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Binary Hypothesis Testing
� Consider observation � �� where under hypothesis � � , � has

probability density � � �� 	 and under � 
 , it has density � 
 �� 	 .

� Given � , we need to decide between � 
 or � � . We use a randomized
decision rule � �� , where given �  � , we select � 
 with probability

� �� 	 and � � with probability ��� � �� 	 , where � � � �� 	 � � for all� �� .
Note that set� is convex.

� Bayesian hypothesis testing assumes a priori probabilities

� �  � � � � � � � 
  � � � �  � � � 
 �

and costs � � and � � for a miss (deciding � � when � 
 holds) and a
false alarm (deciding � 
 when � � holds), respectively.
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Binary hypothesis testing(cont’d)

Let

� � � � � � � 	  �
� � � �� 	 � � �� 	�� �

� � � � � � 
 	  �
� � � � � � �� 	 	 � 
 �� 	�� �

denote the probability of false alarm and of a miss under � � and � 
 ,
respectively. The optimal Bayesian test minimizes the risk

� � � � � � � � 
 	  � � � � � � � � � 	 � � � � � � � � � � 
 	 � 


 � � � 
 

�
� � � �� 	 � � � � � � � �� 	� � � � 
 � 
 �� 	 �� � !
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Binary hypothesis testing(cont’d)

Optimal Bayesian test: Let " �� 	  � 
 �� 	 # � � �� 	 = likelihood ratio (LR) and

$ %  � � � � # � � � � 
 	 . The test minimizing the Bayesian risk is given by

� �� 	 
&''

( '')
� " �� 	+* $ %

� " �� 	+, $ %

arbitrary " �� 	  $ % �

and randomization is not needed.

Neyman-Pearson test (of type I): Minimizes � � � � � � 
 	 under the constraint

� � � � � � � 	 �.- . Solution:

� �� 	 
&''

( '')
� " �� 	 * $

� " �� 	 , $

/ " �� 	  $ !
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Binary hypothesis testing(cont’d)
� The threshold $ and randomization probability / are selected as follows.

Let 0 1 ��2 3 � � 	  � � " � 2 3 � � � denote the cumulative probability
distribution of likelihood ratio " under � � . Then 0 1 � $ 3 � � 	  � � - and

/  � if � � - is in the range of 0 1 �2 3 � � 	 , and if
0 1 � $ � 3 � � 	+, � � - , 0 1 � $ 3 � � 	

then

/  0 1 � $ 3 � � 	� � � � - 	

0 1 � $ 3 � � 	� 0 1 � $ � 3 � � 	

� Both the Bayesian and NP tests rely on the LR function " �� 	 . Only the
threshold selection changes.
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Robust Hypothesis Testing
� The actual probability densities 4 � and 4 
 of observation � under � � and

� 
 may differ slightly from the nominal densities � � and � 
 . Assume

4 5 �6 5 , where6 5 denotes a convex neighborhood of � 5 for 7  � � � .

� Let6  6 �98 6 
 . The robust Bayesian hypothesis problem can be
expressed as

:; <= >? : @ABCD ECF G >H � � � � 4 � � 4 
 	 !

Since � � � � 4 � � 4 
 	 is separately linear with respect to � , and � 4 � � 4 
 	 , the
min-max problem has a convex-concave structure. For appropriate
choices of metrics,� and6 are compact, so by Von-Neumann’s minimax
theorem, there exists a saddle point � � I � 4 1� � 4 1
 	 satisfying

� � � I � 4 � � 4 
 	 � � � � I � 4 1� � 4 1
 	 � � � � � 4 1� � 4 1
 	 ! (1)
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Robust Hypothesis Testing (cont’d)
� Here � I = robust test, and � 4 1� � 4 1
 	 = least-favorable densities. The

second inequality in (1) implies � I is the optimum Bayesian test for the
pair � 4 1� � 4 1
 	 , so � I can be expressed as the LR test

" 1 �� 	  4 1
 �� 	
4 1� �� 	

J F
KJ D
$ % !

� Since � � � � 4 � � 4 
 	 is a fixed linear combination of � � � � � 4 
 	 and

� � � � � 4 � 	 , the first inequality in (1) is equivalent to

� � � � I � 4 � 	 � � � � � I � 4 1� 	 � � � � � I � 4 
 	 � � � � � I � 4 1
 	 (2)

for all 4 � �6 � and 4 
 �6 
 .
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Robust Hypothesis Testing (cont’d)
� The robust NP test solves

: ; <= >? L : @ACF >H F � � � � � 4 
 	 � (3)

where
� M  N � �� O : @AC D >H D � � � � � 4 � 	 P

is the set of decision rules of size less than- . Since � � � � � 4 � 	 is a convex
function of � for each 4 � �6 � , so is

: @AC D >H D � � � � � 4 � 	 �
hence� M is convex.

� The cost function � � � � � 4 
 	 has a convex concave structure, so a saddle
point exist, and � I is the optimal NP test for least favorable observation
densities � 4 1� � 4 1
 	 .
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Huber’s Clipped LR Test
� Different choices of neighborhoods6 5 yield different robust tests. Let

Q 5 �� 	 and 0 5 �� 	 denote the cumulative probability distribution functions
corresponding to the actual and nominal densities 4 5 �� 	 and � 5 �� 	 for

7  � � � . For some numbers � �.R � �R 
 �TS � � S 
 , � , Huber considered
neighborhoods

6 �  N 4 � O Q � �� 	U � � � R � 	 0 � �� 	� S � for all� �� P

6 
  N 4 
 O � � Q 
 �� 	U � � � R 
 	 � � � 0 
 �� 	 	� S 
 for all� �� P !

� The constraints specifying6 5 are linear in 4 5 , so the neighborhoods are
convex.

� Since functions � � � � I � 4 
 	 and � � � � I � 4 � 	 are linear in 4 
 and 4 � , the
maximization (2) for the least-favorable densities is a linear programming
problem, so solutions will be located on the boundary of6 5 .
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Huber’s Clipped LR Test (cont’d)

Least-favorable densities: There exists V  �� 1 � �W � such that over this
interval

Q 1� �� 	  � � � R � 	 0 � �� 	� S �

Q 1 
 �� 	  � � � R 
 	 0 
 �� 	 R 
 S 
 �

so the least-favorable densities are on the boundary of sets6 � and6 
 . For

7  � � � , this implies

4 15 �� 	  � � � R 5 	 � 5 �� 	

over V . Let

X �� 	  Y[Z � � �� 	 \ Z � 
 �� 	

] �� 	  Y[Z Z � � �� 	 \ Z Z � 
 �� 	 �
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Huber’s Clipped LR Test (cont’d)

with

Y^Z  R 
 S 

� � R 
 � Y^Z Z  R � S �
� � R �

\ Z  S �
� � R � � \ Z Z  S 

� � R 
 !

Let2 1  " �� 1 	 ,2W  " ��W 	 . Then

4 15 �� 	  _ 5 X �� 	 � � � � 1

4 15 �� 	  � 5 ] �� 	 � � U �W �

with _ 

_ �  � � R 

� � R � 2 1 � � 

� �  � � R 

� � R � 2W !
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Huber’s Clipped LR Test (cont’d)

Clipping transformation: The least-favorable LR can be expressed as

" 1 �� 	  4 1
 �� 	
4 1� �� 	

 � � R 

� � R � � � " �� 	 	

where the clipping nonlinearity � �a` 	 is shown below

"

� � " 	

2 1

2 1 2W

2W
�
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Huber’s clipped LR test (cont’d)

Robust test: The decision rule

" 1 �� 	
J F

KJ D
$ %

can be rewritten as

� � " �� 	 	
J F

KJ D b  � � R �
� � R 
 $ % !
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Huber’s clipped LR test (cont’d)
� ForS �  S 
  � , the LF distributions belong to the contamination class

c[d 5  N 4 5 O Q 5 �� 	  � � � R 5 	 0 5 �� 	 R 5 � �� 	 for all� P

contained in6 5 , where � �� 	 = arbitrary probability distribution.

� ForR �  R 
  � , the LF densities belong to the total variation class

cfe g5  N 4 5 O 3 4 5 � � 5 3 
 �ih S 5 P

contained in6 5 .
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Robustness with a KL Tolerance
� For 7  � � � consider neighborhoods

6 5  N 4 5 Oj � 4 5 3 � 5 	 �.R P

where
j � 4 3 � 	  �

� �k < � 4 �� 	 # � �� 	 	 4 �� 	� �

is the Kullback-Leibler divergence or relative entropy of density 4 with
respect to � .

� j � 4 3 � 	 is convex in 4 , so6 5 is convex.j � 4 3 � 	 is not a true distance,
since it is not symmetric (j � � 3 4 	l  j � 4 3 � 	 ) and does not satisfy the
triangle inequality. Butj � 4 3 � 	U � with equality if and only if 4  � .

� j � 4 3 � 	 and its dualj m � 4 3 � 	  j � � 3 4 	 admit a non-Riemannian
differential geometric interpretation in terms of dual connections.
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Robustness with a KL Tolerance

Assumptions:

i) The nominal LR " �� 	  � 
 �� 	 # � � �� 	 is monotone increasing in� .

ii) � 
 �� 	  � � �� � 	 .
iii) � , R , j � � 
 npo 3 � � 	 , where � 
 npo �� 	 is the mid-way density on the

geodesic
�q �� 	  � 
 � q� �� 	 � q 
 �� 	

r ��s 	

linking � � and � 
 . Here

r ��s 	  �
� � � q 
 �� 	 � 
 � q� �� 	� �

= normalization constant.
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Robustness with a KL Tolerance (cont’d)

Robust test and LF densities: For a minimum probability of error criterion
( � �  � �  � ) and equally likely hypotheses, there exists� W * � such that

� I �� 	 
&'''

( ''')

� � * �W


o � � tu 1 Bv Gtu w x � � �W � � � �W

� � , � �W �

4 1� �� 	 
&''

( '')
2W � � �� 	 # r ��W 	 � * �W

2 
 npoW � 
 npo
 � 
 npo� �� 	 # r ��W 	 � �W � � � �W

� � �� 	 # r ��W 	 � , � �W �

4 1
 �� 	  4 1� �� � 	 , with2W  " ��W 	 .
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Robustness with a KL Tolerance (cont’d)

Nonlinear transformation: The least-favorable LR can be expressed as a
nonlinear transformation " 1  y � " 	 of the nominal LR.

"

y � " 	

�

� # 2W 2W�

" # 2W

2W "
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Robustness with a KL Tolerance (cont’d)
� 4 1� �a` 3�W 	 is parametrized by� W with 4 1�  � � for�W  � and

k ; : 4 1�  � 
 n o as�W z { .

� �W is selected such thatj � 4 1� �` 3�W 	 3 � � 	  R . Relies on showing that

j ��W 	  j � 4 1� �` 3�W 	 3 � � 	

is a monotone increasing function of� W .
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Simulations

Consider the nominal model

� � O �  � � | � 
 O �  � | �

with |i} ~ � � �9� o 	 , so � �} ~ �� � �9� o 	 .j ��W 	 is plotted below for SNR
= � dB (�  � ).
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Simulations (cont’d)

LF densities 4 1� forR  � ! � and SNR = 0, 10dB.
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Simulations (cont’d)

Comparison of worst-case � ��� � for test � I withR  � ! � � , � ! � against � ��� �

for the Bayesian test on nominal model.
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