UNIVERSITY OF CALIFORNIA, DAVIS
Department of Electrical and Computer Engineering

EEC250 Linear Systems and Signals Fall 2009

Lecture 7

Topics:
a) Properties of the matrix exponential

b) Eigenvalue/eigenvector expressions for e

Matrix exponential: Let A be an n X n real matrix. Then the matrix exponential
®(t) = exp(At) is defined as the solution of the differential equation

O(t) = AD(¢) (1)

for ¢ > 0, with initial condition ®(0) = I,,. If F(s) denotes the Laplace transform of ®(¢),
by Laplace transforming equation (1), we obtain

sF(s) — ®(0) = AF(s),

so that
(sI — A)F(s) =®(0) =1, .

This implies F(s) = (sI — A)~1, so that exp(At) can also be obtained through the Laplace
transform relation
exp(At) &5 (sT — A)7L. (2)

Property 1: exp(At) admits the power series expansion

At)? At)k
(2!) +...+(k!)

exp(At) = I, + At + +..., (3)

for ¢ > 0, which can be viewed as a matrix version of the power series expansion

exp(at) = Z ( ]:')
k=0

of the scalar exponential function. To verify (3), denote the power series on the right hand
side of (3) by ®(¢) and assume that it converges and can be differentiated term by term.
Differentiating each term gives

d (At)k-1
—dt)=A|I,+At+...+ ——— +...| = AD
= 2(0) (n+ et oy t)
for ¢ > 0, with ®(0) = I, so that ®(¢) obeys the differential equation (1) defining the
matrix exponential.



Another way of deriving (3) relies on the observation that for s sufficiently large, (sI —
A)~! admits the power series expansion

SRR SENOR

Then, using the fact that
o 1
k! — gh+1

and taking the inverse Laplace transform of (4) gives (3).

Examples: (i) Consider the r x r nilpotent matrix

01 0 0
0 1 0

N= .
0 1

which has ones on its first superdiagonal, and zeros everywhere else. It has property that
for £ < r the matrix

0 ... 0 1 0 ... 0
0 1 0
Nt = 0 1
-
0
| 0 0 |

has ones on its /-th superdiagonal, and zeros everywhere else, and N¢ = 0 for £ > r. Then
in the power series expansion (3) for exp(Nt), only the first r terms are nonzero, so that

- (Nt)r—l
exp(Nt) = IT+Nt"'+(r—1)!
[ 1t t2)2 tr L/ (r = 1)1 ]
0 1 t t2)2
0 1 t
0 1 t
| 0 0 1 |
(ii) Let
0 -1
=15



Then A = (—1)PI, and AZ?*! = (—1)P A, where I, denotes the 2 x 2 identity matrix, so
that

t2 4 t3 5

exp(At) = @—§r+%“Jb+(ﬁ—i+%rhn)A

= costly +sintA = C(.)St —sint
sint cost

Property 2: The matrix exponential has the transition property
exp(A(t1 +12)) = exp(Aty) exp(At) (5)

for t1, o > 0. To see how this propoerty arises, consider solving the differential equation
(1) for 0 < ¢t < t1 + t2. We can solve the equation in one step over the whole interval, in
which case the solution at t = ¢; + ¢ is exp(A(t1 +t2)). Alternatively, we can first solve the
equation over [0, 2] and then over [tg,?1 +12]. In this case the solution at ¢ = t, is exp(Atq),
and the solution for ¢t <t < t; + ¢ is obtained by solving

d
—0(t) = A1)

over [tg,t1 + to] with initial condition ®(¢2) = exp(Ate). But the system is LTI, so that the
solution at t =t/ + ¢ with ¢/ > 0 is given by

b (t) = exp(At')D(to) -
Setting ¢t = t; + t2 and t' = ¢; in this identity gives (5).
Property 3: In general if A and B are two arbitrary matrices

exp((A4 + B)t) # exp(At) exp(Bt) . (6)

0 -1 0 0
A—|:0 0:| andB—|:10].

Both A and B are nilpotent with

To see this, let

exp(At):[(l) _f] and exp(Bt) = “ (1)] ,

exp(At)exp(Bt):[(l) _f]“ (1)]:[1_tt2 ;t]

On the other hand

SO

and it was shown earlier that

exp((A + B)t) = [ cost —sint ]

sint cost

3



which is clearly different from exp(At) exp(Bt).
However if A and B commute, i.e., AB = BA, we have

exp((A + B)t) = exp(At) exp(Bt) . (7)

To prove this, note that when A and B commute

(A+ B)F = AF + (?)A’HB +.+ (IDAB’C—1 + Bk

Taking this identity into account, and multiplying power series term by term gives

At)? Bt)?
exp(At) exp(Bt) = [I+At+%+...][I+Bt+%+...]
A+ B)t)?
= I—I—(A—i—B)t—}—%—l—...:exp((A+B)t).
Examples: (i) Consider the r x r Jordan block
[ A 1 0]
A
J: '.' :AIT+N
S

where A\, and N commute. We have

At)?
eMrt = (1+)\t+u+...> I, =M,

2!
and
exp(Jt) = exp((Al, + N)t) = exp(Alt) exp(Nt)
[ 1 ¢t tr (e —1)! ]
=
= exp(\t)
1 t
L O 1 -
(ii) Let
o —w
A= [ w o :| =09 + wQ
with



where Is and () commute. Then

coswt —sinwt

exp(At) = exp(ot) exp(wQt) = exp(ot) [ sinwt  coswt

Property 4: exp(At) is an invertible matriz for all t > 0 and

-1
(exp(at)) = exp((—A)t) . (8)
To see this, note that A and —A commute and A + (—A) = 0, so that
% = I,, = exp(At) exp((—A)t) .
Eigenvalue/eigenvector expressions: The matrix exponential exp(At) can also be ex-
pressed in terms of the eigenvalues and eigenvectors (or generalized eigenvectors) of A.

Case 1: A is diagonalizable: In this case A admits n independent eigenvectors p;
corresponding to eigenvalues \;, i.e.

Ap; = \ipi 9)

for 1 < i < mn. The relations (9) can be combined as a single matrix equation

AP = PA
with
P=[p1 ... Pi -.. Pn| and A=diag{\,1<i<n},
so that A = PAP~!. The matrix
R

Pl'=Q=|qf

yields the left eigenvectors of A since P~'A = P~ !A, or equivalently
a4 A=Na; ,

for 1 < i< mn. Then
A? = (PAP7Y)(PAP™!) = PA?P7!

and A¥ = PAFP~1 5o that

At)k At)k
(k!) :P[Z(k!)
k=0 k=0

= Pexp(At)P7!. (10)

hE

exp(At) = ]P’l



The main advantage of expression (10) is that, since A is diagonal, its exponential matrix
is easy to compute and is also diagonal, i.e.

e = diag {exp(\it), 1 <i < n}.

The identity (10) expresses exp(At) completely in terms of the eigenvalues and right and
left eigenvectors of A. To see this, note that

exp(At) = Pexp(At)Q

C ol
= [p1 ... Pi ... Pn |diag(exp(Ait),1<i<n)| q
[ an |
can be rewritten as o
et = Z piq; exp(\it) . (11)
i=1
Example: Let
1 0 -2
A=10 -1 0
6 0 —6
Then
s—1 0 2
sl — A= 0 s+1 0
—6 0 s+6
and
a(s) =det(sI —A) = (s+1)[(s —1)(s+6) +12] = (s +1)(s +2)(s + 3) .
The eigenvector p; corresponding to A\; = —1 is obtained by solving
-2 0 2 Z1 0
()\1[— A)pl = 0 00 x9 = 0
-6 0 5 T3 0

This gives 1 = 3 = 0 with x5 free, and since the scaling of p; is arbitrary, we select

0
pi=|1
0
Similarly the eigenvector ps corresponding to Ay = —2 is obtained by solving
-3 0 2 1 0
()\2_[ - A)p2 = 0 -1 0 ) = 0 ;
-6 0 4 z3 0



which gives o = 0 and 3z1 = 2z3, so that we can select

2
p2= 1|0
3
Finally, to find eigenvector ps corresponding to A3 = —3, we solve
-4 0 2 1 0
(A3 — A)ps = 0 -2 0 z | =10
-6 0 3 T3 0

This gives o2 = 0 and z3 = 2z1, so that we can choose

Inverting the matrix

gives
01 0
Q=pP1'=| 20 -1,
-3 0 2
so that
[0 2 1 exp(—t) 0 0 01 0
exp(At) = 100 0 exp(—2t) 0 2 0 -1
| 0 3 2 0 0 exp(—3t) -3 0 2

[ 4exp(—2t) — 3exp(—3t) 0 2[— exp(—2t) + exp(—3t)]
= 0 exp(—t) 0
| 6[exp(—2t) — exp(—3t)] 0 —3exp(—2t) + 4exp(—3t)

In the expression (11) for exp(At), although exp(At) is real, the eigenvalues \; and
eigenvectors p; and q; may be complez.

Example: Let

-2 0 -1
A= 0 -2 0
2 0 0
Then
s+ 2 0 1
sl — A= 0 s+2 0|,
—2 0 ]



and
a(s) =detsI — A= (s> +2s+2)(s+2)=(s+1—5)(s+1+7)(s+2)i.

Thus A has two complex conjugate eigenvalues AL = —1 4 j and a real eigenvalue A3 = —2.
The eigenvector p.coorresponding to Ay is obtained by solving

I+5 0 1 T 0
OI—Apr=| 0 145 0 z =0,
2 0 144 || 0
which gives zo = 0, z3 = —(1 + j)z1, so that we can select
1
P+ - O
—(1+7)

By observing that A = A% and A is real, and taking the complex conjugate of the eigen-
vector equation for Ay we find that

1

—(1-4)
satisfies
(A\I-A)p_ =0,

so it is the eigenvector corresponding to eigenvalue A_. Finally, the eigenvector correspond-
ing to A3 = —2 is obtained by solving

00 1 1 0
()\3[ - A)p3 = 00 0 2 = 0 ,
-2 0 -2 T3 0
which yields z; = z3 = 0, so that wecan select
0
p3=|1
0
Then if
1 1 0
P= 0 0 1
~(1+j) —(1-j) 0
we find ' '
S fa+pr o gp
Q=P =|(1-j4)/2 0 —j/2
0 1 0
and

exp(At) = Pexp(At)Q



with

exp(—t + jt) 0 0
exp(At) = 0 exp(—t — jt) 0
0 0 exp(—2t)

Real form of the eigenvalue/eigenvector expansion of exp(At): To obtain expres-
sions involving only real quantities, one can proceed as follows. First observe that since A
is a real matrix, if (\;, p;) is an eigenvalue/eigenvector pair for A, so is (A}, p}). Assume
now that A has r pairs of complex conjugate eigenvalues and ¢ = n — 2r real eigenval-
ues. Then order the eigenvalues of A as {A, AT ..., Ag, AL, -0 A, AS, Aorgt, oo, An ). In the
eigenvalue/eigenvector relation Apy = Agpk, the eigenvalue Ay and eigenvector py can be
decomposed into their real and imaginary parts as

A = ag+ gby
Pr = Pr+JpL-
This implies that
Apf = axpF — bipi
I _ R I
Apy = bypy + appy -

Then, if we consider the matrix

M = pfpl ... pfpl ... pFp! Porsr - pu |

M is real and

AM = MD
with 3 }
Dy
0
Dy,
D=
D,
0 A2rq1
- An -
where
A ap by
De= [ —b. ay ]
If N = M~!, this implies
A= MDN (12)

where D is block diagonal. It is constituted of 2 x 2 blocks corresponding to the r pairs
(Ak, Ap) of complex conjugate eigenvalues, as well as n — 2r 1 x 1 blocks corresponding to
the n — 2r real eigenvalues Ao, y1,..., A, of A.



The expression (12) for A implies
exp(At) = M exp(Dt)N
with
[ exp(D1t)

exp(Dyt)

exp(Dt) = exp(D,1)

0 exp(Agr41t)

and
cos(bgt)  sin(bgt)
—sin(bgt) cos(bgt) |’

where the expression (13) involves only real matrices.

exp(Dyt) = exp(axt)

Example: It was found earlier that the matrix

-2 0 -1
A= 0 -2 0
2 0 0
has eigenvalues Ay = —1 + j and A3 = —2. Its eigenvectors are
1 0
P+ = 0 and ps= | 1
(1) 0
The vector p4+ can be decomposed as py+ = pr + jp; with
1 0
PR = 0 and pr = 0
-1 -1
Let
1 00
M = [pr pPr P3]= 0 01
-1 -1 0
10 0
N = M1'=]| -1 0 -1
01 0
-1 1 0
D = -1 -1 0
0 0 -2

exp(Ant) |

(13)




Then

exp(At) = M exp(Dt)N

1 00 exp(—t)cost exp(—t)sint 0 1 0 0
= 0 01 —exp(—t)sint exp(—t)cost 0 -1 0 -1
1 -1 0 0 0 exp(—2t) 01 0

Case 2: A is not diagonalizable. In this case A has a Jordan block of size 2 or larger,
or equivalently it has a repeated eigenvalue which admits fewer independent eigenvectors
than its multiplicity. In this case, we can find an invertible matrix 7' constituted of the
eigenvectors and generalized eigenvectors of A such that

A=TJT™! (14)
with
F 0
J = Ji
| 0 Ji |
[ 1 0
J; = = n; X n; Jordan block ,
DY |
0 M
where Zle n; = n. The matrix exponential exp(At) is then given by
exp(At) = Texp(J) T, (15)
with ) )
exp(J1t) 0
exp(Jt) = exp(J;t)
| 0 exp(Jet) |
and
1t b

exp(Jit) = exp(A;t)

11



Example: Let

1 01
0 1 00
4= 0 -1 10
0 0 01
Then
s—1 =2 0 -1

0 s—1 0 0
0 1 s—1 0 ’
0 0 0 s-—-1

SI4—A:

and using Laplace’s expansion of a(s) = det sI — A with respect to the first column yields
a(s) = (s — 1)*. The eigenvectors p of A corresponding to \; = 1 satisfy

0 -2 0 —1 1 0
o 00 o z | |0
MI=Ap=1, 1 5 | |0
0 00 0 T4 0

This gives z2 = x4 = 0, so that A has the two eigenvectors

0

10
P2—1

0

P1 =

O oo

Since the number of eigenvectors (two) is less than the multiplicity (four) of i, A is not
diagonalizable. Observing that (A;I — A)2 = 0, we can conclude that A will have 2 Jordan
blocks of size 2 X 2 corresponding to A; = 1. The generalized eigenvector g; corresponding
to p1 is given by

0 2 01 1 é
lo o000 ||
0 0 00 T4 0

which gives 9 = 0 and x4 = 1, so that we can select

0

10
g1 = 0
1

Similarly the generalized eigenvector go corresponding to ps satisfies

0 2 01 T 0
o oo0o||la]| o
0 000 T4 0

12



We obtain 9 = —1 and z4 = 2, so that we can select

0
s
g2 = 0
2
Then if
1 00 0
0 00 -1
TZ[Plg1p2g2]20010
010 2
(1 0 0O
4 o 201
T - 0 010
0 -1 0 0
1 1 0 0
01 0 0
J o= 0 011 ’
000 1
we have A = TJT~! and
exp(At) = T exp(Jt)T ™1
with
1 ¢t 0 0
0100
exp(Jt) = exp(t) 00 1 ¢
0 001

Note that the Jordan decomposition A = TJT ! may be complex. There exists a real
form of this decomposition, but it will not be needed in the remainder of this course.
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