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Direct Complex Envelope Sampling with
Nonuniformly Interleaved Two-Channel ADCs

Bernard C. Levy, Mansoor S. Wahab and Anthony Van Selow

Abstract—A general and flexible technique is proposed for
sampling the complex envelope of a bandpass signal by using a
nonuniformly interleaved two-channel analog-to-digital converter
(ADC). The signal is sampled directly without any demodulation
operation, but the two sampling channels are not uniformly
interleaved, since some timing skews are forbidden. The proposed
complex envelope sampling scheme requires the implementation
of two digital FIR filters and a discrete-time modulator. Computer
simulations illustrating the performance of the proposed complex
envelope sampling method method are presented.

Keywords—bandpass sampling, direct sampling, software defined
radio, time interleaved A/D converter

I. I NTRODUCTION

Due to their lower hardare complexity, direct bandpass sam-
pling front ends have become attractive for software defined
radio and radar applications. However, the implementationof
flexible high-resolution bandpass sampling systems presents
some challenges. First, if a single ADC is used, andB
represents the occupied bandwidth of the signal of interest
(which differs from its maximum frequency), alias-free re-
construction of the bandpass signal is not guaranteed for all
sampling frequenciesΩs above the Nyquist frequency2B [1],
[2], [3, Sec. 6.4]. In addition to being greater than2B, Ωs

needs to satisfy conditions which ensure that aliasing does
not take place between the negative and positive frequencies
of the bandpass signal to be sampled. The restrictions placed
on Ωs by these conditions depend on the location of the
frequency band occupied by the bandpass signal. This creates a
significant challenge for software defined radio receivers since
different sampling frequencies need to be selected for signals
in different bands, even if they have the same bandwidth. As
early as 1953, Kohlenberg recognized that a simple way of
overcoming this constraint consists of using second-ordersam-
pling, i.e. time-interleaved sampling, where two separateADCs
operating with a time skew sample the signal with frequency
Ω′

s = Ωs/2. In this case, except for certain forbidden values of
the timing offset between the two ADCs, the bandpass signal
can be reconstructed from the two time-interleaved sample
sequences for all sampling frequenciesΩs above2B.

Whereas [1], [4], [5] focus on the reconstruction of the
bandpass signal itself from its samples, for modulated signal,

This work was supported by NSF Grant ECCS-1444086.
Bernard C. Levy and and Anthony Van Selow are with the Department

of Electrical and Computer Engineering, 1 Shields Avenue, University of
California, Davis, CA 95616 (emails: bclevy, apvanselow@ucdavis.edu). After
receiving a BS at UC Davis, Mansoor Wahab is now a graduate student in
the Department of Electrical and Computer Engineering at Cornell University,
Ithaca, NY 14853 (email: sw798@cornell.edu).

it is usually of greater interest to obtain the sampled in-phase
and quadrature (I andQ) signal components, i.e., the sampled
complex envelope of the signal. Following an observation of
Grace and Pitt [6], Brown [7] proposed quadrature sampling
where the two interleaved sub-ADCs have a time skew equal
to a quarter of the carrier period, plus possibly an integer mul-
tiple of the carrier period. However, this sampling technique
requires also that the carrier frequency should be an integer
multiple of the sub-ADC sampling frequency, which makes
it inconvenient for software radio applications. Other choices
of the sampling frequency, carrier frequency, and sub-ADC
offset were explored by Sun and Signell [8], [9], but they
involve again constraints that make it difficult to design flexible
receivers.

In this paper we consider the computation of the sampled
complex envelope of a bandpass signal from the sequences
produced by a two-channel time-interleaved ADC (TIADC)
with timing offset dT ′

s, where0 < d < 1 and T ′
s = 2π/Ω′

s

denotes the sub-ADC sampling period. No assumption is made
about the carrier frequencyΩc, signal bandwidthB, sampling
frequencyΩs and timing offsetd, except that the sampling
frequencyΩs should be above2B and the carrier frequency
Ωc > B/2, which ensures that the signal considered is a
bandpass signal. It is shown that the evaluation of the sampled
complex envelope requires the implementation of two FIR
real filters. As mentioned earlier, certain timing offsets are
forbidden, and precise a characterization of the forbidden
offsets is provided in terms of an integer index specifying in
which image band of the baseband the carrier frequencyΩc is
located.

The paper is organized as follows. A model expressing
the two-channel time-interleaved ADC sampling sequences
in terms of the corresponding sampled complex envelope
sequence is described in Section II. This model is used in
Section III to compute the sampled complex envelope by using
two digital FIR filters and a digital modulator. Simulations
are presented in Section IV which show the effectiveness of
the proposed technique. Finally, conclusions and directions for
further research are presented in Section V.

II. COMPLEX ENVELOPE SAMPLING MODEL

Consider the bandpass signal

xc(t) = ac(t) cos(Ωct) − bc(t) sin(Ωct)

= ℜ[cc(t)e
jΩct] = |cc(t)| cos(Ωct + ∠cc(t)) , (1)

where
cc(t) = ac(t) + jbc(t) (2)
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denotes the complex envelope ofxc(t) and the in-phase and
quadrature componentsac(t) and bc(t) are baseband signals
with bandwidthB/2. If the carrier frequencyΩc > B/2 (it is
in general much larger), the Fourier spectrumXc(jΩ) of xc(t)
is contained in two disjoint positive and negative frequency
bands[ΩL,ΩH ] and [−ΩH ,−ΩL] with ΩL = Ωc − B/2 and
ΩH = Ωc + B/2, so that the occupied bandwidth ofxc(t)
is ΩH − ΩL = B. Unlike conventional heterodyne radar or
communications receivers [10] which convertxc(t) to a lower
IF frequency, and correlate it with two quadrature IF oscillators
to obtain the sampled in-phase and quadrature components, we
consider here a direct bandpass sampling receiver where two
time-interleaved ADCs samplexc(t) as shown in Fig. 1.

ADC1

ADC2

xc(t)

x1(n)

x2(n)

nT ′
s

(n − d)T ′
s

Fig. 1. Time-interleaved sampling of bandpass signalxc(t).

T ′
s denotes the sampling period of the sub-ADCs, which

have therefore sampling frequencyΩ′
s = 2π/T ′

s = Ωs/2,
whereΩs denotes the sampling frequency of the overall ADC.
It is assumed thatΩs > 2B, or equivalently Ω′

s > B.
The timing offset between the two ADCs isD = dT ′

s with
0 < d < 1. Ford = 1/2, the combination of the two sub-ADCs
forms a uniform ADC with sampling periodTs = T ′

s/2, but
for d 6= 1/2, the overall ADC has a nonuniform but periodic
sampling pattern. Note also that the use of a timing offset
d 6= 1/2 implies that that the sub-ADCs cannot share the same
S/H.

Let
ℓ = round

(Ωc

Ω′
s

)

, (3)

so thatΩc belongs to the frequency band[(ℓ − 1/2)Ω′
s, (ℓ +

1/2)Ω′
s]. Since this frequency band corresponds to the location

of the ℓ-th image copy of a sampled baseband signal, it is
referred to here as theℓ-th image band. In the following it
is assumed thatℓ ≥ 1, so that the signalxc(t) is a bandpass
signal. Since the band[(ℓ− 1/2)Ω′

s, (ℓ+1/2)Ω′
s] includes the

2ℓ-th and2ℓ + 1-th Nyquist zones of the sub-ADCs,ℓ can be
expressed in terms the Nyquist zone indexk asℓ = ⌊k/2⌋. If
we consider the discrete modulation frequency

ωb = ΩcT
′

s mod 2π =
(Ωc

Ω′
s

− ℓ
)

2π , (4)

so that−π < ωb ≤ π, the sampled sequencex1(n) can be
expressed as

x1(n) = xc(nT ′

s) = ℜ{c(n)ejωbn} (5)

wherec(n) = cc(nT ′
s) denotes the sampled complex envelope.

Similarly by observing that

ej(n−d)ΩcT ′

s = ej(n−d)(ωb+2πℓ) = ejωb(n−d)e−j2πℓd

we can express the sampled sequencex2(n) as

x2(n) = xc((n−d)T ′

s) = ℜ{c(n−d)ejωb(n−d)e−j2πℓd} . (6)

In this expressionc(n − d) is a shorthand notation for

c(n − d) = f(n) ∗ c(n) (7)

where∗ represents the discrete convolution operation and

f(n) =
sin(π(n − d))

π(n − d)
(8)

is the impulse response of the periodic fractional delay filter
specified by

F (ejω) = e−jωd

for −π < ω ≤ π. More generally, the2π periodic filterF (ejω)
can be expressed as

F (ejω) = e−j(ω−q(ω))d (9)

for all ω, where

q(ω) = k2π for (2k − 1)π ≤ ω < (2k + 1)π

represents the quantized value ofω produced by an infinite
quantizer with step size2π.

The Fourier transform of sequence

s(n) = c(n − d)ejωb(n−d)e−j2πℓd (10)

appearing in (6) is given by

S(ejω) = F (ej(ω−ωb))C(ej(ω−ωb))e−j(ωb+2πℓ)d

= F (ejω)G(ejω)C(ej(ω−ωb)) , (11)

where

C(ejω) =

∞
∑

n=−∞

c(n)e−jωn (12)

denotes the discrete-time Fourier transform (DTFT) ofc(n)
and the filter

G(ejω)
△
=

F (ej(ω−ωb))

F (ejω)
e−j(ωb+2πℓ)d

= e−j(q(ω)−q(ω−ωb))de−j2πℓd (13)

is a piecewise constant frequency dependent phase shift. For
ωb > 0, it can be expressed as

G(ejω) =

{

e−j2π(ℓ+1)d −π ≤ ω < −π + ωb

e−j2πℓd −π + ωb ≤ ω < π ,
(14)

and forωb < 0, we have

G(ejω) =

{

e−j2πℓd −π ≤ ω ≤ π + ωb

e−j2π(ℓ−1)d π + ωb < ω < π .
(15)

Since the impulse responsef(n) of fractional delay filter
F (ejω) is real, the discrete-time model (5)–(6) can be repre-
sented in block diagram form as shown in Fig. 2. In this model,
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F (ejω) describes the relative timing skew between the two
sub-ADCs, whereas the filterG(ejω) depends on the image
band indexℓ of Ωc and its relative locationωb within this
band. Thus, from a software defined radio perspective,G(ejω)
changes if the frequency band of the signal of interest varies,
but F (ejω) stays the same.

G(ejω) ℜ{·} F (ejω)

ℜ{·}

ejωbn

c(n) x1(n)

x2(n)

Fig. 2. Discrete-time bandpass sampling model

III. COMPLEX ENVELOPE COMPUTATION

We consider the problem of recoveringc(n) from x1(n)
and x2(n). Note first that sincec(n) is complex,C(ejω) is
devoid of symmetries, so knowledge ofC(ejω) over the entire
frequency band[−π, π] is needed to recoverc(n). The DTFTs
of x1(n) andx2(n) are given by

X1(e
jω) =

1

2
[C(ej(ω−ωb)) + C∗(e−j(ω+ωb))] (16)

and

X2(e
jω) =

F (ejω)

2
[G(ejω)C(ej(ω−ωb))

+G∗(e−jω)C∗(e−j(ω+ωb))] . (17)

In each of these expressions, the superposition ofC(ej(ω−ωb))
and C∗(e−j(ω+ωb)) makes it impossible to recover each of
these functions separately from eitherX1(e

jω) or X2(e
jω)

alone. But (16) and (17) can be written together in matrix
form as

[

X1(e
jω)

F−1(ejω)X2(e
jω)

]

= M(ejω)

[

C(ej(ω−ωb))
C∗(e−j(ω+ωb))

]

,

(18)
where the matrix

M(ejω) =
1

2

[

1 1
G(ejω) G∗(e−jω)

]

(19)

is invertible as long as its determinant

D(ejω) =
1

4
(G∗(e−jω) − G(ejω) (20)

is nonzero. We find

D(ejω) =
j

2
sin(2πℓd)

for 0 ≤ |ω| ≤ π − |ωb|, and

D(ejω) =
j

2
ejπsgn(ω)d sin(π(2ℓ + sgn(ωb))d)

for π − |ωb| < |ω| < π, where sgn(ω) denotes the sign of
ω. Accordingly, the determinantD(ejω) will be nonzero as
long as the timing skewd is such that bothsin(2πℓd) and
sin(π(2ℓ + sgn(ωb))) are nonzero. The values

di
m =

m

2ℓ
(21)

with m integer such that0 ≤ m ≤ 2ℓ − 1, and

de
m =

q

2ℓ + sgn(ωb)
(22)

with q integer such that1 ≤ q ≤ 2ℓ + sgn(ωb) − 1, form the
forbidden timing offsets. Note that form = ℓ, we havedi

ℓ =
1/2, so as expected, the half sampling period is a forbidden
offset, since in this case the TIADC reduces to a uniform ADC
with sampling periodTs = T ′

s/2.
WhenM(ejω) is invertible for allω, we obtain

C(ej(ω−ωb)) = H1(e
jω)X1(e

jω) + H2(e
jω)X2(e

jω) (23)

where the filters
[

H1(e
jω) H2(e

jω)
]

= [ 1 0 ]M−1(ejω)

[

1 0
0 F−1(ejω)

]

=
1

2D(ejω)

[

G∗(e−jω) −F−1(ejω)
]

. (24)

SinceC(ej(ω−ωb)) is the Fourier transform of the modulated
signal r(n) = ejωbnc(n), c(n) can be recovered by demodu-
lating r(n), as shown in Fig. 3.

H1(e
jω)

H2(e
jω)

x1(n)

x2(n)
e−jωbn

c(n)r(n)

Fig. 3. Recovery ofc(n) from x1(n) andx2(n)

Substituting the expressions forD(ejω) andG(ejω) inside
(24) gives

H1(e
jω) =

ej2πℓd

j sin(2πℓd)
= 1 − j cot(2πℓd) (25)

for |ω| ≤ π − |ωb| and

H1(e
jω) =

ejπ(2ℓ+sgn(ωb))d

j sin(π(2ℓ + sgn(ωb))d)

= 1 − j cot(π(2ℓ + sgn(ωb))d) (26)

for π − |ωb| < |ω| ≤ π. Similarly, we find

H2(e
jω) = j

ejωd

sin(2πℓd)
(27)

for |ω| ≤ π − |ωb| and

H2(e
jω) = j

ej(ω−πsgn(ω))d

sin(π(2ℓ + sgn(ωb))d)
(28)
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for π − |ωb| < |ω| < π. The impulse responses of filtersH1

andH2 can be evaluated in closed form and are given by

ℜ{h1(n)} = δ(n) , ℜ{h2(n)} = 0 (29)

ℑ{h1(n)} = − cot(π(2ℓ + sgn(ωb))d)δ(n)

+
(

cot(π(2ℓ + sgn(ωb))d) − cot(2πℓd)
)

×
sin((π − |ωb|)n)

πn
, (30)

and

ℑ{h2(n)} =
sin((π − |ωb|)(n + d))

π sin(2πℓd)(n + d)

−
sin((π − |ωb|)(n + d) − πd)

π sin(π(2ℓ + sgn(ωb)d)(n + d)
. (31)

The IIR impulse responsesh1(n) andh2(n) can be approx-
imated by causal filters of orderM = 2L by shifting the
impulse responses byL and applying a Kaiser window of order
M + 1. In this case, the output̂c(n−L) of the reconstruction
block diagram is only an estimate of the complex envelope at
time n − L. Since the sequencesx1(n) and x2(n) are real,
and each of the complex filtersH1 andH2 requires only the
implementation of a single real FIR filter, the complexity ofthe
reconstruction technique depicted in Fig. 3 is2(M + 1) real
multiplications and one complex multiplication per complex
envelope sample (the complex multiplication is needed to
implement thee−jωb(n−L) discrete-time demodulation).

It is also worth pointing put that unlike previously published
results on TIADC sampling of the envelope of bandpass
signals, no restriction is placed here onΩc, Ωs, B and d
beyondΩc > Ωs/2 > B (Ωc cannot be in the baseband and
Ωs is above the Nyquist rate). Earlier results [7]–[9] typically
assume relations betweenΩs andΩc and betweend andΩc.
For example for quadrature sampling [7], [11],Ω′

s = Ωc/ℓ
with ℓ integer, so thatΩc is exactly at the center of theℓ-th
image band, andD = Tc/4 + qTc with q integer. In this case
ωb = 0 and

d =
D

T ′
s

=
1

4ℓ
+

q

ℓ

so2πℓd = π/2+2πq. In this case equations (5) and (6) reduce
to

x1(n) = a(n) = ac(nT ′

s)

x2(n) = b(n − d) = bc((n − d)T ′

s) ,

so that the two sub-ADCs sample independently the in-phase
and quadrature components of the bandpass signal. In spite of
the elegance of this solution, the presence of clock jitter makes
it nearly impossible to ensure thatΩ′

s is precisely an integer
fraction ofΩc. In this respect, it is useful to keep in mind that a
desirable attribute of software defined radio or radar receivers
is their potential ability to operate in many different frequency
bands. By this metric, the proposed envelope sampling scheme
is rather flexible, since a change in carrier frequencyΩc

requires only a recomputation of the digital filtersHi, i = 1, 2
which depend on the image band indexℓ of Ωc and digital
frequencyωb

IV. SIMULATIONS

To illustrate the proposed direct complex envelope sampling
method, consider a bandpass signal withFc = Ωc/(2π) =
5.15GHz, and continuous-time envelope

cc(t) = 2 cos(400 × 106 × 2πt)

+j[sin(400 × 106 × 2πt) + cos(175 × 106 × 2πt)]

=
3

2
ej400×106

×2πt +
1

2
e−j400×106

×2πt

+
j

2
[ej175×106

×2πt + e−j175×106
×2πt] (32)

with bandwidthB/(4π) = 400MHz. The sub-ADC sampling
frequency F ′

s = Ω′
s/(2π) = 1GHz is aboveB/(2π) =

800MHz, as required by the Nyquist sampling criterion. Since

Fc = 5F ′

s + 150 ,

we haveℓ = 5, i.e., Fc is located in the5-th image band, and

ωb =
150

1000
× 2π = 0.3π .

The discrete-time envelope obtained by samplingcc(t) with
sampling periodT ′

s = 1/F ′
s is

c(n) = cc(nT ′

s) =
3

2
ej0.8πn +

1

2
e−j0.8πn

+
j

2
[ej0.35πn + e−j0.35πn] (33)

This signal has four tones located at±0.8π and±0.35π, but
the tone at0.8π has an amplitude three times larger than the
tones at−0.8π and±0.35π.

To samplexc(t), we select a TIADC with timing offsetd =
0.425, which is approximately half-way between two forbidden
timing offsets:di

4 = 0.4 and de
5 = 0.454. In the simulations

two independent white noise sequences modelling the effect
of thermal and quantization noises are added to the sub-ADC
outputs. The sub-ADC SNR is 61.8dB. The filtersHi(z) with
i = 1, 2 of Fig. 3 have orderM = 60 and are obtained by
applying a Kaiser window with parameterβ = 6 to the IIR
impulse responsesh1(n) andh2(n) given in (29)–(31).

The power spectral density (PSD) of the estimated envelope
is shown in Fig. 4. It is evaluated by using the windowed
complex data periodogram method for a data block of length
N = 104 samples. The periodogram is scaled so that a com-
plex tone with unit amplitude corresponds to0dB. In addition
to the four desired tones at±0.8π and±0.35π, four secondary
tones are present representing the residual spectral components
of e−j2ωbnc∗(n) = e−j0.6πnc∗(n), which are located at0.6π,
0.2π, −0.25π, and−0.95π. Since the dominant tone ofc∗(n)
is located at−0.8π, the highest secondary tone in the PSD of
ĉ(n) is located at0.6π = −0.6π − 0.8π mod (2π), yielding
a SFDR of about65dB. It is worth also noting that the
secondary tone at−0.95π is higher than the secondary tones at
−0.25π and0.2π which should in theory have the same level.
This is due to the fact that the filtersH1(e

jω) and H2(e
jω)

have discontinuities at±(1 − |ωb|)π = ±0.7π so that after
windowing, the filters exhibit nonideal filtering characteristics
in transition bands about these discontinuity points. After
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Fig. 4. PSD of the estimated envelopeĉ(n) computed with FIR filters of
order60 for a TIADC with timing skewd = 0.425.

modulation bye−jωbn = e−j0.3πn, the nonideal filtering bands
become located about−π and0.4π, which explains the higher
level of the secondary tone at−0.95π. Finally, since the exact
envelopec(n) is known, the error̃c(n) = c(n) − ĉ(n) can be
evaluated, and the mean-square error (MSE) is−53.54dB.

To illustrate the slight degradation in performance which
occurs if the timing skewd is close to a forbidden value,
consider the case whered = di

4 + 0.001 = 0.401 is close
to forbidden valuedi

4. The PSD of the computed sampled
complex envelope of signalxc(t) is shown in Fig. 5. The
secondary tones are approximately at the same level as in Fig.
4, but the a piecewise constant filtering operation is applied
the the noise floor. This is due to the fact that sinceD(ejω) is
close to zero inside interval[−0.7π, 0.7π] the magnitudes of
filters Hi(e

jω) with i = 1, 2 are not evaluated as accurately
inside this band as outside. After demodulation bye−0.3πn,
the effect of mismatched filter magnitudes is exhibited in bands
[−π, 0.4π] and[0.4π, π]. The MSE becomes−47.27dB, so that
a bad timing skew positioning results in a slight performance
loss.

V. CONCLUSIONS

In this paper we have described a technique for comput-
ing the sampled complex envelope of a bandpass signal by
sampling the signal directly with a two-channel TIADC. The
proposed sampling technique has the potential to simplify
greatly RF communications and radar receiver front-ends by
removing all mixing and filtering hardware typically used to
extract theI andQ components of the received signal prior to
sampling. As was noted in [1], [4], the use of a non-uniform
TIADC has also the advantage that sampling a bandpass signal
of bandwidthB at rates slightly above2B becomes possible,
independently of the frequency band[ΩL,ΩH ] where the
signal is located. Thus the proposed TIADC and reconstruction
filter architecture could be implemented as a software radio
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Fig. 5. PSD of the estimated envelopeĉ(n) computed with FIR filters of
order60 for a TIADC with d = 0.401.

front end capable of digitizing signals in different bands.
The analysis presented here ignores the effect of TIADC
mismatches. A blind calibration technique to estimate and
correct timing and gain mismatches is presented in [12].
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