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Interprocessor Communication: End-to-End Performance

• As slow as the slowest component – the “bottleneck”

• Over decade-long periods, industry focuses on resolving 
the currently perceived bottleneck…

• … and then the next bottleneck is exposed!
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70’s & 80’s:  Bottleneck = Network Links

• Bottleneck = 10 Kb/s – 10 Mb/s WAN / LAN links, hence…
• Push for faster links; in the meanwhile…
• Networking protocols in software

– we still “suffer” from them…
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90’s:  User-Level Communication

• 100 Mb/s – 1 Gb/s Network Links required…
• Hardware support for switching; in the meanwhile…
• Operating System Call surfaced as the next bottleneck

– solution: User-Level (rather than kernel-mode) 
access to the network interface device
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Today: Network Thruput ≈ Memory (L1) Thruput

• 10 – 100 Gb/s Network or NoC – as fast as memory; hence…
• NI tightly-coupled to processor – no bridges or I/O buses
• NI side-by-side with Cache Controller – convergence? 

– send ≈ write (store);  receive ≈ read (load)
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In the Chip-Multiprocessor Environment

• Connect to all non-local memory (L2,…) via “the” network:
– Memory speed ≈ Network speed

• Light-Weight Network Interface:
– NI cost must be quite less than processor & L1 cost
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Thesis – Outline:

• NI cost & coupling to the processor
• Communication paradigm

– Cache-coherent shared memory, versus
– Message passing, versus
– Common hardware support for both?

• Hardware primitives
– Remote DMA
– Remote Queues

• NI side-by-side with Cache Controller – convergence? 
– send ≈ write (store);  receive ≈ read (load)

• Events triggering Actions
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Undesirable: NI requires Dedicated Memory of its own

• Partitioned memory can provide sufficient throughput, but…
• Promotes data copying
• Underutilizes the total memory space
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NI should use the Processor’s Memory

• Space for the NI data structures (at least the large ones) should 
be dynamically allocated in the processor’s “local” memory

• Sufficient memory throughput provided through bank interleaving
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Communication Primitives

• Cache Coherent Shared Memory
– hope that data find their own way

– hard problem to solve in hardware, and hard to scale

• Explicit movement of data in a Global Address Space
– software guides the data to move

• application program(mer), and/or

• runtime system

– pairwise bulk movement: Remote DMA

– synchronization / collective op’s: Remote Queues
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In-place Data Delivery: Remote DMA

• Allows zero-copy communication
• Allows adaptive (multipath) routing
• Requires buffer space allocation per producer-consumer pair
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Multi-Party Synchronization: Remote Queues

• Remote Queues differ from RDMA as follows:
– receive buffer space shared among many senders
– speeds up polling of multiple receive channels

• Atomicity of multiplexing/demultiplexing: Synchronization Primitive
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Queue Memory Similarities to Cache Memory

• Sender (tail end of queue):
– compose messages in local memory, then send

• Receiver (head end of queue):
– messages “appear” in local memory
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Message Send Similar to Cache Writes

• A message is sent as fast as executing one or a few store 
instructions that hit in L1 cache

• Comparable to write-update coherent cache protocols
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Sequential Accesses – Prefetching – Queues

• Sequential array accesses:
– allow for optimized cache replacement – prefetching 

• Queues –especially long ones– behave in the same way
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Read Misses are like Remote Read DMA’s

• Unforeseen (hence, not pre-fetched) need to use an item 
from a given place in global address space
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Multiple Readers from a Shared Queue

• Queue head must probably reside in a “nearby” memory,  
normally not the local memory of most (or all) readers

• Request one message to be forwarded into a private, 
local queue via a remote atomic operation
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Powerful Primitive: Events trigger Actions

• Action: compose and send one or 
more packet(s)/message(s)

• Example 1: Remote Read DMA 
server: arrival of a request 
message in its queue triggers a 
remote write DMA in response.

• Example 2: Write DMA 
completion notification: count 
arriving bytes (per session); when 
counter expires, send (enqueue) 
notification message(s).

• Example 3: barriers (see next).
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Barrier Synchronization Example

• Detection Phase:
– action triggered when e.g. 3 

messages received;
– action notifies a specific queue;
– notified queues form a tree.

• Notification Phase:
– action triggered when one 

message is received;
– action notifies e.g. 3 other 

queues;
– notified queues form a tree.
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Wait-on-Queues should replace most Interrupts

• Interrupts needed when (# ready tasks) > (# processors)

• CMP’s:  (# processors) > (# ready tasks)

– many processors sit idle, waiting for work to arrive

– good for power consumption

– good for task latency

• Processor waits on a set of empty queues, for any of 
them to become non-empty (like “select” system call)

– variation: message arrival at a queue triggers an 
action to notify a central queue; processor waits on 
that central queue, alone. 
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Hardware-Assisted Software Cache Coherence

• Could be implemented using the above mechanism where 
events may trigger actions / notifications

• Dedicated processors where the OS / runtime system runs
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Conclusions

• High-Speed Interprocessor Communication

– hardware primitives: few, simple, general-purpose

• Cache Controller – Network Interface Convergence

– Message Send ≈ a few store hits into L1 cache

– Message Receive ≈ a few load hits from L1 cache

– Bulk transfers via RDMA

– Synchronization via Remote Queues and    
automatic triggering of actions


