

FPGA, a history of interconnect

Ivo Bolsens

CTO, Xilinx

The Architectural Shakeout

Mass extinctions in the mid 1990s Xilinx: 8100, 6200, 4700, Prizm, ... Plessey, Toshiba, Motorola, IBM, ...

We were hit by fast-moving CMOS process technology, particularly multiple metal layers.

Trends

Interconnect and ease of use

Longer wire reach gave dramatic improvement for ease of design

State-of-the-Art 65nm FPGA

Predictable Interconnect

Symmetric routing pattern reaches more CLBs with fewer hops

1 Hop

2 Hops

3 Hops

Dramatically increases design performance

Layers of Interconnect

12 layers on chip, 10 layers in package, 10 layers in PCB.

82% of noise is determined by the pin-out and found in package balls and PCB vias

Sparse Chevron Pin-out Pattern

- Every SelectIO adjacent to return path
- Achieves near-ideal return current loop

10 pins in a regular array of return path pins

Off chip interconnect

- Growing gap between number of logic gates and I/O
- Technology scaling favors logic density

15x drop in
I/O-to-logic
ratio
by 2020

I/O to Logic Ratio

Comparison of number of I/O per 1000 logic cell in the largest FPGA in each family

~60x decrease in I/O-logic ratio

Logic to I/O Gap in Microprocessors

Microprocessor's chip area is dominated by cache memory to overcome the lack of I/O bandwidth

The Move to Serial Connectivity

Die-Stacking Landscape

(Connection Density, Number of Device Layers)

>10⁶/cm² 3-4 device layers

10²-10³/cm² 4+ device layers

10⁴ -10⁶/cm² 4+ device layers

3rd Si thinned to 5.5um

2nd Si thinned to 5.5um

SiO₂

1st Si bottom supporting wafer

Photo: Tezzaron

Photo: Amkor

Chip-Stacking (wire-bonding)

Chip-Stacking (Through Silicon Vias)

Monolithic 3-D integration

Imagine...

Specialized Layers of

DSP fabric, Memory fabric, FPGA fabric, ...

Optimized for Technology

130nm, 90nm, 32nm, ...

With 3D Interconnect

And at its heart...

An FPGA SoC with:

- Embedded Processing
- Embedded DSP
- High-speed Serial Connectivity
- · Reprogrammable FPGA Logic Fabric as the Base

Benefits :

- Single package of heterogeneous die
- Multiple configurations of standard products
- · Lower cost
- Lower power
- · Ultimate customization
- · Ultimate flexibility

Wafer Bonding

Wafers from Foundry

Prep Wafers; Dice Daughter

Attach

3)

Inter-Die Connection Performance

- 100X less dynamic power than conventional single-ended I/O
- Link performance ~ 1 Gigabit/sec

2-D FPGA Fabric

Routing Switch

Look Up Table (LUT).

A programmable logic block

3-D FPGA Fabric

- Shorter wire-length and delay
- Higher logic density

Performance Improvement

- Integration of RAM with FPGA by high bandwidth die-stacking
- 2 Terabit/sec bandwidth between FPGA and RAM

High Performance Applications	Projected Performance Improvement
Sparse Matrix/ Vector Multiply	4X-8X over 2.4GHz Pentium
Traffic Simulation	170X over 2.2GHz Opteron
Radiative Heat Transfer	20X over 1.7GHz Pentium
Molecular Dynamics	~20X over 3 GHz Processor

The FPGA System

MicroBlaze's Flexible Acceleration Interface

- FSL = Fast Simplex Link
- Eliminates bus signaling overhead
 - No address decode
 - No arbitration
 - No acknowledge cycles
- Simple instruction programming
- Flexible number master and slave FSL ports
 - Configurable depth FIFO in FSL
 - Input and output FSL port width is configurable as 8,16, or 32 bits.
- Dedicated MicroBlaze instruction
 - Get fromInputFSL M, toReg N
 - Put toOutputFSL M, fromReg N
 - Blocking and non-blocking support

Application-Specific Hardware Acceleration

- When the processor core begins to reach software task capacity, then Fabric Acceleration to the rescue
 - Use Fast Simplex Link (FSL) to interface to customer-defined accelerators
 - Enables dramatic improvements in performance

FPGA/processor

- CoreConnect Architecture
 - Processor Local Bus (PLB)
 - Ideal for bust transfers
 - Memory, High Speed Peripherals, Cache Interface
 - 32-bit address, 64-bit data
 - 2.1 GB/s Max BW @ 133 MHz
 - On-Chip Peripheral Bus (OPB)
 - Low speed peripherals
 - 32-bit address, 32-bit data
 - Device Control Register Bus (DCR)
 - For peripheral setup and control
- On Chip Memory Interface (OCM)
 - 4 Processor Cycle Latency
 - Lowest Latency and good data rate
 - Not a bus interface

Accelerate Performance Beyond the Core

- Extends PPC 405 Instruction Set
 - Floating point support
 - User Defined Instructions
- Offloads CPU intensive operations
 - Matrix calculations
 - Video processing
 - Floating point mathematics
 - 3D data processing
- Direct interface to HW accelerators
 - High Bandwidth
 - Low Latency
- Reduce number of bus cycles by factor of 10X
- Increase performance by over 20X

Comparison with Traditional Bus-based

Processor

Block

APU I/F

Soft Aux.
Processor

1 APU cycle

Read Result and
Status

1 APU cycle +
1 CPU cycle

APU

Processor Performance and Fabric Acceleration

PowerPC Architecture

Scalability

XILINX°

Configurable Interconnect

Flexibility

■ CPU ■ V2Pro ■ V5

Woodcrest: 24 GFlops @3Ghz

Virtex-5: 60 GFlops (70 GFlops-SP) @ 350Mhz

Woodcrest = 80 Watt Virtex-5 = 10 Watt

Internal Memory Bandwidth

Conclusions

- It is all about connectivity
- Important aspects
 - Off-chip interconnect goes serial
 - Latency, power
 - On-chip interconnect has to be
 - Scalable
 - Hierarchical
 - Flexible
 - Easy to use
 - System interconnect heterogeneous and tailored to application

