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Abstract

A new stochastic description of quantum mechanics based on a class of reciprocal
diffusions, called the quantum diffusions, was proposed recently in [20, 21]. The quan-
tum diffusions differ from the class of Markov diffusions employed in earlier formulations
of stochastic mechanics. They admit a set of closure rules which ensure that the infinite
chain of conservation laws satisfied by general reciprocal diffusions reduces to the first
two laws, which are equivalent to Schrodinger’s equation. These diffusions are employed
here to develop a stochastic model of the two-slit quantum interference experiment, and
of quantum measurements. Only position measurements are considered. It is shown
that measurements can be broken into two phases: an interaction phase, during which
the observed system and measurement device evolve together as a single quantum diffu-
sion, and a conditioning phase, where after the measurement has been recorded, Bayes’
rule is employed to evaluate the conditional statistics of the observed system, which still
specify a quantum diffusion.
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1 Introduction

In 1931, Schrodinger [26, 27] proposed an interpretation of quantum mechanics in terms of
Markov diffusions, which associates to a quantum process process z(t) with density p(z,t)
a Markov diffusion with identical probability density. The Markov diffusions employed
by Schrédinger are slightly unusual, since instead of propagating all the state information
either forward or backward in time through Fokker-Planck equations, as in standard forward
or backward Markovian models, they use a mixed model, where part of the information is
propagated forward, and part of it backward. Unfortunately, as shown by Zambrini [32], the
two Fokker-Planck equations satisfied by the forward and backward information components
of the Markov diffusion are not completely equivalent to the Schrodinger equation of the
matching wave function. This equivalence can be achieved only if one adds to the physical
potentials of the system a quantum potential of the same type as arising in Bohm’s hidden
variables formulation [5, 15] of quantum mechanics. This potential is nonlocal, in the sense
that it couples instantaneously widely separated particles.

Relying on early work of Fenyes [9], a slightly different approach was followed by Nelson
[23, 24] and other researchers [3, 13] to formulate quantum mechanics in terms of Markov
diffusions. The key aspect of this work is that it relies on Itd’s stochastic calculus to give
a precise meaning to kinematic and dynamic quantities such as velocity and acceleration.
Through the use of an elaborate definition of the acceleration, this theory gives the impres-
sion of being strictly equivalent to Schrodinger’s equation. Nevertheless, as shown in [24, 25],
the resulting Markovian stochastic mechanics is also nonlocal, and differs in significant ways
from standard quantum theory.

A new form of stochastic mechanics was proposed recently in [21]. It relies on a subclass
of reciprocal diffusions, called the quantum diffusions. Reciprocal processes were introduced
by Bernstein [2], and studied in detail by Jamison [16]. In modern terminology, a reciprocal
process is a Markov random field on a one-dimensional parameter space. Reciprocal pro-
cesses contain Markov processes as a subclass, and in particular, when a reciprocal process
is pinned at one end, it becomes Markov. In [17, 18], Krener showed that reciprocal diffu-
sions satisfy a stochastic form of Newton’s law, which in the Gaussian case [19] can be used
to express such diffusions as solutions of second-order stochastic differential equations. A
stochastic quantization procedure was developed in [20] which associates a class of recipro-
cal diffusions to a dynamic system precribed by its Hamiltonian. The reciprocal diffusions
usually satisfy an infinite chain of conservation laws. These conservation laws close after the
first two laws for two disjoint subclasses of reciprocal diffusions, the Markov and quantum
diffusions. In [21], it was shown that the closure rules satisfied by the quantum diffusions
are in essence an expression of Heisenberg’s uncertainty principle.

The version of stochastic mechanics proposed in [21] presents a number of advantages
with respect to earlier Markovian formulations. First, the two conservation laws of quantum
diffusions are strictly equivalent to Schrédinger’s equation, i.e., no quantum potential needs
to be introduced. Second, the uncertainty principle is built in the closure rules. Finally, as
proved in [21], the resulting stochastic mechanics is local in the sense that for two dynami-
cally uncoupled but statistically coupled particles, the parameters of the potentials affecting
one particle do not appear in the marginal statistics of the second particle. This property
holds in standard quantum mechanics, but is violated by Markovian stochastic mechanics.
The only drawback of the reciprocal form of stochastic mechanics described in [21], is that,



like Wigner’s joint distribution for the position and momentum of a particle [14], the finite
joint probability densities for the position of a system at multiple times may take negative
values. However, this is only a drawback if one holds onto the unrealistic expectation that
all Borel cylinder sets should be probabilizable. The sigma field of observable events is
severely restricted in quantum mechanics by the commutation requirement for all observed
variables, and the stochastic mechanics proposed in [21] appears to yield positive values for
all such events.

In this paper, we extend the work started in [21] by proposing quantum diffusions models
of the two-slit quantum interference experiment and of quantum measurements. As noted
by Feynman in [12], the two-slit quantum diffraction experiment “... has in it the heart
of quantum mechanics. In reality it contains the only mystery.” The two key features
of this experiment are as follows. First, if both slits are open, an interference pattern
appears on the screen used to record the positions of arriving particles, thus revealing the
so-called “wave-particle” duality of matter. Second, if a measurement device is employed
to determine through which of the two slits each particle passes, the interference pattern
vanishes from the recording screen, which now displays coherent arrival patterns located
about the positions of the top and the bottom slits. The stochastic model obtained by
applying the construction technique of [21] is a compound process, where the diffusion z(t)
modelling the quantum interference process is a mixture of four Gaussian wavepackets.
These wavepackets are centered around four possible classical trajectories: two of them
are real and correspond to the trajectories through the top and bottom slit, and two are
imaginary, and can be viewed as interference trajectories. From a stochastic point of view,
z(t) is obtained by randomly selecting one of four possible classical trajectories according
to certain a priori probabilities, and once a trajectory has been picked, z(t) evolves about it
as a single free Gaussian wavepacket. This model accounts for the presence of interference
fringes on the recording screen. Furthermore, the a priori probabilities of the interference
trajectories are so small that, when the position of a particle is measured as it crosses the
screen, and we attempt to decide which of the four trajectories it follows, only the two
classical trajectories are selected by a maximum a posteriori hypothesis testing scheme, so
that the interference pattern vanishes from the a posteriori density function of z(t).

The stochastic model of quantum measurements generated by the procedure of [21] is
relatively close to the description of the measurement process in standard quantum the-
ory [4, 31]. Only position measurements are considered. The measurement process can be
broken into two phases. First, the observed system and and measurement device, which
were originally statistically independent, interact and evolve together as a single quantum
diffusion. The interaction then ceases, leaving the observed system and measurement de-
vice dynamically uncoupled, but statistically coupled. This means they can no longer be
analyzed independently of one another, and in particular although the marginal statistics
of the observed system and measurement device still specify reciprocal diffusions, these are
no longer of quantum type. The second phase of the measurement process consists merely
in recording the measurement value, and applying Bayes rule to evaluate the conditional
statistics of the observed system. It turns out that these statistics form a quantum diffusion,
so that measurements transform quantum diffusions into quantum diffusions. The Bayesian
conditioning phase is the statistical analogue of the “collapse of the wavefunction” in Von
Neumann’s model of quantum measurements [31]. The only difference is that whereas quan-
tum theories of experiments seem to address primarily the case of perfect measurements,



because of the statistical approach adopted here, all measurements are viewed as imperfect.

The paper is organized as follows. The stochastic mechanics of reciprocal diffusions is
reviewed in Section 2. The quantum diffusion describing the minimum uncertainty free
wavepacket, which appears as a component of several stochastic models considered here,
is described in Section 3. Section 4 constructs the compound quantum diffusion model
for the two-slit diffraction experiment, and the reduction of the wavefunction associated to
the observation of the path taken by each particle is analyzed in Section 5. Finally, the
stochastic description and properties of quantum measurements are presented in Section 6.

2 Reciprocal Stochastic Mechanics

Let R" be the standard n-dimensional Euclidean space with metric §;; = 1 for < = j, and
= 0 otherwise. Consider a dynamical system with Hamiltonian

Hz,p,0) = 50"~ Az, 1) (p: — Aile,1) + bz 1), (21)

where {¢, A;} denotes a scalar and vector potential pair, and where we use the standard
tensor contraction convention with repeated upper and lower indices corresponding to a
summation. Following [20, 21|, we can associate a class of reciprocal diffusions to this
system by replacing p; by —V; inside the Hamiltonian H(z,p,t), where V; denotes the
differentiation with respect to 7. This correspondence rule is the stochastic analogue of
the quantization rule p; <+ —iV; of quantum mechanics. This yields the elliptic operator

1

H = ;(V'+A)(Vi+ Ai) +¢ (2.2a)
1 . 1, . .

= 5A + A'V; + E(VZAi + A"A) + ¢, (2.2b)

where A denotes the Laplacian. Then, the generalized heat operator

P
L=H-Z 2.
ot (23)

is the forward operator of a general Markov diffusion with diffusion matrix d;;, drift b (z,t) =
—A*(z,t) and creation/killing rate

A

c(z,t) (A'A; — V' A;) + d(z, 1) . (2.4)

N[ =

See [22] for a study of Markov diffusions with creation or killing. The Green’s function
associated to L is given by

L, .G(z,s;y,t) =0,t>s 2.5a)
where the subscripts {y,t} specify the variables upon which the operator L is acting. To

ensure that G(z,s;y,t) represents the transition density of a general Markov diffusion,
G(z, s;y,t) is required to decay as |y| — oc.



Then z(-) belongs to the class of reciprocal diffusions associated to the Hamiltonian
H(z,p,t) if the joint probability density of z(ty), z(t1), ---,z(ty) forto =0<t1 <--- <
ty =T can be expressed as

N-1

(o, to; x1, t15 -5 TN, tn) = gm0, t0; 2N, ) [ G @k ths Trsr, trrn) (2.6)
k=0

where the function ¢(zg,0; 7, T) satisfies the normalization condition

//q(:z;o,0;mT,T)G(xo,O;:L‘T,T)dede =1. (2.7)

If the densities (2.6) are used to specify a probability measure over the Borel cylinder sets,
the end-point density g(xo, 0; z7,T) must be positive. However, if the sigma, field £ of events
that need to be probabilized is much smaller, as is the case in quantum mechanics, where
& corresponds to the set of “observable” events, then ¢ may take negative values, as long
as for all events E € £, we have 0 < P(E) < 1. See [10, 29, 21] for a discussion of the use
of negative probabilities to model quantum phenomena.

Since the Green’s function G(z, s;y,t) is specified by the Hamiltonian H (z,p,t), the
expression (2.6) shows that all reciprocal diffusions associated to the same physical system
differ only by the choice of end-point density ¢(zg, 0; 7, T'). Diffusions which differ only by
the choice of ¢ are said to belong to the same reciprocal class, since as shown by Jamison
[16] they have the same three-point transition density r(x, s;t,y;z,u). For s <t < wu, r is
defined as the conditional density of z(t) = y given that z(s) = x and z(u) = 2z, and using
the expression (2.6) for the finite joint densities, it is easy to verify it can be expressed as

G(z,s;y,t)G(y,y; 2, u)
G(z,s;2,u)

, (2.8)

r(z,s;y,t 2,u) =

which is clearly independent of ¢.
This property implies that all diffusions in the same reciprocal class have the same
dynamics. Specifically, let

Bth) = %(m(t ) 42t —h) (2.92)
Aot h) = %(m(t +h) — 2(t— h) (2.9b)
d*z(t,h) = z(t+h)+z(t —h) —2z(t) (2.9¢)

denote respectively the mean position and the centered first- and second-order differences
of the process z(t). It is shown in [20, 18] that the three-point transition density 7(Z —
uh,t — h;z,t; T + uh,t + h) of z(t) = z given z(t + h) = T + uh is locally Gaussian, where
d?x has for mean

E[d®2" | z(t + h) = Z £ uh] = F'(z,u,t)h> + O(h*?), (2.10)

and variance . ' -
Bld*z'd*s? | z(t £ h) = T + uh] = 2h6Y + O(K®/?) . (2.11)



In identity (2.10), if
0A; 04;

dA;; = or o (2.12)
denotes the exterior derivative of A;,
; 09  0A4A;
Fi(z,u,t) = dA;j(z, t)u’ — (@ + Btl) (z,1) (2.13)

is the force applied to a particle with position z and velocity u due to the potentials {A;, ¢}.
Thus, (2.10) represents a stochastic form of Newton’s law, since it equates the conditional

mean acceleration

Az

B2
of the process at time ¢ to the force based on the mean position z(¢, h) and empirical velocity
u(t,h) = d*z(t,h)/h. This Newton law differs from the one proposed by Nelson [23, 24] for
Markov diffusions, because the acceleration (2.14) does not coincide with Nelson’s definition
of the acceleration (see [30] for a study of the differences existing between the two concepts
of acceleration). Also, since the evaluation of the conditional moments (2.10)—(2.11) is
based exclusively on three-point transition density r, all processes in the same reciprocal
class obey the same Newton law.

If the interval of definition [0, T'] of a reciprocal diffusion is changed to a subinterval [s, ¢]
with 0 < s <t < T, the end-point density that needs to be applied to the new interval is
given by

a' = EJ : | z(t + h) = Z + uh] (2.14)

a(e, 5:9,1) = / / G (0,0, )Gy, ys 31, T)q(z0, 0; 7, Tdmodor ,  (2.15)

from which we deduce that ¢(z,s;y,t) with s < ¢ obeys the forward and backward heat
equations
Lysq(z,s;9,t) = 0 (2.16a)
Ly .q(z,559,t) = 0 (2.16D)
where L* denotes the adjoint operator of L. In particular, the function ¢(z,t;y,t) obtained

by letting the length of the interval of definition shrink to zero plays an important role in
our analysis. Its restriction to y = x gives the probability density

p(.’L‘,t) = q(a:,t;ac,t) (217)
of z(t). From (2.16a)—(2.16b), we see that ¢ satisfies the evolution equation
0 *
5 @t t) = (Hoy —H; )g(o,t,1) (2.18)
The function A
m(a,b,t) = qla —b,t;a + b, 1) (2.19)

plays the role of generating function for the conservation laws of reciprocal diffusions. Specif-
ically, by performing a Taylor series expansion of m(a,b,t) in the vicinity of b = 0, we find
it admits the power series representation

v + O(b3)) (2.20)

4

m(a,b,t) = p(a,t) (1 + 2w; (a, )b + 4(mi; + wiw;) 5



for small b, where the mean momentum w; and stress tensor m;; are defined in terms of

M(a,b,t) 2 Inm(a, b, t) (2.21)
as
10M
i\a, = S a5 \4Y, 2.22
w;(a, t) 5 9y (a,0,t) (2.22a)
1 0°M
mij(a,t) = ZW(aaoat)' (2.22b)

Then, to generate the chain of conservation laws of reciprocal diffusions, we only need to
substitute the expansion (2.20) inside the evolution equation (2.18), perform the change
of coordinates £ = a — b and ¥y = a + b, and match like powers of b on both sides of this
equation. The first two conservation laws obtained by this procedure take the form

dp B0y —
o + V' (pv;) =0 (2.23)
9 i
5;(Pi) + Vi (pPij) = pFj(z, 1) (2:24)
where A
vi(z,t) = w(z,t) — A'(z,1) (2.25)

denotes the mean velocity of the diffusion, and

Pij(x,t) £ (mij + viv;) (2, 1) (2.26)

is the flux of momentum tensor. The identities (2.23) and (2.24) express respectively the
conservation of mass and of momentum, and are only the first two of what constitutes
usually an infinite chain of conservation laws.

The mean velocity v* and stress tensor m;; appearing in the above expressions have a
simple kinematic interpretation. specifically, it is shown in [20, 18] that the conditional
density of the first difference d'z(¢,h) given the mean position z(t, h) is locally Gaussian
with mean . _

E[d*z*(t,h) | Z(t,h) = z] = v'(z, t)h + O(h?) (2.27a)

and variance
E[(d'z® — v*(z,t)h)(d*z? — v/ (z,t)h) | Z(t, h) = ]
= 6h)2 + mij(z, t)h* + o(h?) . (2.27b)

For the case of Markov diffusions with forward and backward drifts b*(z,t), the mean
velocity v(z,t) coincides with the current velocity

1
v(@,t) = 5 (07 (2:1) + 7 (w,1)) (2.28)
of Markovian stochastic mechanics [23, 24]. Note however, that neither the mean velocity

v(z,t) or stres tensor w(x,t) are reciprocal invariants, i.e., they change when we consider
different diffusions within a reciprocal class.



An interesting feature of the conservation laws of reciprocal diffusions is that if we denote

R(z,t) = %lnp(x,t) (2.29)
and assume that the two closure rules
wi(z,t) = V;S(x,1) (2.30a)
mij(z,t) = —iViVj In p(z,t) (2.30Db)
hold, the n + 1 conservation laws (2.23)—(2.24) reduce to the two scalar equations
‘?9—1: + (Vi — A)VR 4 %vi(vis CA) =0 (2.31)
%—f + %(vis — AN(V;S — A) + ¢ — %(viRviR +AR)=0. (2.32)

Note that the closure rule (2.30a) specifies S(z,t) only up to function of ¢. However, as
shown in [21], this degree of freedom is exhausted when setting the right-hand side of (2.32)
equal to zero.

Condider now the Schrédinger equation

0
za—lf =Hgy(z,1) (2.33)
where _ _
Hg = (—iV? — A7) (—iV; —Aj)+ ¢ (2.34)

is the Hermitian operator obtained by replacing p; by —iV; inside the Hamiltonian H (z, p, t),
and where we have set Planck’s constant 7 = 1. By parametrizing the wave function as

P(z,t) = exp(R(z,t) + 1S (z,1)) (2.35)

and separating the real and imaginary parts of Schrodinger’e equation (2.33), it is easy to
verify it reduces to (2.31) and (2.32). This establishes a one-to-one correspondence between
quantum processes and the class of reciprocal diffusions satisfying the closure rules (2.30a)—
(2.30b). Because of this equivalence, the reciprocal diffusions which satisfy (2.30a)—(2.30Db)
are called the quantum diffusions. This class of diffusions does not overlap with the class
of Markov diffusions, which also satisfy (2.30a), but for which the sign is reversed in the
relation (2.30b) between the stress tensor 7;; and the Hessian of the log-density In p.

It is shown in [21] that z(¢) is a quantum diffusion if the function M(a,b,t) given by
(2.21) is the real part of an analytic function F(z,t) of z = a + ib € C"*. Furthermore, the
end-point density g(z,t;y,t) corresponding to a wave function v (z,t) takes the form

(e, ty,0) = (LT — i), (236)
This specifies the end-point density for an interval of zero length. To obtain the density
q(z, s;y,t) for a finite interval [s,¢] with s < ¢, one must either propagate (2.16a) backward
in time with initial condition ¢(z,t;y,t), or propagate (2.16b) forward in time, starting
from ¢(z, s;y,s). In both cases, this corresponds to prapagating the heat equation in an
unstable direction, i.e., we are trying to undo diffusion effects. Furthermore, if the function
q(z,t;y,t) admits nodes, i.e. values (g, yo) for which q is zero, then the solution ¢(z, s;y,t)
admits negative values as soon as s < .




3 Minimum Uncertainty Wavepacket

The above procedure was employed in [21] to construct reciprocal diffusions corresponding
to several quantum processes such as the coherent state of the harmonic oscillator, and the
minimum uncertainty free wavepacket. Since this last process plays an important role in
the analysis of following sections, we describe briefly the model obtained in [21]. Consider
the Gaussian wave function

1 1 (z —zc(t)?

(r + it/r)1/2 exp(—5— a7 ) (3.1)

Y(z,t) = /4

For ¢ > 0, it solves the Schrédinger equation (2.33) with
A(z,t) = ¢(z,t) =0. (3.2)

In (3.1), z¢(t) = zo + vot specifies a reference classical trajectory for a free particle with ini-
tial position zy and velocity vy, and 1 (z, t) represents the evolution of a quantum wavepacket
about this trajectory. The standard deviations of the position and momentum distributions
are given by . )

o4(t) = ﬁ(ﬁ + 12 /r?)1/2 op(t) = o
The position momentum uncertainty product o (t)o,(t) equals the Heisenberg lower bound
of 1/2 at t = 0, which explains why this process is called a minimum uncertainty wavepacket.
The parameter r can be used to adjust the relative width of the position and momentum
distributions. It was shown in [21] that the corresponding quantum diffusion is a Gaussian
process with mean z¢(t) and covariance

(3.3)

K(ts) = %(7«2 +st/r2—[t—s|). (3.4)

This diffusion has for mean velocity and stress tensor

v(z,t) = v % (3.5a)
2
m(x,t) ) (3.5b)

Furthermore, using a characterization of Gaussian reciprocal diffusions given in [19] (see
also [18, 8]), it was shown that over a finite interval [0, 7], the deviation z(t) = z(t) — z¢(t)
of z(t) from its classical trajectory xzc(t) satisfies the second-order stochastic differential
equation

Lrz(t) = &(t) (3.6a)
Lr & —&/dt? (3.6b)
with Dirichlet boundary conditions
z(0)
[ A(T) ] ~ N(0,P). (3.7)



The equation (3.6a) indicates that the motion of z(t) is due entirely to the random fluctu-
ations £(t), where £(t) , which is usually called the dual or conjugate proces of z(t), is a
generalized Gaussian process independent of z(0) and z(7'), with zero-mean and autocorre-
lation

E[E@)E(s)] = Lrd(t —s) - (3-8)

In the boundary conditions (3.7), the matrix P is the covariance matrix of z(0) and z(7T),
so that
p_ [ K00 K0T

K(T,0) K(T,T) (3.9)

Since the Green’s function of the operator Lr with homogeneous Dirichlet conditions at
t =0 and t =T is given by

1-%)s for t>s
Tr(t,s) = { i 1 _Ti)) or 1o s (3.10)
T Z S,
the solution of (3.6)—(3.7) takes the form
() = B(#) + (1 — %)Z(O) + %Z(T) , (3.11a)
where .
B(t) = /0 Tp(t, $)E(s)ds (3.11b)

has covariance I'r(t,s), which implies it is a Brownian bridge process. Thus, it can be
written as

B(t) = W(t) - %W(T) , (3.12)

where W (t) is a Wiener process independent of z(0) and z(7T'). Since the interval length
T is arbitrary, the quantum diffusion corresponding to the wavepacket (3.1) has an infinite
lifetime.

Using results of [1, §5] on the representation of scalar Gaussian reciprocal processes in
terms of the Wiener process, it can also be shown that z(¢) admits the representation

2(t) = W(t) + 2(0)(1 — t/r?) (3.13)

for t > 0, where W (t) is a Wiener process independent of z(0), which does not bear any
relation with the Wiener process of identity (3.12).

4 Interference
The following expressions will be useful in the analysis of interference processes. Let

P; = exp(R; +iS5;) (4.1)
with 7 =1, 2 be two wavefunctions satisfying Schrodinger’s equation. By linearity,

% = exp(R +iS) = ¢1 + 4o (4.2)

10



also solves this equation. To express the real and imaginary parts R and S of In%) in terms
of the corresponding components R; and S; of In4); for j = 1, 2, note that

Re®p = exp(Ry)cos(S1) + exp(R2) cos(S2) (4.3a)
Im1yp = exp(Ry)sin(S1) + exp(R2)sin(Ss) . (4.3b)

This implies

p = exp(2R) =yy*

= 2€Xp(R1 + RQ)[COSh(Rl — RQ) + COS(Sl — SQ)] (4.4)
and
_ exp(R1) sin(S1) + exp(R2) sin(S2)
§ = arctan (exp(R1) cos(S1) + exp(Ra) cos(52)> ' (45)

Then consider the two-slit diffraction experiment described in [11, §3.2]. As illustrated
in Fig. 1, a plane particle wave originating from a distant source is incident upon a screen
with two slits located at £ = ££. For ease of computation, the two slits are assumed to
be Gaussian. The particle crosses the diffracting screen at ¢ = 0 and later hits a detector
screen located at a distance y = d from the diffracting screen. Only the z-motion of the
particle is considered.

X

diffracting detector
screen screen

N

&

plane
particle
wave

Figure 1: Two-slit particle diffraction experiment.
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The wavefunction v(z,t) associated to a particle after it has passed through one of
the two slits takes the form (4.2), where 9 and 1 are minimum uncertainty Gaussian

wavepackets centered about the two classical trajectories z¢1(t) = £ and z¢2(t) = —4, i.e.,
B 1(z — z¢j)?

(z,1) = (o 4.6

¥i(,2) T (r + it Jr) /2 xP(=3a ) (4.6)

with j = 1, 2. B denotes here a normalization constant which is selected such that the
total probability mass obtained by integrating (4.4) equals 1. The standard deviation of
each wavepacket as it emerges from its slit is r/4/2, so that the parameter ¢/r represents
approximately the ratio of the slit separation to their width. For the wavepackets given by
(4.6), we have

Ry(a,t) — —%R(t)(:v —2¢;)’ +InB + im(@) (4.7a)
Si(z,t) = %S(t)(w —z0;)? - %arctan(;) , (4.7b)

with . t
RO=——  S0)=—p. (4.8)

Then, by using the expression (4.4) for the density p(z,t), one finds that it can be ex-
pressed as a superposition of four Gaussian distributions. Specifically, if N(m, K) denotes
a Gaussian density with mean m and variance K,

4
p(z,t) = piz,t)P; (4.9a)
7j=1
with
pj(x,t) = N(zc;j(t), 2R() ™) . (4.9b)

Here z¢1(t) = £ and z¢2(t) = —£ correspond to the classical paths through each of the two

slits, and
zos(t) = ilt)r? zoy(t) = —ilt)r? (4.10)

are fictitious imaginary paths modelling the quantum interference of the two wavepackets.
The probabilities of each path are given respectively by

P =P, = B? (4.11a)

Pys=P, = B?exp(—£*/r?) (4.11b)

and the requirement that the total probability mass equals 1 implies
P1+P2+P3+P4:1, (412)

which gives
1
B? = ) 4.1
2(1 + exp(—22/r2) (4.13)

12



In particular, when the ratio £/r of the slit separation to the slit width is large, so that the
wavepackets do not interact significantly, the probabilities P3 and Py of the two imaginary
interference paths are very small, and B ~ 1/ V2.

Thus, the density p(z,t) for z(¢) can be viewed as a marginal probability density ob-
tained from the joint distribution of two random variables (z(t), J). Here J is discrete
valued with

PlI=j]=P, (4.14)

for 1 < j < 4. The random variable K selects one reference trajectory among the two paths
zc1(t) and ze2(t) corresponding to the particle going through the +£ and —£ slits, and the
two fictitious paths z¢3(t) and z¢4(t) modelling quantum interference. Then, given J = j,
the particle’s position z(t) admits the conditional density

Pagp)a (@ | J = j) = N(zc;(t), @R(®) ), (4.15)

which corresponds to the density of a standard minimum uncertainty wavepacket for a free
particle moving about the classical trajectory z¢;(t). Although this model may appear
artificial, since it relies on the imaginary classical trajectories zc3(t) and zcq4(t), it will
be useful for interpreting the reduction of the wavefunction after the path followed by the
particle has been determined.

Note that p(z,t) can be rewritten as

1/2
plz,t) = A? (@) exp —R(t)(z? + £?)
[2 cosh(2R(t)¢x) + 2 cos(2S(t)lz) | (4.16)

so that although the representation (4.9a) of p as a superposition of Gaussians gives the
impression that the density remains coherent, the use of complex reference trajectories
induces the usual interference pattern. As noted in [24, §17], the process does not have
nodes, i.e., values of z for which p(z,¢) = 0, but it comes close to having nodes when

S(t)lx = (n+ %)W (4.17)

with n integer, and R(t)¢z is small. Note also that even if we are careful to eliminate events
with complex probabilities, the joint probability distribution for z(¢) and J specified by
(4.14) and (4.15) may take negative values. For example, conditioning z(¢) with respect to
the event E = {J = 3 or 4} gives the conditional density

1/2
ety e (T | B) = (@) exp[—R(t)(z? — £2t2/r*)] cos (28 (t)Lx) , (4.18)

which takes negative values. Although the appearance of negative values may seem surpris-
ing, it is consistent with interpretations of the two-slit diffraction experiment given recently
in [10, 29].

Up to this point, we have examined only the density of z(t) at a single time. To specify
the finite joint densities of the quantum diffusion which models the two-slit interference
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process, we must construct its end-point density ¢(z,s;y,t). For s = ¢, the expression
(2.36) gives

q(z,t;y,t) = in(w,t;y,t)Pj (4.19)
where "~
Ing;(z,t;y,t) = —% [z —20j(t) y—zc;(t) ] Q(t,1) [ z:fg’gjgg }
_[x—x@@)y—xqﬁ)][zgﬁ%]+f@, (4.20)
with
Q1) = [ fz((?) _Rsﬁg) ] . (4.21)

Here f(t) is a function of ¢ only, and pc; = &¢; is the momentum process corresponding to
the j-th reference trajectory, so that

pc1 = pc2=0 (4.22a)
po3 =il/r? | pes = —il/r?. (4.22b)

Note that the use of imaginary momenta has a precedent in quantum mechanics, where
plane waves with an imaginary momentum are often used to analyze the tunnel effect for a
particle penetrating a square potential barrier [6, pp. 65-67]. Thus, the end-point density
q(z,t;y,t) is again the superposition of four Gaussian functions g, where each g; represents
the end-point density corresponding to a minimum uncertainty wavepacket centered about
the reference trajectory (zcj, pcj). By superposition, the solution of the backward heat
equation

102 0
-z _ _Z . = < 4.2
3oz — o)alz sy 1) =0 s <t (423
takes therefore the form A
q(z,559,t) = Y q;(z, 89,1 P, (4.24)
j=1

where each function g;(z,s;y,t) satisfies (4.23) with initial condition g¢;(z,#;y,t). This
representation reduces the evaluation of the end-point density for a mixture of Gaussian
wavepackets to its evaluation for a single wavepacket. This computation was performed in
[21], where it is shown that ¢;(z, s;y,t) can be expressed as

y —xc;(t)

Ingj(w, s39,1) = —% [ z—zci(s) y—1zcit) | Qs,2) [ @ = 50j(5) }

pcj(s) ]
[ z—zc; — 2ot +f(s,t),  (4.25
[o=aci(s) w-ses) ) | P90 [ s, )
where f(s,t) is a function of s and ¢ only, and the 2 x 2 matrix Q(s,t) satisfies the Riccati
equation
4Q
ds

(s,t) =@ [ (1) 8 ] Q (4.26)
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for s < ¢ with initial condition (4.21). With R(¢) and S(t) given by (4.8), it was found in
[21] that
1 2
Q(s,t) = [ b ] . (4.27)

rt+st| r? —s
The Green’s function for a free particle is

(y —z)°

G(z,s;y,t) = Wexp—m

(4.28)
for t > s. Substituting this expression and the identities (4.24), (4.25) and (4.27) for ¢
inside the form (2.6) for the finite joint densities of a reciprocal diffusion, we find that the
finite joint densities of the quantum diffusion modelling the two-slit interference process can
be written as

4

p(zo,to;T1, 115 3TN, IN) = ij(l‘o,to;ﬂvl,tl; TN, EN) P (4.29)
i=1
In this expression, each density p;(zo,to;21,t1;--+;2n,tn) with 1 < j < 4 corresponds to

the quantum diffusion modelling a minimum uncertainty wavepacket centered about z¢;(t).
Thus, the finite joint densities for z(-) can be viewed as generated from a compound process
(z(-), J), where given J = j, z(-) is Gaussian, with mean

Bla(t) | J = j] = ac;(t) (4.30a)
and covariance

El(z(t) —zcs(t)(x(s) —zcs(s)) | J = j] = K(t,5) , (4.30b)

where K (t, s) is given by (3.4) and does not depend on j. Equivalently, if we introduce the
deviation process z(t) = z(t) — zcs(t), 2(¢) is independent on J and admits the represen-
tations (3.11) and (3.13). Thus z(¢) can be viewed as generated by selecting a reference
trajectory z¢;(t) at random according to the probabilities P;, 1 < j < 4, and superposing
a deviation process z(t) independent of J.

The expression (4.19)—(4.21) for the the end-point density ¢(z,t;y,t) for an interval of
zero length can be used to evaluate the mean velocity and stress tensor of the quantum
diffusion modeling the two-slit interference process. Note first that since the particle is
free, v(z,t) = w(z,t) (the covector potential A(x,t) = 0). Using the identities (2.22a) and
(2.22b), for w(z,t) and 7 (z,t), we find

1 4
v(@:t) = o ;vm,t)pj(a:,t)Pj (4.31)
4
w(e,8) +7(@,8) = —— 3 (w52, 1) + 0, 1))py 2, )P (4.32)

where v; and 7; are obtained by setting vg = pc; and z¢(t) = z¢j(t) in the expressions
(3.5a)—(3.5b) for the mean velocity and stress-tensor of the quantum diffusion representing
a minimum uncertainty wavepacket. Note that this implies 7; does not depend on j.
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From (4.31), we obtain after some algebra
S(t)sinh(2R(t)¢x) + R(t) sin(2S(t)fx)
cosh(2R(t)¢z) + cos(2S(t)¢x)

which can also be evaluated directly by differentiating the expression (4.5) for the wave-
function phase S(z,t).

v(z,t) = S(t)z —

l, (4.33)

5 Path Observation and Wavefunction Reduction

A key feature of the two-slit diffraction experiment is that the interference fringes disappear
when an observation is performed to determine through which slit the particle has passed.
For the diffraction of electrons, Feynman proposed in [11, pp. 7-9] to place a light source
behind the diffracting screen and use the light scattered by each electron to determine
through which of the two slits it crossed. However, light scattering affects the momentum
of the electrons, and thus their trajectory. More sophisticated quantum optics experiments
have been proposed recently [28] where the determination of the path taken by the particle
does not affect its motion. The disappearance of the interference fringes is then attributed
to the fact that the wavefunction of a diffracting particle become entangled with that of the
measuring device.

In the discussion below we ignore all physical aspects of “which way” experiments and
focus exclusively on their statistical interpretation. We need to explain why in the absence
of path information the probability density obtained from recording the positions on the
detector screen of a large number of particles is given by (4.16), whereas if we observe the
path taken, and record the positions on the detector screen of the particles which have
crossed through the +£ (resp. —/) slit, we obtain the Gaussian wavepacket p;(z,t) (resp.
p2(z,t)). To do so, we employ the model

2(t) = 2(t) + 2oy (t) (5.1)

of the two-slit interference process, where the zero-mean Gaussian deviation process z(-) is
independent of J, and with covariance (3.4).

Suppose that just as the particle has crossed through the diffracting screen, we collect
a measurement

y=2xz(0)+n=1x;(0)+2(0) +n (5.2)

of the position in the presence of a zero-mean Gaussian random variable n with variance
o2, which represents the measurement error, and is independent of z(-) and J. Since the
variance of z(0) is 72/2, given that J = j, the probability density of the observation v is

2
pylT = §) = N(w0;(0), 5 +07) (5.3)
where
.’L‘Cl(O) =/ :L'CQ(O) =/ .’Ecg(O) = 3304(0) =0 (5.4)

are all real. Suppose that after observing y we seek to determine which trajectory the
particle has taken. The trajectory estimate J (y) that we select is the one which maximizes
the a posteriori probability

pylJ = j)P;

P(J =jly) = o)

(5.5)
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for j =1,...4. This is equivalent to maximizing the logarithm of the a-posteriori probabil-
ity, so that ignoring terms independent of j,

J) = arg max np(ylJ = j) +In P
_ (y —2c;(0))* , £
- e 2 72 + 202 +69r_2 (5.6)
with
|0 for j=1, 2
< { 1 for j=3, 4 (5.7)
This gives
s« [ 1 for y>0

so that if the position measurement y is positive we decide the particle has crossed through
the top slit, and if y < 0, we decide it went through the bottom slit. The suprising aspect of
this result is that even though particles following the two interference trajectories J = 3, 4
contribute to the probability density p(z,0) of z(0), the a-priori probabilities Py = Py of
these trajectories are so small that the presence of particles following these two trajectories
cannot be detected from the position measurement y, which automatically assigns all such
particles to either the top or bottom slit. Note also that this remains true even if the noise
variance 0% is zero, in which case the position observation becomes perfect.

Then, once J (y) has been evaluated, the finite joint densities of z(-) are described by
the likelihood function Pj) (zo,to;x1,t15---;2N,tN), so that z(-) admits the a posteriori

model

(5.9)

A

[ 2(t) +zeor(t) for J(y) =1
2() = { 2(t) + zea(t) for J(y) =2.

Thus, given J(y), the quantum diffusion describing #(-) is a minimum uncertainty wavepacket
centered about either the top or bottom slit, depending on whether J (y) =1 or 2. This
provides a statistical model explaining the disappearance of the interference fringes after
the path followed by each particle has been determined. However, from a physical point of
view, the disappearance of the interference fringes remains mysterious. Specifically, we have
seen that in the absence of a position measurement, the particles following the interference
paths J = 3, 4 contribute in a crucial way to the appearance of the fringes through the
introduction of a negative probability density which destroys the coherent structure of the
density components p; and py contributed by the particles going through the two slits. On
the other hand, the a-posteriori density (5.9) indicates that the measurement apparatus
has the effect of blocking the formation of interference paths, and forces all particles to go
through one of the two slits.

6 Quantum Measurements

The description of the measurement process in the previous section was of an ad-hoc nature,
and in this section we give a more precise stochastic model of the interaction between a
quantum system S and a measuring device M. We only consider the case of position
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measurements, where the position zg(0) is estimated by letting S interact over a brief time
interval [0,4] with the measurement apparatus M, whose position z/(d) at the end of
the interaction is then recorded. The measurement model we employ is similar to the one
described in [4, §22]. Prior to ¢t = 0, it is assumed that the quantum diffusions zg(¢) and
zp(t) describing S and M are independent, so that if

o) = | 250 (6.1)

represents the combined diffusion, its end-point density for s = £ = 0~ can be factored as

q(z,0759,07) = gs(zs,ys)am(zar, ya) (6.2)

where gg and gps represent respectively the end-point densities of the system S and mea-
surement apparatus M at s =t = 0~. We assume for simplicity that zg and x; are scalar.
Over the interval [0, §], an intense interaction takes place between the position variable zg
of § and momentum variable pp; of M. Thus, for 0 < ¢ < 4, the combined Hamiltonian
H =Hg+ Hy+ Hyp of S and M is dominated by the interaction term

H; = azspn (6.3)
where a is a constant. Replacing pps by —V s to generate the corresponding operator, we

find from (2.18) that over the interval 0 < ¢t < ¢, ¢ satisfies the evolution equation

Oq 0 0
- _ __ - . 4
ot a(zs g +ys By )a(z, t;y,1) , (6.4)

where the contributions due to the Hamiltonians Hg and Hjs have been neglected.
The solution of (6.4) is given by

q(z, t;y,t) = qs(zs, ys)gm(zm — atzs, ym — atys) (6.5)

for 0 < t < §. For simplicity, we assume that ad = 1, and the interaction time § is very
short, so that we may set § = 07. Thus, after the interaction between S and M has taken
place, their joint end-point density takes the form

q(z,0%5y,0") = gs(zs, ys)qm(em — z5,ym — ys) (6.6)
which now couples S and M. Setting z = y gives the probability density
p(z,0%) = ps(zs)om(zym — z5) (6.7)

of the joint process at t = 07. Similarly, by observing that the function M defined in (2.21)
can be decomposed as

M(a,b, 0+) = Ms(as,bg) + MM(aM —ag,by — bs) , (6.8)

we find the mean momentum and stress tensor of the combined process at ¢ = 0" can be
expressed in terms of the corresponding quantities for S and M at t =0~ as

| ws(zs) —wm(zm — zs)

wla,0%) = | vt vl ) | (6.90)
_ | ms(zs) +mmlzm —2s) —mm(zm — zs)

m(z,07) = [ o (@ — 85) ot (mar — ) ] : (6.9b)
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Furthermore, if the quantum closure rules (2.30a)—(2.30b) are satisfied separately by S and
M at t =07, and
S(:I:,O+) = Ss(zs) + Sm(zym — zs) (6.10)

it is easy to verify that the expressions (6.9a)-(6.9b) for the mean momentum and stress
tensor can be rewritten as

w(z,0%) = [VVAS/'[]S(lL‘,O_'—) (6.11a)
7(z,0") = —i [ gﬂi ] [ Vs Vi |Inp(z,01), (6.11b)

so that after the interaction between the system S and measurement apparatus M has taken
place, their joint evolution still forms a quantum diffusion. Note that the relations (6.7)
and (6.10) could have been obtained directly by observing that if

Ps(zs) = exp(Rs+iSs)(zm) (6.12a)
Yu(zm) = exp(Ry +iSm)(zm) (6.12b)

denote the wave functions of the system S and measuring device M before their interaction,
their joint wave function after the observation takes the form [4]

P(z) = Pp(zs)Pp(zm — z5) - (6.13)

For t > 0", the system S and M are dynamically decoupled, and their evolution is
governed by the Hamiltonian

H(‘Tapat) :HS(.TS,pS,t)+HM($M,pM,t), (614)

so that the Green’s function associated to the corresponding operator H can be factored as
G(z,s7y,t) = Gs(zs, 895, t)Gum(Tar, $;ym, 1) - (6.15)

However, the result of the interaction between S and M is that these two systems are
coupled through the end-point density ¢(x,0",y,0"). This coupling is of course preserved
when the end-point density q(z,0",y,T) of the joint system is computed by propagating
the reverse heat equation (2.16b) over a finite interval (0", 7). Thus, the components zg(t)
and z/(t) of the combined quantum diffusion z(t) are statistically correlated.

According to Theorem 6.1 of [21], the correlation existing between zg(t) and z(¢)
implies each of them is a reciprocal diffusion, but not of quantum type. Specifically, for

to = 0" <ty < ... <ty = T, the marginal finite joint densities of z5(ty), ..., zs(tn)
(resp. zp(to), ..., zam(tn)) can be expressed as
N-1
ps(zso,to;--- ;TSN tN) = qs(®s0, to; TsN, tN) H Gs5(Tsky tk; TSk415tht1) (6.16a)
k=0
pym(Trmo,to;- - TN, EN)
N-1
= qu(@ a0, to; aens t) [ [ Gar@ashs ths askgns teg) (6.16b)
k=0
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where the end-point densities gg and gjs are given by
qs(zs0,0"5ys7,T) = /GM(SUMO, 0% ymr, T)g(z, 075y, T)daprodynmr (6.17a)
am(zr0,0 5 ymr, T) = /Gs(fvso, 05 ys7, T)q(z, 075y, T)dzsodysr - (6.17b)

However, the reciprocal diffusions specified by the above statistics do not obey the closure
rules (2.30a)—(2.30b). This indicates that after the system S has interacted with M, the two
become inexorably intertwined, and one cannot be analyzed without the other. However, it
would be rather complicated if, to analyze S after a measurement takes place, we needed to
consider its joint evolution with M, even though the two systems have no further interaction
for ¢ > 0T. It turns out that, if the initial wavefunction of the measurement device M is a
minimum uncertainty Gaussian wavepacket, only the measurement result z,,(0") is needed
to analyze zg(-) for t > 07.

Theorem 6.1 Assume that the initial wavefunction of M is a minimum uncertainty Gaus-
sian wavepacket, so that in (6.12b), we have

Ry

Ru(zm) = _T(l'M —an)? + Bu (6.18a)

Su(zm) = Yvmzum, (6.18b)

where apr, Bar, Y and Ry are constants. Then, for t > 0% xg(:) and zp(-) are con-
ditionally independent given the initial value z(0%) of the combined process. Furthermore,
conditioned on the measurement x3,(0%), zs(-) is a quantum diffusion.

Proof: The end-point density gas corresponding to the Gaussian wavepacket (6.18a)—
(6.18b) takes the form

am (T, ym) = eXP(—RM(UUM —am)(ym — am) —ym(ym — Tm) + ﬁQ) ) (6.19)

with g constant. This implies that the joint end-point density (6.6) for S and M at ¢t = 07,
can be factored as

Q($50+;ya 0+) = fS(an+;y550+)fM($aO+;yMaO+) ) (620)
with

fs(@,07;y5,0%) = gs(zs,ys) exp (RM(-TM — x5 —am)ys + ym(ys — $5)) (6.21a)

fM($7O+;yM70+)

= exp (—RM(HEM — x5 —by)(ym — an) — ym(ym — zar) + 5@) , (6.21b)

Since the dynamics of S and M are decoupled for t > 0T, the end-point density ¢(z,0%";y,T)
obtained by propagating (2.16b) with initial condition (6.20) can also be decomposed as

q(.’IJ,O+;y,T) = fS(‘TaO+;ySaT)fM("E,O+;yM’T) - (622)
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Substituting this expression and the factored form (6.15) for the Green’s function of the
joint system formed by S and M for ¢t > 07, it is easy to verify that for g = 07 < t; <

... <ty =T, the finite joint densities of z(ty), z(t1), ..., x(tx) can be factored as
p(xo,to;-- 3TN, EN) = Ps|eo+)(@s1,t15- - ;TSN TN | T0)
Py |20+ (TM1, 13- - TN, EN | z0)p(z0,0%),  (6.23)
where
Ps|z0+)(Ts1,t15 -+ ;5N EN | 20)
N-1
= CS(wO)fS($0>0+§ySN,tN) H GS($Sk,tk;$Sk+1;tk+1) (6.24a)
k=0
P z0t) (M1t 5 TN, EN | 20)
N-1
= CM(wO)fM(an 0+; YMN, tN) H GM(CCMIC, th, TME+1, tk+1) (6.24b)
k=0

are the finite joint densities of zg(-) and z/(-) conditioned on z(0"). In (6.24a)—(6.24b),
cs and ¢y are functions of zg only, which satisfy (cscas)(z)p(z,07) = 1. The factored form
(6.23) for the joint densities of zg(-) and z(-) implies they are conditionally independent
given the initial value z(0") of the joint process.

As a consequence, the conditional density of zg(-) given z(-) is identical to the con-
ditional density of zg(-) given z7(0"), so that we only need the measurement z3,(07) to
analyze S for ¢ > 0*. From (6.7), we see that the conditional density of zg(0") given
za(07) = z3s can be expressed as

psim (s, 0" | zar) = ps(as) exp(—Ru(zs — xar — anr)?)/pm (2, 0%) (6.25)

where pps(z37,0") denotes the marginal density of £3,(07). Conditioned on zs(0") = z3y,
zg(-) forms a reciprocal diffusion with Hamiltonian Hg and end-point density

q5|M($S,O+;ySaO+ | -TM) = q($Sa$M10+;ySa$M70+)/pM(‘TM10+) - (626)

Taking into account the form (6.6) for the joint end-point density g(z,0%;y,0") at the
end of the measurement, we find that the function Mg ;s corresponding to the conditional
end-point density gg|ps can be expressed as

Mg (as,bs, 07 | zar) = Ms(as, bs)
—RM[(GS — T+ OAM)2 — b?g] — ’}/M(as + bs) + d(.TM) , (627)

where d(zps) depends on zps only. According to (2.22a)—(2.22b), the conditional mean
momentum and stress tensor are given by

we (25,07 | zy) = ws(zs) —ym (6.28a)
R
wsm(zs, 07 [ zp) = ws(zs) + TM (6.28b)
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Using the expression (6.25) for the conditional density pg|us, it is then easy to verify that,
provided zs(+) is a quantum diffusion before the measurement, for ¢ > 0", conditioned on
the measurement zp7(07), it is also a quantum diffusion, i.e., it obeys the closure rules
(2.30a)—(2.30b). Specifically, with

Ssim(zs, 07 | zar) = Ss(zs) — ymas (6.29)
we have
’LUS‘M(.’I?S,O—i_ | zpr) = VSSS‘M(x5,0+ | zar) (6.30a)
w0 (25,07 | 2a) = —ivg In pg ay (3,07 | za7) - (6.30b)
O

The Rjs/2 term which is added to the a priori stress tensor 7g to obtain the a posteriori
stress tensor mg|ps in (6.28b) admits a simple interpretation. Specifically, the Gaussian
wavepacket (6.18a)—(6.18b) which is employed to measure the position of S has for variance
(2Ry;) " !. Because of Heisenberg’s uncertainty principle, our improved knowledge of the
position of S comes at the price of an increase of Rjs/2 in the variance of its momentum.

Example 6.1 To illustrate the above results, consider the case where S is a free particle,
whose initial wavefunction is itself a minimum uncertainty wavepacket, so that in (6.12b)
we have

Rs(zs) = —%(ivs —as)’ + Bs (6.31Db)
Ss(zs) = ~szs. (6.31b)

In (6.31b)—(6.31b), the parameters ag and s specify the a priori classical trajectory
zcs(t) = as + st (6.32)

about which S would evolve in the absence of measurement. By substituting the Gaussian
densities for the S and M wavepackets inside the expression (6.7), we find that after the
measurement, z(0") is Gaussian with mean

_ as
m = [ s + aar ] (6.33a)
and variance ) ) )
_*|Ts Ts
K= 5 [ r% 7% +7"12v[ ] , (6.33Db)
where
ré = R ri =Ry} (6.34)

are the a priori 72 minimum uncertainty wavepacket parameters for S and M, respectively.

Then, from (6.6) and (6.26), the conditional end-point density of zg(-) given z2,(0") =z,
can be expressed as

QS\M(QUSaO_I_;yS,O—i_ | xM)

= exp (RS|M(~TS —asim)(Ys — asim) — vsim(ys — zs) + ﬁsuvr) : (6.35)
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with

Rsjy = Rs+Ru (6.36a)
YsiM = VS — M (6.36Db)
Rgmasiy = Rsas+ Ru(zm — am) - (6.36¢)

In this expression, gy is the conditional mean of z5(0™) given the measurement z,(07) =
xp and ys|pr is the new classical momentum for S, which includes a component —yys due
to the interaction between S and M. But in (6.35) we immediatedly recogize the end-point
density for a minimum uncertainty wavepacket centered about the a posteriori classical
trajectory

zosim(t) = asip + s mt (6.37)

and with parameter
rem = s  +raf) (6.38)

so that conditioned on x2/(0%) = s, 5(t) is a Gaussian process with mean z¢g|a(t) and
covariance (3.4) with 72 = r§| - Note that (6.36c) and (6.38) are the standard expressions
for the conditional mean and variance of a random variable z5(0) ~ N(as,7%/2) given a
measurement

2y (0) = apns +25(0) + nar (6.39)

where the error nar ~ N(0,72,/2) is independent of z5(0). O

An interesting aspect of the above example is that the measurement process affects
the classical trajectory about which the wavepacket evolves: the a priori classical trajectory
Tcs(t) given by (6.32) is replaced by the a posteriori trajectory x¢ g ar(t) specified by (6.37).
This may explains why in the two-slit diffraction experiment, the interference trajectories
vanish when a measurement device is employed to determine the path followed by parti-
cles. Specifically, for a particle following an interference trajectory, the position estimate
generated by the measuring device is necessarily +¢ (the interference trajectories are not
detectable), so that the a-posteriori classical trajectory is required to go through either the
top or bottom slit, thus eliminating all interference trajectories.

Example 6.2 Assume now that S is a harmonic oscillator with potentials

As(zs,t) =0 ,  ¢s(zs,t) = (wzs)?/2, (6.40)
which is initially in its coherent state, i.e.,
w
Rs(xs) = —5(1‘ — 055)2 +Bs Sz(l‘s) =0. (6.41)
For simplicity we assume that aps = vy = 0 in the measuring Gaussian wavepacket.
Because the initial wavepacket (6.41) has the same form as in Example 6.1, the conditional
end-point density gg s admits the form (6.35), with g3 = 0, where Ry = w in the

expressions (6.36a) and (6.36¢c) for Rgjar and agjar- Let now

o m(t) = agpmcos(wt) ,  posim(t) = —wag)y sin(wt) (6.42)
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be the a posteriori classical trajectory and the corresponding momentum. Based on the
results of [21, §4], the end-point density gg|a/(7s, 0%;ys,T | zp) admits the structure

Inggn(zs,0%5ys,T)

1 s — +
= o5 —s0au(0) us —zesu(T) ] Quul0.)| %5 2O
—[ 25 —2cgm(0%) ys —zosm(T) | [ fgié\fﬂgo(;)) ] + Bsim(0,T),  (6.43)

where the 2 x 2 matrix Qg 37(0,) satisfies the Riccati equation

dQs|m 0 0 0 0
with initial condition
0,0) = . 6.44b
Qau00) = | 0 (6.440)
This gives
Rsim [ k7 1sin(wT) 1
Qom(0,T) = cos(wT) [ 1 ksin(wT) |’ (6.452)
where

represents the percentage decrease in the variance of z5(0) brought about by the observation
of zp7(0).

As shown in [21], the Green’s function of the harmonic oscillator with potentials (6.40)
is given by

Gs(zs,s;ys,t) = Ot — s) exp(— [(22 + 92) cos(w(t — s)) — 2xy]> (6.46a)

2sin(w(t — s))

with

w 1/2
Clt—s) = (27r sin(w(t — s))) (6.46b)

for t > s. Note that the requirement that Gg should decay as |y| — oo implies it is defined
only for t — s < 7/2w, which corresponds to one quarter of the period of the harmonic
oscillator. Then, the a posteriori joint density of g(0") and zg(T) given zp(01) = zp,
can be expressed as

psim(s,0%5ys, T [ zy) = Gs(zs,0;ys,T) gsim (25,0759, T | 2ur)
_ zosm(07) ] )
- N Pg ., (0,T)), 6.47
(| osu ) | Pswo (6.47)
where

P (0,T) = 1 K Kk cos(wT') — sin(wT) ] (6.48)

2w | Keos(wT) —sin(wT) kcos?(wT) + k™! sin?(wT)
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denotes the conditional covariance matrix of zs(0") and zg(T"). In particular, when T =
7/2w is one quarter of a period of the harmonic oscillator, Pg 3,(0,7") becomes singular,
and if 2(t) = 75(t) — Tcs|a(t) represents the deviation of zs(-) from its a posteriori classical
trajectory, we have .

2(0) = —kz(7/2w) ~ N(0, —) . (6.49)

2w

To obtain a complete statistical description of z(t¢), note from the characterization of
Gaussian reciprocal diffusions given in [19], that it satisfies the second-order stochastic
differential equation

Luz(t) = £@) (6.50a)
A d?
= —W—wQ (6.50b)

with boundary conditions (6.49), where the noise £(t) is a generalized Gaussian process
independent of z(0), with zero mean and covariance

E[E(t)§(s)] = Lud(t —s) . (6.51)

The Green’s function of the operator Ly with homogeneous Dirichlet conditions at ¢ = 0
and t =T = 7/2w is given by

L cos(wt)sin(ws) for ¢ > s

Tr(t,s) = { (6.52)

€~ &

sin(wt) cos(ws) for s>1t.

As shown in [19], the solution of the stochastic boundary value problem (BVP) (6.49)—(6.51)
is given by
z(t) = I(t) + cos(wt)z(0) + sin(wt)z(T) , (6.53a)

where

I(t) = /0 Ty(t, s)é(s)ds (6.53b)

is a zero mean Gaussian process with covariance I'7 (¢, s). Then, by using (6.49), and (6.52),
we find that the conditional covariance of z(t) is given by

-1

Kgm(t,s) = %[n cos(wt) cos(ws) + k™~ sin(wt) sin(ws) — sin(w|t — s])] . (6.54)

In the absence of measurement, i.e. when k = 1, it reduces to the covariance
1 .
Kg(t,s) = 2—(cos(w|t—s|) — sin(w|t — s|)) (6.55)
w
of the shifted cosine process [7] which models the coherent state of the harmonic oscillator.

This process is stationary, but the a posteriori covariance Kg wu(t, s) is not stationary. In
fact, the variance of z(t) is given by

Ksr(tst) = %(KCOSQ(M) +rLsin(wt)) | (6.56)
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which can be recognized as corresponding to a “squeezed state” of the harmonic oscillator
(see [6, pp. 103-104]). At the times ¢ = nmw/w with n integer when the classical trajectory
zog m(t) reaches an extremum, the variance of the deviation process z(t) equals x(2w) ™,
and is thus “squeezed” below the variance (2w)~! of the coherent state. On the other hand,
at the times 7/2w + nm/w when the classical trajectory passes through the origin, and
the classical momentum reaches an extremum, the variance of the deviation process equals
Kk 1(2w) !, which “stretches” the coherent state value.

In summary, after the coherent state of the harmonic oscillator is measured, the clas-
sical trajectory about which the wavepacket evolves is shifted from z¢s(t) to zoga(t), to
reflect the measured value of the initial position, and the state is “squeezed,” to reflect the
decrease in the position uncertainty due to the measurement. Unfortunately, because of the
uncertainty principle, the improvement in the knowledge of the position comes at the price
of a greater uncertainty in the momentum, which causes a stretching of the wavepacket
when it passes though the origin.

Since the squeezed state process is Gaussian, its mean velocity and stress tensor take
the form [19, 21]

vsm(Ts:t | zm) = posm(t) + Vs (t)(zs — zosim(t)) (6.57a)
Tsm(@s,t|zm) = mwon(t), (6.57b)

where Vg 5/(t) and 7g) () are functions of ¢ only, which can be expressed in terms of the
covariance Kgps as

1 (0Kgsim OKgin _
Voml®) = 5 (Tt'(ﬁ,t) + =2 ,t)) K5k (t,1) (6.58a)
]_ 82K5‘M + aZKs‘M _ 2
Tsm(t) = 2 (W(t 1) + W(t t) | = Ksinr(t, )V (¢) - (6.58b)
This gives
-1 _
Vo () K (t,8) = (”27“) sin(wt) cos(wt) (6.59b)
w Kgpy(t,1)
f = _ 6.59b
msiu (1) 2(k cos?(wt) + k1 sin?(wt)) 4 ’ ( )

where the last equality indicates that the closure rule (2.30b) holds, so that the squeezed
state process is a quantum diffusion, as expected.

Finally, note that the BVP (6.49)—(6.51) defines the squeezed process z(-) for only one
quarter of the period of the harmonic oscillator. To construct this process over longer
periods of time, we may set z(0) = z(m/w) in the boundary condition (6.49) and use it
it to specify a stochastic BVP for the next quarter of a period. Thereafter, we may set
z(t) = z(t + m/w), so that the squeezed state process has half the oscillator’s period. O

7 Conclusions

By employing a form of stochastic mechanics introduced in [21], reciprocal quantum dif-
fusion models have been constructed for the two-slit particle diffraction experiment, and
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for quantum measurements. The two-slit model was of compound type, in the sense it
was formed by a pair (z(t), J) representing a position coordinate and a discrete path in-
dex. This model was used to explain the disappearance of interference fringes when “which
path” information becomes available. The key aspect of the measurement model was that,
conditioned on the recorded measurement, the observed system still evolves according to
a quantum diffusion. The disappearance of interference trajectories when the path taken
by each diffracting particle is estimated, and the readjustment of the classical trajectories
about which the wavepackets of Examples 6.1 and 6.2 evolve, after a measurement has
been performed, strongly suggest that quantum mechanics is purely an information based
theory, where physical reality does not exist independently of the information available to
an observer.
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