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Abstract—A general and flexible technique is proposed for it is usually of greater interest to obtain the sampled iaggh
sampling the complex envelope of a bandpass signal by using a and quadraturel(and() signal components, i.e., the sampled
nonuniformly interleaved two-channel analog-to-digital converer  complex envelope of the signal. Following an observation of
(ADC). The signal is sampled directly without any demodulation  Grace and Pitt [6], Brown [7] proposed quadrature sampling
operation, but the two sampling channels are not uniformly —\yhere the two interleaved sub-ADCs have a time skew equal
interleaved, since some timing skews are forbidden. The proposed to a quarter of the carrier period, plus possibly an integat-m

complex envelope sampling scheme requires the implementation . . . . - .
of two digital FIR filters and a discrete-time modulator. Computer  UPI€ Of the carrier period. However, this sampling techrq

simulations illustrating the performance of the proposed complex ~ fequires also that the carrier frequency should be an intege
envelope sampling method method are presented. multiple of the sub-ADC sampling frequency, which makes
it inconvenient for software radio applications. Other ickes

of the sampling frequency, carrier frequency, and sub-ADC
offset were explored by Sun and Signell [8], [9], but they
involve again constraints that make it difficult to desigxitiée

. INTRODUCTION receivers.

Due to their lower hardare complexity, direct bandpass sam- N this paper we consider the computation of the sampled
pling front ends have become attractive for software define§omplex envelope of a bandpass signal from the sequences
radio and radar applications. However, the implementatibn Produced by a two-channel time-interleaved ADC (TIADC)
flexible high-resolution bandpass sampling systems ptesenWith timing offset dT¢, where0 < d < 1 and T{ = 27/
some challenges. First, if a single ADC is used, aRd denotes the sqb-ADC samplmg period. No assumption is made
represents the occupied bandwidth of the signal of interestoout the carrier frequendy., signal bandwidthB, sampling
(which differs from its maximum frequency), alias-free re- frequency(, and timing offsetd, except that the sampling
construction of the bandpass signal is not guaranteed for afrégquencys2, should be aboveB and the carrier frequency
sampling frequencie€, above the Nyquist frequen@s [1], Q. > B/2,. which ensures that the S|gnal_con3|dered is a
[2], [3, Sec. 6.4]. In addition to being greater tham, €, bandpass signal. It is sh_own that Fhe evaluatlo_n of the saanpl
needs to satisfy conditions which ensure that aliasing doe€omplex envelope requires the implementation of two FIR
not take place between the negative and positive frequencid€@l filters. As mentioned earlier, certain timing offsete a
of the bandpass signal to be sampled. The restrictions glacdorbidden, and precise a characterization of the forbidden
on Q, by these conditions depend on the location of theoffs_ets_ is provided in terms of an integer |n_dex speC|fy|_ng i
frequency band occupied by the bandpass signal. This sraate Which image band of the baseband the carrier frequéncis
significant challenge for software defined radio receivarses ~located. _ . .
different sampling frequencies need to be selected foratsgn  The paper is organized as follows. A model expressing
in different bands, even if they have the same bandwidth. A§he two-channel time-interleaved ADC sampling sequences
early as 1953, Kohlenberg recognized that a simple way ofn terms of the corresponding sampled complex envelope
overcoming this constraint consists of using second-csder-  Sequence is described in Section Il. This model is used in
pling, i.e. time-interleaved sampling, where two sepafdd€s ~ Section Il to compute the sampled complex envelope by using
operating with a time skew sample the signal with frequencywo digital FIR filters and a digital modulator. Simulations
Q, = Q,/2. In this case, except for certain forbidden values ofare presented in Section IV which show the effectiveness of
the timing offset between the two ADCs, the bandpass signde proposed technique. Finally, conclusions and direstfor
can be reconstructed from the two time-interleaved sampléurther research are presented in Section V.
sequences for all sampling frequencies above2B.

Whereas [1], [4], [5] focus on the reconstruction of the II. COMPLEX ENVELOPE SAMPLING MODEL
bandpass signal itself from its samples, for modulatedasjgn

Keywords—bandpass sampling, direct sampling, software defined
radio, time interleaved A/D converter
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denotes the complex envelope ©f(t) and the in-phase and wherec(n) = ¢.(nT?) denotes the sampled complex envelope.
quadrature components.(t) and b.(t) are baseband signals Similarly by observing that

with bandwidthB /2. If the carrier frequencyl. > B/2 (it is e )T e d) (o 2 o (ned) — i

in general much I{elrger), the Fourier spectrin(j2) (/)f z(t) oI (=T _ Lj(n—d)(wp+2mh) _ jws(n—d),—j2mid

is contained in two disjoint positive and negative frequenc we can express the sampled sequenge) as

bands[Q., Qy] and [—Q g, —Q] with @ = Q. — B/2 and 4 .

Qu = Q. + B/2, so that the occupied bandwidth of.(t) 22(n) = ze((n—d)T)) = R{c(n—d)e/r ("= De=72md} - (6)

is Qg — Qr = B. Unlike conventional heterodyne radar or
communications receivers [10] which conveit(t) to a lower
IF frequency, and correlate it with two quadrature IF ostdrs c(n—d) = f(n) *c(n) (7)
to obtain the sampled in-phase and quadrature componeats, w
consider here a direct bandpass sampling receiver where tW
time-interleaved ADCs sample.(t) as shown in Fig. 1.

In this expression:(n — d) is a shorthand notation for

herex represents the discrete convolution operation and
_sin(w(n — d))

nT is the impulse response of the periodic fractional delagrfilt
' specified by
Il(n) F(ed®) — —jwd
> ADCl > (6 )_ €
2o(t) for —m < w < 7. More generally, ther periodic filter F'(e7)
‘ (n—d)T! can be expressed as
v j0) — pmi(w—a(w))d
z2(n) Fev)=e 9)
» ADCy — for all w, where
qw)=k2r for 2k—1)r <w< (2k+)w
Fig. 1. Time-interleaved sampling of bandpass signa(t). represents the quantized value wfproduced by an infinite

quantizer with step sizer.

The Fourier transform of sequence
T! denotes the sampling period of the sub-ADCs, which q

have therefore sampling frequensy, = 2n/T. = Q,/2, s(n) = c(n — d)ed*r(n=de=i2mtd (10)
where(), denotes the sampling frequency of the overall ADC. L .
It is assumed that); > 2B, or equivalentlyQ, > B. appearing in (6) is given by

The timing offset between the two ADCs i8 = dT7 with S(e?¥) = F(eI@w))O(ed(Wmwn))emilwrt2mt)d

0 < d < 1. Ford = 1/2, the combination of the two sub-ADCs _ F(ejw)G(ejw)C(ej(u—wb)) (11)
forms a uniform ADC with sampling period, = 7./2, but ’
for d # 1/2, the overall ADC has a nonuniform but periodic where

oo

sampling pattern. Note also that the use of a timing offset oy —ion
d # 1/2 implies that that the sub-ADCs cannot share the same Cle™) = Z c(n)e™ (12)
S/H. n=Tee

Let QO denotes the discrete-time Fourier transform (DTFT)c(f)

¢ = round(~+) (3) and the filter
2 7 F(ej(w—wb))
) jw JAN —J(w e

so that(2, belongs to the frequency bartf — 1/2)Q., (¢ + G(e¥) = T F(ee) ¢ i(wstant)d
1/2)2.]. Since this frequency band corresponds to the location (@) —a(w—wn))d . —j2rtd
of the /-th image copy of a sampled baseband signal, it is = € € (13)

referred to here as théth image band. In the following it s a piecewise constant frequency dependent phase shift. Fo
is assumed that > 1, so that the signat.(t) is a bandpass , -0, it can be expressed as
signal. Since the band¢ —1/2)$2., (¢4 1/2)€2.] includes the

2¢-th and2¢ + 1-th Nyquist zones of the sub-ADC$§,can be G(e7*) = e_m(“l)d —TSw< —T+w (14)
expressed in terms the Nyquist zone indeas/ = |k/2]. If el _riryy<w<T,
we consider the discrete modulation frequency and forw, < 0, we have
QC —j2mld
wb:QCT;monW:(—fﬁ)%r, (4) Jwy e e —rm<w<T+wp
QL G(e’?) = e=I2mE=1d 4w <. (15)

so that—7 < w, < 7, the sampled sequencg(n) can be

expressed as Since the impulse respons&n) of fractional delay filter

A F(e/%) is real, the discrete-time model (5)—(6) can be repre-
x1(n) = x.(nT%) = R{c(n)e’*"} (5)  sented in block diagram form as shown in Fig. 2. In this model,



F(e’*) describes the relative timing skew between the twofor 7 — |wy| < |w| < 7, wheresgn(w) denotes the sign of

sub-ADCs, whereas the filtef (e/“) depends on the image
band index? of Q. and its relative locationv, within this
band. Thus, from a software defined radio perspectii@;/“)
changes if the frequency band of the signal of interest sarie
but F(e«) stays the same.

c(n) x1(n)
—»(i} ~ R{-} >
4 ‘ 2(n)
G(e7?) o R{} [~ F(e7) —>

Fig. 2. Discrete-time bandpass sampling model

Ill. COMPLEX ENVELOPE COMPUTATION

We consider the problem of recoveringn) from z;(n)
and z2(n). Note first that since:(n) is complex,C(e’*) is
devoid of symmetries, so knowledge ©fe’~) over the entire
frequency band—, 7] is needed to recovet(n). The DTFTs
of z1(n) andx2(n) are given by

Xi(e) = SO E0) O] (1)
and
I )
GO ] )

In each of these expressions, the superpositiofi(@f (“—«»))
and C*(e~7(“*«)) makes it impossible to recover each of
these functions separately from eithéf, (/') or Xs(e’*)

alone. But (16) and (17) can be written together in matrixgig. 3.

form as
Xi(e) ] ey [ O
F*l(ejw)XQ(ejw) :| - M(E ) C*(e—j(w-‘rwb)) )
(18)
where the matrix
- 1 1 1
Jwy — . .
M(e )— B { G(e]‘*’) G*(G*JW) } (19)
is invertible as long as its determinant
) 1 ) .
D(e™) = 1(G7(e™) = G(e™*) (20)

is nonzero. We find
D(e%) = %sin(Zﬂ'éd)
for 0 < |w| <7 — |wp|, and

D(e#) = J5m (20 + sgn(en))d)

w. Accordingly, the determinanD(e’) will be nonzero as
long as the timing skewd is such that bothsin(27¢d) and
sin(m(2¢ + sgn(wp))) are nonzero. The values

i M
with m integer such thap <m <2¢ -1, and
q
= 22
™20+ sgn(wp) (22)
with ¢ integer such that < ¢ < 2¢ + sgn(wp) — 1, form the

forbidden timing offsetsNote that form = ¢, we haved) =
1/2, so as expected, the half sampling period is a forbidden
offset, since in this case the TIADC reduces to a uniform ADC
with sampling periodl’s = T;/2.

WhenM(e?%) is invertible for allw, we obtain

C(ej(w—wb)) _ Hl(e]w)Xl(e]w) + H2(e]w)X2(er) (23)
where the filters
[ Hi(e*)  Ha(e™*) ]
= [1 0]M~ (ej“’)[(l) Fl(zejw):|
1 *(,—jw _F-1(piw
= o LG e ] @)

Since C(e/(“—«»)) is the Fourier transform of the modulated
signalr(n) = e/“»"c (n), c¢(n) can be recovered by demodu-
lating (n), as shown in Fig. 3.

1 (n) , r(n) c(n)
——={H (¢7)—=(D =§>_.

z2(n) ‘ .
—>H2(€jw) e J@Wo

Recovery ot(n) from z1(n) andzz(n)

Substituting the expressions f@(¢/“) and G(e’*) inside
(24) gives

‘ oi2mtd
Hq(e?¥) = m =1— jcot(2mld) (25)
for |w| < 7 — |wp| and
, T (2e+sgn(wy))d
M) = el sam())d)
= 1— jcot(m(2¢ 4 sgn(wp))d) (26)
for m — |wp| < |w| < 7. Similarly, we find
, eiwd
Hy(e?) = Jm (27)
for |w| <7 — |wp| and
, pi(w—rsgn(w))d
™) = I @i + sen@)d) (28)



for m — |wy| < |w| < 7. The impulse responses of filteFg, V. SIMULATIONS

and H can be evaluated in closed form and are given by To illustrate the proposed direct complex envelope sargplin
R{hi(n)} =(n) , R{ha(n)} =0 (29) method, consider a bandpass signal with = Q./(2m) =
5.15GHz, and continuous-time envelope
S{h1(n)} = — cot(m(2¢ + sgn(ws))d)é(n) ce(t) = 2cos(400 x 10° x 2rt)
+(cot(m(2€ + sgn(ws))d) — cot(27d)) +5[sin(400 x 106 x 27t) + cos(175 x 10 x 2at)]
% sin((m — |wp|)n) ’ (30) _ §ej400x106><27rt + le—j400><106><271-t
™ 2 2
and +l[ej175x106x27rt + e—j175><106><27rt] (32)
x 2
%{h (n)} _ bln((ﬂ-_ |Wb|)(7’l+d)) ) . .
2 = rsin(2ntd)(n + d) with bandwidthB/(47) = 400MHz. The sub-ADC sampling

frequency F. = Q./(2r) = 1GHz is aboveB/(27) =
. (31) 800MHz, as required by the Nyquist sampling criterion. Since

F,=5F'+150,

~_sin((7 — |ws|)(n + d) — 7d)
7 sin(mw(2¢ + sgn(wp)d)(n + d)

The IR impulse responsés (n) andhs(n) can be approx-
imated by causal filters of ordek/ = 2L by shifting the we havel =5, i.e., F, is located in the5-th image band, and
impulse responses by and applying a Kaiser window of order 150
M + 1. In this case, the outpuin — L) of the reconstruction wp =
block diagram is only an estimate of the complex envelope at 1000
time n — L. Since the sequences (n) and z»(n) are real, The discrete-time envelope obtained by samplipg) with
and each of the complex filtetd; and H, requires only the sampling periodl’; = 1/F} is

x 2w = 0.37.

implementation of a single real FIR filter, the complexitytio¢ 3 1
reconstruction technique depicted in Fig. 32i§\/ + 1) real c(n) = c.(nTl) = 5610'8”” + 56‘30-8””
multiplications and one complex multiplication per comgple .

envelope sample (the complex multiplication is needed to +Z[ej0'35””+e*j0'35””] (33)
implement thee—7«»(»—L) discrete-time demodulation). 2

It is also worth pointing put that unlike previously pubkh  This signal has four tones located-20.87 and +0.35, but
results on TIADC sampling of the envelope of bandpasshe tone af).87 has an amplitude three times larger than the
signals, no restriction is placed here 6h, Q,, B andd  tones at—0.87 and£0.35x.
beyondQ). > Q,/2 > B (2. cannot be in the baseband and To samplez.(t), we select a TIADC with timing offsef =
(), is above the Nyquist rate). Earlier results [7]-[9] typlgal 0.425, which is approximately half-way between two forbidden
assume relations betwedh, and ). and between! and..  timing offsets:d}; = 0.4 andd¢ = 0.454. In the simulations
For example for quadrature sampling [7], [11)., = Q./¢  two independent white noise sequences modelling the effect
with ¢ integer, so thaf). is exactly at the center of théth of thermal and quantization noises are added to the sub-ADC
image band, and = T./4 + ¢T,. with ¢ integer. In this case outputs. The sub-ADC SNR is 61.8dB. The filtéis(z) with

wp = 0 and 1 = 1, 2 of Fig. 3 have ordetM = 60 and are obtained by
_ 2 _ i n q applying a Kaiser window with parametgr = 6 to the IIR
ST 4t impulse responses; (n) and hy(n) given in (29)—(31).

The power spectral density (PSD) of the estimated envelope

so2rld = m/2+2mq. In this case equations (5) and (6) reduceig shown in Fig. 4. It is evaluated by using the windowed

to complex data periodogram method for a data block of length
r1(n) = a(n) = a.(nT)) N = 10* samples. The periodogram is scaled so that a com-
2a(n) = b(n—d)=be((n—d)T") plex tone with unit amplitude corresponds@dB. In addition

to the four desired tones &t0.87 and+0.35, four secondary
so that the two sub-ADCs sample independently the in-phas@nes are present representing the residual spectral qemfmo
and quadrature components of the bandpass signal. In dpite of e=72“v"c*(n) = ¢=79-6™¢*(n), which are located ai.6,
the elegance of this solution, the presence of clock jittekes  0.27, —0.257, and—0.957. Since the dominant tone of (n)
it nearly impossible to ensure th&X, is precisely an integer is located at-0.87, the highest secondary tone in the PSD of
fraction of Q... In this respect, it is useful to keep in mind that a é(n) is located a).6r = —0.67 — 0.87 mod (2), yielding
desirable attribute of software defined radio or radar remei a SFDR of about65dB. It is worth also noting that the
is their potential ability to operate in many different ftemcy  secondary tone at0.95x is higher than the secondary tones at
bands. By this metric, the proposed envelope sampling sehem-0.257 and 0.2z which should in theory have the same level.
is rather flexible, since a change in carrier frequerigy  This is due to the fact that the filteld; (e’*) and H(e’*)
requires only a recomputation of the digital filtels, i = 1, 2 have discontinuities at-(1 — |w,|)m = £0.77 so that after
which depend on the image band indéxf . and digital windowing, the filters exhibit nonideal filtering charadstics
frequencywy, in transition bands about these discontinuity points. Afte
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Fig. 4. PSD of the estimated envelopg:) computed with FIR filters of
order60 for a TIADC with timing skewd = 0.425.

modulation bye—7«»" = ¢~70-3™" the nonideal filtering bands
become located aboutr and0.47, which explains the higher
level of the secondary tone at0.95x. Finally, since the exact
envelopec(n) is known, the erro(n) = ¢(n) — é(n) can be
evaluated, and the mean-square error (MSE}-18.54dB.

To illustrate the slight degradation in performance which
occurs if the timing skewd is close to a forbidden value,
consider the case wheré = d’ + 0.001 = 0.401 is close [1]
to forbidden valued). The PSD of the computed sampled 2]
complex envelope of signat.(t) is shown in Fig. 5. The
secondary tones are approximately at the same level as in Fiq3]
4, but the a piecewise constant filtering operation is agplie
the the noise floor. This is due to the fact that sidiz@’>) is

close to zero inside interval-0.77,0.77] the magnitudes of  [4]
filters H;(e/~) with i = 1, 2 are not evaluated as accurately
inside this band as outside. After demodulation doy’-3™", [5]
the effect of mismatched filter magnitudes is exhibited indsa
[, 0.47] and[0.47, 7). The MSE becomes47.27dB, so that 6]
a bad timing skew positioning results in a slight performeanc
loss. 7]
V. CONCLUSIONS 8]

In this paper we have described a technigque for comput-
ing the sampled complex envelope of a bandpass signal b3f9
sampling the signal directly with a two-channel TIADC. The ]
proposed sampling technique has the potential to simplify
greatly RF communications and radar receiver front-ends by
removing all mixing and filtering hardware typically used to
extract thel and@ components of the received signal prior to [11]
sampling. As was noted in [1], [4], the use of a non-uniform
TIADC has also the advantage that sampling a bandpass signal
of bandwidthB at rates slightly aboveB becomes possible, [12]
independently of the frequency bari€l., ] where the
signal is located. Thus the proposed TIADC and reconstracti
filter architecture could be implemented as a software radio

Fig. 5.
order60 for a TIADC with d = 0.401.

dB)
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PSD of the estimated envelope:) computed with FIR filters of

front end capable of digitizing signals in different bands.
The analysis presented here ignores the effect of TIADC
mismatches. A blind calibration technique to estimate and
correct timing and gain mismatches is presented in [12].
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