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Binary Hypothesis Testing
ﬁ

e Consider observation Y € R where under hypothesis Hg, Y has
probability density fo(y) and under Hq, it has density f;(y).

e Given Y, we need to decide between H1 or Hy. We use a randomized
decision rule 0 € D, where given Y = y, we select H; with probability
d(y) and Hy with probability 1 — d(y), where 0 < §(y) < 1forall y € R.
Note that set D 1s convex.

e Bayesian hypothesis testing assumes a priori probabilities
WOZP[H()] y 7T1:1—7T0:P[H1]

and costs (') and C'r for a miss (deciding Hy when H; holds) and a
false alarm (deciding H; when H( holds), respectively.
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Binary hypothesis testing(cont’d)
ﬁ

Let

Peofo) = [ " 5 foly)dy

— 00

Putsf) = | (1= 5(y) ) dy

— 00

denote the probability of false alarm and of a miss under Hy and Hi,
respectively. The optimal Bayesian test minimizes the risk

R(6, fo, f1) CrPr(9, fo)mo + Crvi Pr (9, f1)m

~ oum+ [ " 5()[Crmofoly) — Carmi fi(y)]dy
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Binary hypothesis testing(cont’d)

ﬁ
Optimal Bayesian test: Let L(y) = f1(y)/fo(y) = likelihood ratio (LR) and
75 = Cpmo/(Chr71). The test minimizing the Bayesian risk is given by

/

1 L(y) > TR
d(y) = 1 0 L(y) < 78
arbitrary L(y) =7,

\

and randomization i1s not needed.

Neyman-Pearson test (of type I): Minimizes P, (9, f1) under the constraint
Pr(d, fo) < a. Solution:

6(y) = 1
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Binary hypothesis testing(cont’d)
ﬁ

e The threshold 7 and randomization probability p are selected as follows.
Let F;,(¢|Hy) = P[L < £|Hy] denote the cumulative probability
distribution of likelihood ratio L under Hy. Then F(7|Hy) = 1 — « and
p = 0if 1 — o is in the range of F'(¢|Hy), and if

Fr(t_|Hpy) <1—a < Fr(7|Hy)
then

_ FL(T|H0)—(1—04)
Fr(|Ho) — F(7-|Ho)

e Both the Bayesian and NP tests rely on the LR function L(y). Only the
threshold selection changes.
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Robust Hypothesis Testing
ﬁ

e The actual probability densities gy and g; of observation Y under Hy and

H, may differ slightly from the nominal densities fy and f;. Assume
g; € F;, where F; denotes a convex neighborhood of f; for 7 =0, 1.

o Let 7 = Fy x Fi. The robust Bayesian hypothesis problem can be
expressed as

min max R(9, go, :
0€D (go,91)EF ( J0 gl)

Since R(9, go, g1) is separately linear with respect to d, and (gg, g1 ), the
min-max problem has a convex-concave structure. For appropriate
choices of metrics, D and F are compact, so by Von-Neumann’s minimax

theorem, there exists a saddle point (6, g&*, g¥) satisfying

R(5R7907gl) S R(éRaggagf) S R(57 ggagf) . (1)
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Robust Hypothesis Testing (cont’d)
ﬁ

e Here 6 = robust test, and (g¢', gi*) = least-favorable densities. The
second inequality in (1) implies 0 is the optimum Bayesian test for the
pair (g&', g¥), so i can be expressed as the LR test

[y 2

L

— TB .
o (y) }?0

Q

Li(y) =

)

e Since R(9, go, g1) is a fixed linear combination of Py, (4, g1) and
Pr(9, go), the first inequality in (1) is equivalent to

PF(dRagO) S PF(5R79(1):) 7PM(5R791) S PM(dRagf) (2)

for all gg € Fp and g1 € F;.
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Robust Hypothesis Testing (cont’d)
ﬁ

e The robust NP test solves

I Py (0 3
J2B. ey P o), -

where

D, ={6€D: nax Pr(d,90)}

is the set of decision rules of size less than «. Since Pr (9, go) is a convex
function of 9 for each gg € Fy, so is

max Pr(9,g0) ,
90673_50 F( go)

hence D, 1s convex.

e The cost function Pr (9, g1) has a convex concave structure, so a saddle
point exist, and dr is the optimal NP test for least favorable observation
densities (g, g¥).

GGAM Mini-Conference G Department of Electrical and Computer Engineering

University of California at Davis




Outline

e Binary Hypothesis Testing
e Robust Hypothesis Testing
e Huber’s Clipped LR Test
e Robustness with a KL Divergence Tolerance

e Simulations

GGAM Mini-Conference

10

= 2\ Department of Electrical and Computer Engineering

University of California at Davis



11

Huber’s Clipped LR Test
ﬁ

e Different choices of neighborhoods F; yield different robust tests. Let

G;(y) and F;(y) denote the cumulative probability distribution functions
corresponding to the actual and nominal densities g;(y) and f;(y) for
7 =0, 1. For some numbers 0 < €g, €1, g, /1 < 1, Huber considered

neighborhoods
Fo = {90 : Go(y) > (1 —e€9)Fo(y) — vp forall y € R}
f1 — {91 . 1—G1(y)2(1—61)(1—F1(y>)—1/1 forallyG]R}.

e The constraints specifying F; are linear in g;, so the neighborhoods are

convex.

e Since functions Py;(dgr, g1) and Pr(dg, go) are linear in g; and go, the
maximization (2) for the least-favorable densities is a linear programming
problem, so solutions will be located on the boundary of F;.

GGAM Mini-Conference f"g Department of Electrical and Computer Engineering
3 20!

University of California at Davis




12

Huber’s Clipped LR Test (cont’d)
ﬁ

Least-favorable densities: There exists I = [y, yy| such that over this
interval

(vy) = (1—e€0)Fo(y) —vo
Gi(y) = (I—e)Fi(y) +e+u,

so the least-favorable densities are on the boundary of sets Fy and F7. For
7 =0, 1, this implies

97 () = (1—¢)f;(v)

over I. Let

bly) = v'foly) +w" fr(y),
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Huber’s Clipped LR Test (cont’d)

with
Y — €1 + 11
1—61
/ Vo
w =
1—60

with
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1—60 v

€0 + o
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Huber’s Clipped LR Test (cont’d)
ﬁ

Clipping transformation: The least-favorable LR can be expressed as

{’ 1—61
L) = i =

C(L(y))

where the clipping nonlinearity C(-) is shown below
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Huber’s clipped LR test (cont’d)
ﬁ

Robust test: The decision rule

can be rewritten as
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Huber’s clipped LR test (cont’d)
ﬁ

e For vy = 11 = 0, the LF distributions belong to the contamination class
/\/'jc ={g; : Gj(y) = (1 —¢€;)F;(y) + ¢;H(y) for all y}
contained in F;, where H (y) = arbitrary probability distribution.

e For ¢g = €; = 0, the LF densities belong to the fotal variation class

NV ={g; : |lg; — filh < 2v5}

contained in F;.
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Robustness with a KL. Tolerance
ﬁ

e For 3 = 0, 1 consider neighborhoods

Fij =195 + D(gjlfj) < e}

where

DN = | " nlg(w)/ F(9))g(y)dy

1s the Kullback-Leibler divergence or relative entropy of density g with
respect to f.

e D(g|f)is convex in g, so F; is convex. D(g|f) is not a true distance,
since it is not symmetric (D(f|g) # D(g|f)) and does not satisfy the
triangle inequality. But D(g|f) > 0 with equality if and only if g = f.

e D(g|f) and its dual D*(g|f) = D(f|g) admit a non-Riemannian
differential geometric interpretation in terms of dual connections.
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Robustness with a KL. Tolerance
ﬁ

Assumptions:

i) The nominal LR L(y) = f1(y)/fo(y) is monotone increasing in y.

i) f1(y) = fo(—y).
iii) 0 < € < D(f1/2|f0), where fi/2(y) is the mid-way density on the

geodesic
_ fo ") fi(y)
linking fo and f1. Here
Zw = [ fWhHT Wy

= normalization constant.
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Robustness with a KL Tolerance (cont’d)
ﬁ

Robust test and LF densities: For a minimum probability of error criterion
(Cr = Cjp = 1) and equally likely hypotheses, there exists yyy > 0 such that

/

1 Yy > Yu
Or(y) = M+ 3]y <y<wyy
\ 0 Yy < —Yu ,
(
lufo(y)/Z(yu) Y > Yu
ww) = S GFPHRPRPW)/Z(00) —yw <y <y
\ foy)/Z(yv) y < —yu,
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Robustness with a KL Tolerance (cont’d)

Nonlinear transformation: The least-favorable LR can be expressed as a
nonlinear transformation Ly = ¢(L) of the nominal LR.

A Q(L>
L/E/

L iy |
: |

| |

KUL: |

| - 7
L B 7/
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Robustness with a KL Tolerance (cont’d)
ﬁ

e g&(-|lyy) is parametrized by yy with gi* = f, for yy = 0 and
lim g§ = f1/2 as yu — oc.

e yy is selected such that D(g (-|yv)|fo) = €. Relies on showing that

D(yu) = D(g5 (:lyv)| fo)

1S @ monotone increasing function of yg;.
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Simulations

ﬁ

Consider the nominal model

Hy:Y=—-14V H :Y=1+V,

with V ~ N(0,02), so fo ~ N(—1,0?). D(yy) is plotted below for SNR
=0dB (o0 = 1).
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Simulations (cont’d)
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ﬁ

LF densities gél for e = 0.1 and SNR =0, 10dB.
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Simulations (cont’d)
ﬁ

Comparison of worst-case P|FE] for test dp with e = 0.01, 0.1 against P|E]
for the Bayesian test on nominal model.

PE

—— nominal

— — -eps=0.01
— —eps=0.1

SNR
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Thank you!!
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