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Term Paper Topics

A. Proportionate and Affine Adaptation Algorithms

Several variants of the LMS algorithm have been proposed recently to deal with sparse
echo cancellation paths or sparse communication channels. Such channels include zero as
well as nonzero taps. To deal with the wide range of values in channel taps, Duttweiler [1]
proposed the proportional normalized LMS (PNLMS) algorithm which adapts the step size
of each individual channel tap. Variations combining this algorithm with affine adaptation
algorithms [4] were proposed in Chapter 2 of [2]. A term paper could focus on the properties
of PNLMS or affine adaptation algorithms or their application to echo cancellation and
channel equalization.
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B. Adaptive Maximum Likelihood/Infomax Algorithm

The stochastic gradient algorithm described in class leads to a simple adaptive maximum
likelihood (ML) estimation procedure, which is often called the Infomax algorithm. Let Y;
with ¢ > 0 denote a stationary sequence of random vectors with probability density f(y:|0),
where € denotes an unknown parameter vector which needs to be estimated. Let 6y denote
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the true parameter vector. The Infomax algorithm minimizes adaptively the Kullback-
Leibler divergence

K(00l0) = D(f(yel6o), f(4:10))
f(yt6o)
1 6o)d 1
[ Cra) S wito)dse (1)
of the true density compared to the density f(y|f). Since K(6y|6) > 0 with equality
whenever § = 6y, as long as the initial estimate is close enough to the correct value 6y,

the adaptive minimization will converge to 6y. Note that since the only term of (1) that
depends on 6 is

By [~ 1n £ ()] = — [ 1n(/ (116)) (s1l60)

The minimization of K (6y|f) is equivalent to the minimization of the expected value of
—In f(y:|0) or equivalently the maximization of the expected value of the log-likelihood
function In f(y;|¢) where the expectation is taken with respect to the true density. This
explains why the method represents an adaptive ML estimation algorithm.

By replacing the gradient of K (6y|;) by its instantaneous value, like for all stochastic
gradient algorithms, the adaptive ML estimation algorithm takes the form

ét+1 = 915 + Mvét lnf(yt|ét) (2)

Applications of the Infomax algorithm include the blind source separation problem de-
scribed in [1,2]. The LMS algorithm and constant modulus blind equalization algorithm
[3-6] can also be viewed as special cases of this algorithm (in the LMS case the density is
Gaussian, whereas for the constant modulus algorithm it is a sub-Gaussian density). See

also [7] for a recent application to blind nonlinear noise cancellation. A term paper could
focus on a discussion and analysis of the Infomax algorithm and its applications.
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C. Convergence and Performance Analysis of Adaptive Filters

Two general approaches have been developed for the analysis of linear and nonlinear
adaptive algorithms. The first approach described in [1,2] is based on an averaging view-
point and consists of describing the evolution of a given adaptive algorithm in terms of the
solution of a corresponding ordinary differential equation (ODE). This method is therefore
also called the ODE method. The second technique was proposed more recently and is
described in detail in chapters 6-9 of [6]. It relies on an energy conservation relation which
holds for a large class of adaptive algorithms. Both methods of analysis have advantages
and disadvantages. The averaging method requires that the adaptation step size should
be very small, but the conditions imposed on the observation data and the process to be
estimated are very weak, so that this method is extremely general and applies to a wide
variety of situations. In constrast, the energy conservation method does not require that
the adaptation step size should be small, but it requires an independence assumption for
the observed data which is unrealistic in many cases. Nevertheless, both methods yield
results which are usually consistent with each other. Typically, both methods establish the
convergence of the estimated parameters to the correct model parameters for vanishingly
small noise. They also describe the error variance, i.e., the performance of adaptive algo-
rithms, as a function of noise and of the step size in steady state. Finally, they characterize
the transient behavior, i.e., the speed of convergence, of adaptive algorithms to their steady
state. A term paper could focus on either convergence analysis technique or a comparison
of the two methods. The papers [2-5] represent a case study of the averaging approach for
the analysis of blind equalization algorithms, whereas [7-12] characterize the properties of
the energy conservation technique for either LMS or blind equalization algorithms. A nice
project would be to perform an ODE analysis of the generalization of the constant modulus
algorithm for continuous-phase modulated signals described in [13].
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D. Natural Gradient Adaptive Algorithms

It was shown in class that quasi-Newton agorithms converge much faster than gradient
iterations. It is therefore desirable to develop adaptive algorithms which automatically find
the best scaling or coordinate system for optimizing gradient searches. A class of algorithms
which achieves this objective are the "natural gradient” algorithms proposed by Amari [1,2]
and further examined in [3]. In this approach, the adaptation rule uses an appropriately
selected Riemannian metric to scale the gradient locally so as to maximize the rate of decay
of the ojective function. This class of algorithms is closely related to relative gradient
adaptation rules introduced in [4,5] for source separation. See also [6]. A term paper could
focus on either natural gradient adaptation rules, or on their application to blind source
separation problems.
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E. Robust State-Space Filtering based on Model Perturbation Bounds

In deriving the Kalman filter, it is assumed that the state dynamics and observations are
assumed to be known precisely. Unfortunately, in most situations the state-space model is
known only approximately. In such situations, the estimates produced by ordinary Kalman
filters based on the nominal model may be less accurate than those generated by more
conservative filters that take the possible existence of modelling errors in to account. This
concern has prompted the development of state-space filtering methods which expressly take
into account the possibility that the models of dynamics and observations may be imprecise.
The first class of robust filtering methods was proposed in the early 1970s by Bertsekas et
al. [1], Schweppe [2], as well as by Kurzhansky and other researchers [3] in Russia, for
estimating the state variables of dynamic models corrupted by unknown disturbances and
noises. The key feature of this approach is the assumption that the noises or disturbances
describing the unmodelled state dynamics are completely unknown, but bounded. Under
this assumption, the state is confined inside an ellipsoidal set of minimum size, where the
center of the ellipsoid can be viewed as the state estimate, and its orientation and principal
axes provide information equivalent to the state covariance matrix. The propagation of the
ellipsoid of confidence can then be accomplished through Kalman filtering-like recursions,
so that even though the state estimation formulation is purely deterministic, its solution
is similar to the usual Kalman filter. While the original research on robust state-space
filtering assumed that the nominal model was perturbed only by unknown additive signals
and noises, in recent years, Petersen and Savkin [4,5], Sayed [6], and El Ghaoui et al. [7]
have proposed various methods for handling the case when the true model includes both
perturbations to the model dynamics and additive unknown signals.

A term paper on robust filtering based on model perturbation bounds could focus either
on a description of the algorithms presented in [1]-[6], or on simulations for a well selected
application.
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F. Risk-sensitive and Robust Filtering

Unlike ellipsoid of confidence filters which were designed explicitly to deal with signal and
dynamic perturbations, in their original incarnation [1-3], risk sensitive filters tackled the
robustness problem only indirectly. Specifically, since these filters minimize an exponential
of quadratic loss function for the filtering error, they penalize very severely large estimation
errors for the nominal state-space model. As such, there is nothing robust in these filters,
since they do not consider modelling errors. However, it was realized by Boel et al. [4]
and later by Levy and Nikoukhah [9] that risk-sensitive filters arise as the solution of a
minimax problem consisting of finding the best least-squares filter for the least favorable
model located in a neighborhood of the nominal model. In this approach, the neighborhood
is specified by a Kullback-Leibler divergence tolerance. Note that although it is not a
conventional distance, the Kullback-Leibler (KL) divergence is a standard criterion used in
statistics for fitting statistical models. It turns out that the solution of the minimax filtering
problem with a KL tolerance is a risk sensitive filter. The KL tolerance can be imposed
in several ways, either for the overall statistical model for the entire filtering interval [5-9],
or incrementally [10]. In addition to deriving the robust risk-sensitive filter, this minimax
approach also allows the explicit construction of a corresponding least-favorable model [8,10]
which can be used to compare the robust filter to other filters, such as the conventional
Kalman filter.

A term paper could focus on a comparison of the martingale derivation of the robust
filter described in [6]-[8] to the game theoretic approach of [10]. Other issues such as filter
convergence, or a comparison of robust filters with or without commitment [6,7,10] could
be examined as part of a project.
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G. Nonlinear Kalman Filtering

Consider a discrete-time Markov process X; defined for ¢ > 0 with transition density
¢¢(x441|7) and initial density fo(zo). This process is partially observed through some ob-
servations Yy, ¢t > 0, where conditioned on X; = z;, the density of Y; is given by 0(y:|z:).
Let Yf) denote the vector formed by regrouping all observations up to time ¢. Then the
conditional filtered and predicted densities f;(z;|Y}) and ft(a:t|Y6_1) of X; based on all ob-
servations up to time ¢ and ¢ —1, respectively, can be propagated by employing in alternance
the following two recursions. The measurement update recursion is given by

Fr(@e|YE) = Ouyelme) folae YE) /v (wel YE) (3)

where

(g Y5 = /ot(’yt|$t)ft($t|Yffl)d$t

denotes the conditional density of observation Y; given the past observations Yffl up to
time £ — 1. The time update recursion is given by

fr1 (@ |[YE) = /¢t($t+1|$t)ft($t|Y3)d$t- (4)

The Bayesian recursions (3) and (4) depend exclusively on the Markov structure of the
process X and on the fact that the observations Y; depend only on the state X; at time ¢.
Thus they remain valid even if the system dynamics are nonlinear and the noises affecting
the dynamics are non-Gaussian. The standard Kalman filter relies on the fact that when
the dynamics are linear and process and measurement noises are Gaussian, then all the
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densities appearing in recursions (3) and (4) remain Gaussian (recall that the class of
Gaussian densities is stable under conditioning and marginalization). Accordingly

fil@Y§) ~ N(Xyi, Py
filad Y5~ N(Xyp—1, Pyeor)

are Gaussian distributed, so that instead of having to propagate the functions f;(z;|Y}) and
Fi(x|Y5!) through recursions (3) and (4), we only need to propagate the mean vectors
X’t‘t, Xt\t—l and covariance matrices P;; and FPy;_;. In other words the Kalman filter expoits
both the Markov structure of the model, and its linear Gaussian property, which allows all
conditional densities to be finitely parameterized by their mean vector and covariance matrix.
Another case for which the conditional distributions of X; given the past observations up
to time ¢ or up to time ¢ — 1 are finitely parametrized is when X; is described by a finite-
state Markov chain. Let n denote the number of states. If the states are denoted as
1 < i < n, the conditional distributions f;(z;|Y}) and fi(z;|Y5™") can be represented
as n-dimensional vectors, and the integrations appearing in recursions (3) and (4) can be
replaced by summations over the n possible values of z;. So in the finite state Markov chain
case, the recursions (3) and (4) admit also a simple implementation.

In the general nonlinear or non-Gaussian case, it is necessary to propagate the full
conditional densities f;(z;|Y}) and fi(z¢|Y. ). The general nonlinear filtering problem
is discussed in detail in [1]. For the continuous-time case, a partial differential equation
analogous to (3) and (4) was derived by the Russian mathematician Stratonovitch and by
Kushner in [2,3] for the conditional density. It was subsequently shown by Zakai [4] that
this equation can be simplied if we elect to propagate an unnormalized density, which is
analogous to skipping the rescaling operation by ;(y;|Y§ ") in (3). Since propagating the
conditional density of the state given the past observations could not be realistically con-
sidered in the 1960s, researchers examined approximations, such as the extended Kalman
filter (EKF). This filter, which was first proposed by Stanley Schmidt, linearizes the system
dynamics about the current estimate and applies the Kalman filter to the linearized system.
It is described in detail in [1] and [5] (see also [13]). This procedure works properly only
when deviations of the actual trajectory compared to the nominal trajectory are small, and
detailed conditions for the EKF convergence are presented in [6]. More recently another
approximation technique called the unscented Kalman filter (UKF) was proposed by Julier,
Uhlmann and other researchers in [7],[8]. Another approach to the nonlinear filtering prob-
lem which has become popular over the last 15 years relies on Monte Carlo methods. The
corresponding nonlinear filters are called particle Kalman filters. In this approach, the inte-
grals needed to evaluate the conditional mean and error variances for the densities obeying
(3) and (4) are evaluated by Monte Carlo simulations involving the simultaneous generation
of multiple system trajectories. Several methods of this type are described in [9]-[12]. Note
that to limit the number of samples required, importance sampling techniques play a major
role in particle filters [12].

Term paper topics related to nonlinear filtering would include: (i) a comparison of EKF
and UKF filters, their properties and limitations; or (ii) a discussion of particle filters, their
implementation, and application, to say, target tracking.
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