processor
• Communication paradigm

– Cache-coherent shared memory, versus
– Message passing, versus
– Common hardware support for both?

• Hardware primitives
– Remote DMA
– Remote Queues

• NI side-by-side with Cache Controller – convergence?
– send ≈ write (store); receive ≈ read (load)

• Events triggering Actions

16

Queue Memory Similarities to Cache Memory

• Sender (tail end of queue):
– compose messages in local memory, then send

• Receiver (head end of queue):
– messages “appear” in local memory

netID

TagsTraditional Cache Data

NI Queue Data Hd/Tail
pointers,

A
llo

ca
te

d
S

pa
ce

D
yn

am
ic

al
ly

L o c a l M e m o r y

17

Message Send Similar to Cache Writes

• A message is sent as fast as executing one or a few store
instructions that hit in L1 cache

• Comparable to write-update coherent cache protocols

Proc

NI Queue Tail

Write Buffer

Cache Line

Send Message

Write Through

Non-Cacheable Data

Local Memory

to
 N

et
w

or
k

s
t o

 r
e

with write-combine

Flush, or

18

Sequential Accesses – Prefetching – Queues

• Sequential array accesses:
– allow for optimized cache replacement – prefetching

• Queues –especially long ones– behave in the same way

P P

pre-fetch

pre-fetch

L1 L2 L1

deq

array read

Middle

Long Queue

bypass when queue is short
Receiver

Sender

Tail
Head th

en
 s

en
d

as
se

m
bl

e
pc

k,

19

Read Misses are like Remote Read DMA’s

• Unforeseen (hence, not pre-fetched) need to use an item
from a given place in global address space

Proc

NI

Local
Memory

read miss

RDMA

fetch data

Remote Read DMA req.

to
/fr

om
 N

et
w

or
k

C
ac

he
 C

trl
r

fetch req.

req.

20

Multiple Readers from a Shared Queue

• Queue head must probably reside in a “nearby” memory,
normally not the local memory of most (or all) readers

• Request one message to be forwarded into a private,
local queue via a remote atomic operation

m1m2

P1

P2
fetch-&-increment

m1

m2
(e.g. job dispatch)
multiple readers

Queue shared among
fetch-&-increment

21

Thesis – Outline:

• NI cost & coupling to the processor
• Communication paradigm

– Cache-coherent shared memory, versus
– Message passing, versus
– Common hardware support for both?

• Hardware primitives
– Remote DMA
– Remote Queues

• NI side-by-side with Cache Controller – convergence?
– send ≈ write (store); receive ≈ read (load)

• Events triggering Actions

22

Powerful Primitive: Events trigger Actions

• Action: compose and send one or
more packet(s)/message(s)

• Example 1: Remote Read DMA
server: arrival of a request
message in its queue triggers a
remote write DMA in response.

• Example 2: Write DMA
completion notification: count
arriving bytes (per session); when
counter expires, send (enqueue)
notification message(s).

• Example 3: barriers (see next).

Line
Cache

Data

Queue

A
cc

es
s

M
sg

.
A

rr
iv

al
E

ve
nt

Act.List
Ptr, ID

Meta-
Data

Tag

Check!

S
en

d
M

is
s

A
ct

io
ns

(o
r C

oh
er

en
ce

)
A

ct
io

ns

23

Barrier Synchronization Example

• Detection Phase:
– action triggered when e.g. 3

messages received;
– action notifies a specific queue;
– notified queues form a tree.

• Notification Phase:
– action triggered when one

message is received;
– action notifies e.g. 3 other

queues;
– notified queues form a tree.

24

Wait-on-Queues should replace most Interrupts

• Interrupts needed when (# ready tasks) > (# processors)

• CMP’s: (# processors) > (# ready tasks)

– many processors sit idle, waiting for work to arrive

– good for power consumption

– good for task latency

• Processor waits on a set of empty queues, for any of
them to become non-empty (like “select” system call)

– variation: message arrival at a queue triggers an
action to notify a central queue; processor waits on
that central queue, alone.

25

Hardware-Assisted Software Cache Coherence

• Could be implemented using the above mechanism where
events may trigger actions / notifications

• Dedicated processors where the OS / runtime system runs

POS

miss

hit

Queue Queue
notify

RDMA

hit

P1 P2M1 M2

26

Acknowledgements

• European Union Funding:
– SARC
– HiPEAC
– UNiSIX

• Georgi Gaydadjiev, Delft
• Paul Kelly, Imperial College

Crete:
• Angelos Bilas
• Dionisis Pnevmatikatos
• Sven Karlsson
• Manolis Marazakis

• Vassilis Papaefstathiou
• George Kalokerinos
• Angelos Ioannou

• Stamatis Kavadias
• Michalis Papamichael
• George Mihelogiannakis
• Evangelos Vlahos

27

Conclusions

• High-Speed Interprocessor Communication

– hardware primitives: few, simple, general-purpose

• Cache Controller – Network Interface Convergence

– Message Send ≈ a few store hits into L1 cache

– Message Receive ≈ a few load hits from L1 cache

– Bulk transfers via RDMA

– Synchronization via Remote Queues and
automatic triggering of actions

