# Old and New Results in Robust Hypothesis Testing

Bernard C. Levy Department of Electrical and Computer Engineering University of California, Davis

January 12, 2008





- Binary Hypothesis Testing
- Robust Hypothesis Testing
- Huber's Clipped LR Test
- Robustness with a KL Divergence Tolerance
- Simulations



# **Binary Hypothesis Testing**

- Consider observation  $Y \in \mathbb{R}$  where under hypothesis  $H_0$ , Y has probability density  $f_0(y)$  and under  $H_1$ , it has density  $f_1(y)$ .
- Given Y, we need to decide between H₁ or H₀. We use a randomized decision rule δ ∈ D, where given Y = y, we select H₁ with probability δ(y) and H₀ with probability 1 − δ(y), where 0 ≤ δ(y) ≤ 1 for all y ∈ ℝ. Note that set D is convex.
- Bayesian hypothesis testing assumes a priori probabilities

$$\pi_0 = P[H_0]$$
,  $\pi_1 = 1 - \pi_0 = P[H_1]$ 

and costs  $C_M$  and  $C_F$  for a miss (deciding  $H_0$  when  $H_1$  holds) and a false alarm (deciding  $H_1$  when  $H_0$  holds), respectively.



#### **Binary hypothesis testing(cont'd)**

Let

$$P_F(\delta, f_0) = \int_{-\infty}^{\infty} \delta(y) f_0(y) dy$$
$$P_M(\delta, f_1) = \int_{-\infty}^{\infty} (1 - \delta(y)) f_1(y) dy$$

denote the probability of false alarm and of a miss under  $H_0$  and  $H_1$ , respectively. The optimal Bayesian test minimizes the risk

$$\begin{aligned} R(\delta, f_0, f_1) &= C_F P_F(\delta, f_0) \pi_0 + C_M P_M(\delta, f_1) \pi_1 \\ &= C_M \pi_1 + \int_{-\infty}^{\infty} \delta(y) [C_F \pi_0 f_0(y) - C_M \pi_1 f_1(y)] dy \,. \end{aligned}$$



#### **Binary hypothesis testing(cont'd)**

**Optimal Bayesian test:** Let  $L(y) = f_1(y)/f_0(y)$  = likelihood ratio (LR) and  $\tau_B = C_F \pi_0/(C_M \pi_1)$ . The test minimizing the Bayesian risk is given by

$$\delta(y) = \begin{cases} 1 & L(y) > \tau_B \\ 0 & L(y) < \tau_B \\ \text{arbitrary} & L(y) = \tau_B \end{cases},$$

and randomization is not needed.

Neyman-Pearson test (of type I): Minimizes  $P_M(\delta, f_1)$  under the constraint  $P_F(\delta, f_0) \leq \alpha$ . Solution:

$$\delta(y) = \begin{cases} 1 & L(y) > \tau \\ 0 & L(y) < \tau \\ p & L(y) = \tau . \end{cases}$$



# **Binary hypothesis testing(cont'd)**

• The threshold  $\tau$  and randomization probability p are selected as follows. Let  $F_L(\ell|H_0) = P[L \le \ell|H_0]$  denote the cumulative probability distribution of likelihood ratio L under  $H_0$ . Then  $F_L(\tau|H_0) = 1 - \alpha$  and p = 0 if  $1 - \alpha$  is in the range of  $F_L(\ell|H_0)$ , and if

$$F_L(\tau_{-}|H_0) < 1 - \alpha < F_L(\tau|H_0)$$

then

$$p = \frac{F_L(\tau | H_0) - (1 - \alpha)}{F_L(\tau | H_0) - F_L(\tau | H_0)}$$

• Both the Bayesian and NP tests rely on the LR function L(y). Only the threshold selection changes.





- Binary Hypothesis Testing
- Robust Hypothesis Testing
- Huber's Clipped LR Test
- Robustness with a KL Divergence Tolerance
- Simulations



#### **Robust Hypothesis Testing**

- The actual probability densities g<sub>0</sub> and g<sub>1</sub> of observation Y under H<sub>0</sub> and H<sub>1</sub> may differ slightly from the nominal densities f<sub>0</sub> and f<sub>1</sub>. Assume g<sub>j</sub> ∈ F<sub>j</sub>, where F<sub>j</sub> denotes a convex neighborhood of f<sub>j</sub> for j = 0, 1.
- Let \$\mathcal{F} = \mathcal{F}\_0 \times \mathcal{F}\_1\$. The robust Bayesian hypothesis problem can be expressed as

$$\min_{\delta \in \mathcal{D}} \max_{(g_0,g_1) \in \mathcal{F}} R(\delta,g_0,g_1) .$$

Since  $R(\delta, g_0, g_1)$  is separately linear with respect to  $\delta$ , and  $(g_0, g_1)$ , the min-max problem has a convex-concave structure. For appropriate choices of metrics,  $\mathcal{D}$  and  $\mathcal{F}$  are compact, so by Von-Neumann's minimax theorem, there exists a saddle point  $(\delta_R, g_0^L, g_1^L)$  satisfying

$$R(\delta_R, g_0, g_1) \le R(\delta_R, g_0^L, g_1^L) \le R(\delta, g_0^L, g_1^L) .$$
(1)



#### **Robust Hypothesis Testing (cont'd)**

• Here  $\delta_R$  = robust test, and  $(g_0^L, g_1^L)$  = least-favorable densities. The second inequality in (1) implies  $\delta_R$  is the optimum Bayesian test for the pair  $(g_0^L, g_1^L)$ , so  $\delta_R$  can be expressed as the LR test

$$L_L(y) = \frac{g_1^L(y)}{g_0^L(y)} \stackrel{H_1}{\underset{H_0}{\geq}} \tau_B \,.$$

• Since  $R(\delta, g_0, g_1)$  is a fixed linear combination of  $P_M(\delta, g_1)$  and  $P_F(\delta, g_0)$ , the first inequality in (1) is equivalent to

 $P_F(\delta_R, g_0) \le P_F(\delta_R, g_0^L) \quad , P_M(\delta_R, g_1) \le P_M(\delta_R, g_1^L)$ (2) for all  $g_0 \in \mathcal{F}_0$  and  $g_1 \in \mathcal{F}_1$ .



#### **Robust Hypothesis Testing (cont'd)**

• The **robust NP test** solves

$$\min_{\delta \in \mathcal{D}_{\alpha}} \max_{g_1 \in \mathcal{F}_1} P_M(\delta, g_1) , \qquad (3)$$

where

$$\mathcal{D}_{lpha} = \{\delta \in \mathcal{D} : \max_{g_0 \in \mathcal{F}_0} P_F(\delta, g_0)\}$$

is the set of decision rules of size less than  $\alpha$ . Since  $P_F(\delta, g_0)$  is a convex function of  $\delta$  for each  $g_0 \in \mathcal{F}_0$ , so is

$$\max_{g_0\in\mathcal{F}_0}P_F(\delta,g_0)\;,$$

hence  $\mathcal{D}_{\alpha}$  is convex.

The cost function P<sub>F</sub>(δ, g<sub>1</sub>) has a convex concave structure, so a saddle point exist, and δ<sub>R</sub> is the optimal NP test for least favorable observation densities (g<sub>0</sub><sup>L</sup>, g<sub>1</sub><sup>L</sup>).





- Binary Hypothesis Testing
- Robust Hypothesis Testing
- Huber's Clipped LR Test
- Robustness with a KL Divergence Tolerance
- Simulations



#### **Huber's Clipped LR Test**

Different choices of neighborhoods *F<sub>j</sub>* yield different robust tests. Let *G<sub>j</sub>(y)* and *F<sub>j</sub>(y)* denote the cumulative probability distribution functions corresponding to the actual and nominal densities *g<sub>j</sub>(y)* and *f<sub>j</sub>(y)* for *j* = 0, 1. For some numbers 0 ≤ *ϵ*<sub>0</sub>, *ϵ*<sub>1</sub>, *ν*<sub>0</sub>, *ν*<sub>1</sub> < 1, Huber considered neighborhoods</li>

$$\mathcal{F}_0 = \{ g_0 : G_0(y) \ge (1 - \epsilon_0) F_0(y) - \nu_0 \text{ for all } y \in \mathbb{R} \}$$
  
$$\mathcal{F}_1 = \{ g_1 : 1 - G_1(y) \ge (1 - \epsilon_1)(1 - F_1(y)) - \nu_1 \text{ for all } y \in \mathbb{R} \}.$$

- The constraints specifying  $\mathcal{F}_j$  are linear in  $g_j$ , so the neighborhoods are *convex*.
- Since functions P<sub>M</sub>(δ<sub>R</sub>, g<sub>1</sub>) and P<sub>F</sub>(δ<sub>R</sub>, g<sub>0</sub>) are linear in g<sub>1</sub> and g<sub>0</sub>, the maximization (2) for the least-favorable densities is a linear programming problem, so solutions will be located on the boundary of F<sub>j</sub>.



#### **Huber's Clipped LR Test (cont'd)**

**Least-favorable densities:** There exists  $I = [y_L, y_U]$  such that over this interval

$$G_0^L(y) = (1 - \epsilon_0) F_0(y) - \nu_0$$
  

$$G_1^L(y) = (1 - \epsilon_1) F_1(y) + \epsilon_1 + \nu_1,$$

so the least-favorable densities are on the boundary of sets  $\mathcal{F}_0$  and  $\mathcal{F}_1$ . For j = 0, 1, this implies

$$g_j^L(y) = (1 - \epsilon_j) f_j(y)$$

over I. Let

$$a(y) = v' f_0(y) + w' f_1(y)$$
  

$$b(y) = v'' f_0(y) + w'' f_1(y) ,$$



#### Huber's Clipped LR Test (cont'd)

#### with

$$v' = \frac{\epsilon_1 + \nu_1}{1 - \epsilon_1} , \quad v'' = \frac{\epsilon_0 + \nu_0}{1 - \epsilon_0}$$
  
 $w' = \frac{\nu_0}{1 - \epsilon_0} , \quad w'' = \frac{\nu_1}{1 - \epsilon_1}.$ 

Let  $\ell_L = L(y_L), \ell_U = L(y_U)$ . Then

$$g_j^L(y) = c_j a(y) \quad , \quad y \le y_L$$
$$g_j^L(y) = d_j b(y) \quad , \quad y \ge y_U \; ,$$

with

$$\frac{c_1}{c_0} = \frac{1-\epsilon_1}{1-\epsilon_0} \ell_L \quad , \quad \frac{d_1}{d_0} = \frac{1-\epsilon_1}{1-\epsilon_0} \ell_U \; .$$

#### GGAM Mini-Conference



#### Huber's Clipped LR Test (cont'd)

Clipping transformation: The least-favorable LR can be expressed as

$$L_L(y) = \frac{g_1^L(y)}{g_0^L(y)} = \frac{1 - \epsilon_1}{1 - \epsilon_0} C(L(y))$$

where the clipping nonlinearity  $C(\cdot)$  is shown below





**Huber's clipped LR test (cont'd)** 

Robust test: The decision rule

$$L_L(y) \stackrel{H_1}{\underset{H_0}{\geq}} \tau_B$$

can be rewritten as

$$C(L(y)) \stackrel{H_1}{\underset{H_0}{\geq}} \eta = \frac{1-\epsilon_0}{1-\epsilon_1} \tau_B .$$



#### Huber's clipped LR test (cont'd)

• For  $\nu_0 = \nu_1 = 0$ , the LF distributions belong to the *contamination class* 

$$\mathcal{N}_j^C = \{g_j : G_j(y) = (1 - \epsilon_j)F_j(y) + \epsilon_j H(y) \text{ for all } y\}$$

contained in  $\mathcal{F}_j$ , where H(y) = arbitrary probability distribution.

• For  $\epsilon_0 = \epsilon_1 = 0$ , the LF densities belong to the *total variation class* 

$$\mathcal{N}_{j}^{TV} = \{g_{j} : |g_{j} - f_{j}|_{1} \le 2\nu_{j}\}$$

contained in  $\mathcal{F}_j$ .

D



- Binary Hypothesis Testing
- Robust Hypothesis Testing
- Huber's Clipped LR Test
- Robustness with a KL Divergence Tolerance
- Simulations



### **Robustness with a KL Tolerance**

• For j = 0, 1 consider neighborhoods

$$\mathcal{F}_j = \{g_j : D(g_j|f_j) \le \epsilon\}$$

where

$$D(g|f) = \int_{-\infty}^{\infty} \ln(g(y)/f(y))g(y)dy$$

is the Kullback-Leibler divergence or relative entropy of density g with respect to f.

- D(g|f) is convex in g, so F<sub>j</sub> is convex. D(g|f) is not a true distance, since it is not symmetric (D(f|g) ≠ D(g|f)) and does not satisfy the triangle inequality. But D(g|f) ≥ 0 with equality if and only if g = f.
- D(g|f) and its dual  $D^*(g|f) = D(f|g)$  admit a non-Riemannian differential geometric interpretation in terms of dual connections.



# **Robustness with a KL Tolerance**

#### **Assumptions:**

- i) The nominal LR  $L(y) = f_1(y)/f_0(y)$  is monotone increasing in y.
- ii)  $f_1(y) = f_0(-y)$ .
- iii)  $0 < \epsilon < D(f_{1/2}|f_0)$ , where  $f_{1/2}(y)$  is the mid-way density on the geodesic

$$f_u(y) = \frac{f_0^{1-u}(y)f_1^u(y)}{Z(u)}$$

linking  $f_0$  and  $f_1$ . Here

$$Z(u) = \int_{-\infty}^{\infty} f_1^u(y) f_0^{1-u}(y) dy$$

= normalization constant.



Department of Electrical and Computer Engineering University of California at Davis

#### **Robustness with a KL Tolerance (cont'd)**

**Robust test and LF densities:** For a minimum probability of error criterion  $(C_F = C_M = 1)$  and equally likely hypotheses, there exists  $y_U > 0$  such that

$$\delta_R(y) = \begin{cases} 1 & y > y_U \\ \frac{1}{2} [1 + \frac{\ln L(y)}{\ln \ell_U}] & -y_U \le y \le y_U \\ 0 & y < -y_U \end{cases},$$

$$g_0^L(y) = \begin{cases} \ell_U f_0(y)/Z(y_U) & y > y_U \\ \ell_U^{1/2} f_1^{1/2} f_0^{1/2}(y)/Z(y_U) & -y_U \le y \le y_U \\ f_0(y)/Z(y_U) & y < -y_U , \end{cases}$$

 $g_1^L(y) = g_0^L(-y)$ , with  $\ell_U = L(y_U)$ .

GGAM Mini-Conference



#### **Robustness with a KL Tolerance (cont'd)**

Nonlinear transformation: The least-favorable LR can be expressed as a nonlinear transformation  $L_L = q(L)$  of the nominal LR.





### **Robustness with a KL Tolerance (cont'd)**

- $g_0^L(\cdot|y_U)$  is parametrized by  $y_U$  with  $g_0^L = f_0$  for  $y_U = 0$  and  $\lim g_0^L = f_{1/2}$  as  $y_U \to \infty$ .
- $y_U$  is selected such that  $D(g_0^L(\cdot|y_U)|f_0) = \epsilon$ . Relies on showing that

$$D(y_U) = D(g_0^L(\cdot|y_U)|f_0)$$

is a monotone increasing function of  $y_U$ .





- Binary Hypothesis Testing
- Robust Hypothesis Testing
- Huber's Clipped LR Test
- Robustness with a KL Divergence Tolerance
- Simulations



#### Simulations

Consider the nominal model

$$H_0 : Y = -1 + V \quad H_1 : Y = 1 + V ,$$

with  $V \sim N(0, \sigma^2)$ , so  $f_0 \sim N(-1, \sigma^2)$ .  $D(y_U)$  is plotted below for SNR =0dB ( $\sigma = 1$ ).



#### **Simulations (cont'd)**

#### LF densities $g_0^L$ for $\epsilon = 0.1$ and SNR = 0, 10dB.





### **Simulations (cont'd)**

Comparison of worst-case P[E] for test  $\delta_R$  with  $\epsilon = 0.01, 0.1$  against P[E] for the Bayesian test on nominal model.





# 27

### References

- P. J. Huber, "A robust version of the probability ratio test," *Annals Math. Stat.*, vol. 36, pp. 1753–1758, Dec. 1965.
- [2] P. J. Huber, Robust Statistics. New York: J. Wiley, 1981.
- [3] B. C. Levy, "Robust hypothesis testing with a relative entropy tolerance," preprint, available at http://arxiv.org/abs/cs/0707.2926, July 2007.
- [4] B. C. Levy, *Principles of Signal Detection and Parameter Estimation*. Springer Verlag, May 2008 (to appear).





#### Thank you!!

