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Lecture 4

Topics:
a) Determinant of a matrix, column operations, Laplace’s expansion.
b) Characteristic polynomial, Cayley-Hamilton theorem, eigenvalues/eigenvectors.

c) Diagonalizable matrices, Jordan form, minimal polynomial.

Determinant: To motivate the concept of determinant of a square matrix A, consider the
case where A is a 2 x 2 matrix with columns aj,a, € R?. If we view R? as embedded in the
three-dimensional space R?, the outer product

a] X ag = det(al,az)eg (1)
where e3 is the unit vector along the third axis and
det(al,az) = |a1||a2| Sin(@) (2)

measures the area of the parallelogram spanned by a; and ay as shown in Fig.1 below.
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Figure 1: Interpretation of the determinant in two dimensions as the oriented area of the
parallelogam spanned by a; and as.

In expression (2),
i = (afai)'/?

denotes the length (Euclidean norm) of vector a; for ¢ = 1, 2 and @ is the oriented angle
going from vector a; to vector ay, so that det(a;,as) is an oriented area in the sense that

det(ag,al) = —det(al,ag) ,



since when a; and agy are interchanged, # becomes —0, and sin(—6) = —sin 6.
From the above definition, we see that det(a;,a;) = 0 whenever sinf = 0, i.e. for
0 = 0, 7. Thus, the determinant of vectors a; and as is zero whenever they are colinear.
For the 2 x 2 case, if

a1l a12
A= [ a; az } = )
a1 a2

an analytical expression equivalent to (2) is given by

det A = det(al, ag) = 11022 — 0421G12-

Consider now an n X n matrix A with columns a1, ao, ..., a,. Based on the above moti-
vation, we say that det(a;,...,a,) is a measure of the oriented volume of the parallelepiped
of R" spanned by vectors ay, ..., a,. Thus, det(ai,...,a,) is a map from (R")" to R:

(ag,...,a,) € (R")® — det(ay,...,a,) € R
which has the following properties:

(i) Tt is linear with respect to each vector a;, 1 < i < n taken separately. Thus, if x and
y are two arbitrary vectors of R” and if u and v are arbitrary real numbers

det(ai,...,a;—1,ux + vy, a;41,...,8,) = wudet(ar,...,a;,-1,X,8;41,...,ap)
+ wvdet(ai,...,a;-1,¥,8i+1,-.-,8,) - (3)

(ii) If vectors a; and a; with i < j are interchanged, we have

det(ai,...,a;,...,a;,...,a,) = —det(as,...,a;,...,a;a,) (4)

(iii) If there exists a nontrivial linear dependence relation

n U1
Zuixi =0 with u=| @ | #0 (5)
i=1 Uy,
between vectors a, ..., a,, then

det(ai,...,a,) =0.

This is due to the fact that when (5) is satisfied, the vectors ai,...,a, belong to a
lower dimensional hyperplane of R” so that the volume of the parallelepiped spanned
by ai,...,a, is zero,

The above three axioms can be used to derive the following analytical expression for the
determinant of A = (aj;, 1 <i,7 < n in terms of its entries:

det A = Z(—l)t(r)am(l)a%@) - Onx(n) (6)



where in (6) the sum is over all permutations « of the index set {1,2,...,n}, and #(7) is
the number of transpositions occuring in the permutation o. For example, if we consider
the permutation

{1,2,3,4,5} = {2,4,3,1,5}

t(m) can be computed by observing that

-2 occurs before 1

-4 occurs before 1 and 3

-3 occurs before 1
so that t(m) = 4.

The expression (6) shows that det A is obtained by performing all the products of n
entries of A such that one element of each row and one of each column appears in the
product. In the 3 x 3 case, with

ail a2 @13
A= axn a2 a3 |,
a3y asz2 as3

this leads to the usual expression
det A = aj1a2a33 + a12a23a31 + a13a21032

—0a11023032 — 012021033 — 413022031 -
Elementary column operations: The three axioms of determinants can be used to
characterize the effect of elementary column operations on matrix determinants.
(i) Multiplication of a column by ¢ # 0. Let
A= [ ai ... a; ... a, ] — Ay = [ ai ... ca; ... a, ] .

Then, according to (3)
det A; = cdet A.

(ii) Exchange of two columns. If
A= [ a; ... a; ... a; ... a, ] — A, = [ ai ... a; ... a; ...a, ] ,
then det A, = — det A.
(iii) Adding to a column a multiple of another column. Let
A= [ a; ... a; ... a; ... a, ] — A, = [ a; ... a;+wva; ... a; ...a, ],
with v € R. The multilinearity property (3) implies
det A, =det A+vdetB

where the matrix
B:[al co.oa; ...oaj ... an]

has two identical columns, so that according to the third axiom of determinants
det B = 0. Hence we conclude that det A, = det A, so that an elementary linear
combination of columns does not affect the determinant.



Since we can always use elementary column operations to reduce an arbitrary square
matrix A to a lower triangular matrix L whose determinant is the product of its diagonal
elements, the following strategy can be employed to evaluate determinants.

Step 1: Use elementary column (resp. row) operations to reduce A to a lower (resp. upper)

triangular matrix L (resp. U), while keeping track of the effect of the elementary
operations on the determinant of A.

Step 2: Evaluate the determinant of L (resp. U).

Example: We have

2 -1 0 0] 2 0 0 0
-1 o2 -1 o0 1 3/2 -1 0
A=10 1 92 1| 0 -1 2 -1
0 0 -1 2| 0 0 -1 2
2 0 0 0] T2 0 0 0
132 0 0 132 0 o _

0 -1 43 1| 0 -1 43 o~

0 0 -1 2| 0 0 -1 5/4

where elementary column operations are used to bring A to the lower triangular form L.
Specifically, on the first line, we multiply column 1 by 1/2 and add it to column 2. Then on
the second line we multiply column 2 by 2/3 and add it to column 3. Finally, we multiply
column 3 by 3/4 and add it to column 4. Since L is lower triangular

4 5

3
A= L=2Xx—-X—=-Xx-=>5.
det det x2><3><4 5

Laplace’s expansion: Another useful result is that the determinant of an n x n matrix A
can be expanded in terms of the entries of row 7 as

n
det A = Z G,Z'jCij (7)
j=1
where the cofactor C;; of the (i,j)-th element a;; of A is given by
Cij = (—1)i+j det Aij , (8)

where A;; is the (n — 1) X (n — 1) matrix obtained by deleting the i-th row and j-th column
of A. In (7) the choice of row i is arbitrary. det A admits also a similar expression in terms
of the entries of column j. The above formula is particularly convenient if A contains rows
or columns with many zero entries.



Example: Consider the n x n tridiagonal matrix.

2 -1
-1 2 -1 0
A, =
0 -1 2 -1
- _1 2_

If D, = det A, by expanding D,, with respect to the first row of A, we find

S i
0 2 -1 0
-1 2 -1
D, = 2D,_,+ det
0 -
|0 -1 2 |

= 2Dn—1 _Dn—Q’

with Dy = 2, Dy = 3. This yields D,, = n+ 1 and for n = 4 we obtain D, = 5, which is
exactly the result obtained in the first example on page 4.

Properties of determinants:

(i) If A and B are two square matrices of equal size, we have

det AB — det BA = det Adet B..

(ii) Applying the above identity for B = A~ !, we find
det A7' =1/det A.

(iii) det AT = det A.

(iv) Laplace’s expansion of the determinant of A can be written in matrix form as

AA = (det A)I,

where A is the adjugate matrix of A. A = (@5, 1 < 14,5 < n) is the transpose of the
matrix formed by the cofactors of A, i.e., a;; = Cj; for all 7 and j.

Characteristic polynomial: Let A be an n X n matrix. Then a(s) = det(sI — A) is the
characteristic polynomial of A. Using Laplace’s formula to expand
S — a1 —ai2 T —0a1n
—a1  $— a2
a(s) = det(sI — A) = det ) . ,

—Qn1 S — Gpp



we see that a(s) is a polynomial of degree n where the coefficient of s™ equals 1. Thus

k
a(s) =s"+als" 4+ ... +a, = H(s - )",
i=1

where the multiplicities n; of roots A; with 1 <14 < k satisfy

Cayley-Hamilton theorem: An important property of matrix A is that it annihilates its
charcteristic polynomial, i.e.,

a(A) = A"+ a1 A"+ ap AV 4t apl, = 0. 9)

This important result can be established by using the identity

(sI —A)(sI —A)=a(s)], (10)

—_~—

and noting that the adjugate matrix sI — A is a matrix polynomial of degree n — 1, so it
can be written as o
sI —A=R1s"' + Rys" 2 +... + R,. (11)

Substituting (11) in (10) and identifying successive coefficients of s with 0 < i < n in
decreasing order on both sides of (10)

s R1 =1
Sn_l . R2 - AR1 = a1]
s+ —AR, =a,I,
and progressively eliminating Ri, Ra, ..., R, from the above relations yields (9).

Eigenvalues and eigenvectors: A € C is an eigenvalue of A and x € C" is a right
eigenvector associated with it if

Ax = Xx
with x # 0.
Since (A — A)x = 0, the matrix A — A is singular so that a(\) = det(A\] — A) =0, i.e.,
A is one of the roots A1, ..., Ax of a(s). The eigenvalues of A can be complex, but since the

coeflicients a;; of A are real, if \; is an eigenvalue of A with multiplicity n;, A} is also an
eigenvalue with the same multiplicity. The eigenvalues of A are therefore symmetric with
respect to the real axis, as depicted in Fig.2 below.

The right eigenvectors of A associated with distinct eigenvalues have the following prop-
erty.
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Figure 2: Real axis symmetry of the eigenvalues of a real matrix.

Lemma 1: If {x;, 1 < i < k} are right eigenvectors of A associated with eigenvalues
{Ai, 1 <i <k} such that \; # A; for i # j, they are linearly independent.

Proof: Suppose there exists a nontrivial linear dependence relation between the vectors x;,
so that

k
Z ux; =0, (12)
=1

where at least one of the coefficients u; is different from zero, say u; # 0. Then, multiplying
(12) on the left by fZQ(A — A\iI) and observing that A — \;I and A — A\;I commute, we

find
k

k k
H(A - )\iI)(ZijJ-) = up H()\l —X)x1 =0,
i=2 j=1 i=2

which is a contradiction since u; # 0, HZ'C:Q()‘l — Xi) # 0 and x; # 0. Thus, the vectors
{xi, 1 <4 <k} must be linearly independent. O

The eigenstructure of A is particularly simple when it has n distinct eigenvalues A1, ..., Ay
In this case, as shown above, the corresponding right eigenvectors {x;, 1 < i < n} are lin-
early independent and form a basis of R®. The relations Ax; = \;jx;, 1 < ¢ < n can be
written in matrix form as

AX = XA (13)
with

1>

X

[Xl X2 ... Xn]

and
A= dlag ()\1,A2, .- ,/\n) .

Since the columns of X form a basis of R”, X is invertible so that
A=XAX"1. (14)

This shows that A is related to the diagonal matrix A through a similarity transformation.
In this case, A is said to be diagonalizable. In this context, it is useful to observe that



Lemma 2: If A and B = TAT ! are related through an invertible similarity transformation
T, they have the same characteristic polynomial.

Proof:
det(sI — B) = det (T(sI —A)T 1)
= detTdet(sI — A)detT' = det(sI — A),
where the last equality was obtained by using det 7! = 1/ det T.. 0

When A does not have distinct eigenvalues, it still may be possible to diagonalize it. This
depends on whether for each eigenvalue A\; with multiplicity n;, we can find n; independent
eigenvectors x;0, 1 < £ < n; associated to A\;. When this is the case, the identity (13)
remains valid with

X = [X1 X5 ...Xk]
A = dlag (Dl,DQ, .. ,Dk) s
where

Xi:[xil R <7 2 Xini] and D; = NI, .

The columns of X are still linearly independent. To see this, assume that there exists a

linear dependence relation
k
Z (Z Uz'exz'é) =0 (15)

=1 =1
between the columns of X. Let -
A 1
X; = Z UieXie
=1

Depending on whether the coefficients u;p, 1 < £ < n are all zero or not, x; is either the
zero vector or an eigenvector of A associated with eigenvalue ); (it is a linear combination
of such eigenvectors). If x; # 0 for at least one i, the relation (15) indicates thar there
exists a linear dependence relation between several eigenvectors of A associated to distinct
eigenvalues \;, 1 < ¢ < k. According to Lemma, 1, this is impossible, so that we must have
x; = 0 for all 4. But for each i, the eigenvectors x;p with 1 < £ < n; are linearly independent,
so we must have u;; = 0 for all ¢ and £. Thus the columns of X are linearly independent,
so that X is invertible and A admits the representation (14).

Consider now the case where A has some eigenvalues \; for which the number of inde-
pendent eigenvectors is less than their multiplicity 7; in a(s). In this case, A cannot be
diagonalized, but we can represent it in terms of its generalized eigenvectors.

Definition: x # 0 is a generalized eigenvector of grade r of A if
(i) M —A)fx#£0for b <r
(iil) M —A)™x=0.



Let G(\;) = {x: (M — A)"x = 0 for some 7} be the generalized eigenspace of A associ-
ated to eigenvalue A;. Then Lemma 1 can be extended as follows.

Lemma 3: If {x;, 1 <7 < k} are generalized eigenvectors of A corresponding to eigenvalues
{Mi, 1 <@ <k} with \; # \j for i # j, they are linearly independent.

Proof: For each i, since x; is a generalized eigenvector of A corresponding to A;, we have
(MI — A)"ix = 0 for some r;. Then, suppose there exists a nontrivial linear dependence
relation

k
Z U X; — 0 (16)
i=1
between the x;s, where at last one of the coefficients u; is different from zero, say ui # 0.
Consider now the polynomials

k

pi(s) = (s —A1)™ , pa(s) = H(s — )"

=2
By multiplying (16) on the left by p2(A), we find
u1p2(A)x1 =0

where u; # 0, so that pa(A)x; = 0. On the other hand, we also know that pi(A4)x; =
0. Since pi(s) and p2(s) have no common roots, they are coprime, so that there exist
polynomials m1(s) and ma(s) such that

m1(s)p1(s) + ma(s)pa(s) = 1.

This implies that
x1 = m1(A)p1(A)x1 + ma(A)p2(A)x1 =0,

which is a contradiction since the vector x; must be nonzero in order to be a generalized
eigenvector of A. O

Then, we have:

Lemma 4: Any vector x of R” can be expressed as a linear combination of vectors in G()\;)
for 1 <i <k, ie.,

R* = G(A1) @ G(A2) ... ® G( ). (a7
This means that a basis of R can be obtained by combining bases of generalized eigenspaces

G(\).

Proof: According to Lemma 3, vectors belonging to different eigenspaces G()\;) are linearly
independent. To show that they span R", consider the characteristic polynomial

det(sI — A) =a(s) = H(s — )



and let
pi(s) = [ (s = 2)"™
J#e
for 1 <4 < k. The polynomials p;(s) are coprime, so that there exist polynomials m;(s)
such that

k
1= mi(s)p(s) -
i=1
This implies
k
=Y mi(A)pi(4),
i=1

so that for an arbitrary vector x € R® we have

k
X = in (18)
=1

with A
x; = m;(A)pi(A)x .

For each i, x; belongs to the generalized eigenspace G()\;) since
(NI — A)"x; = mi(A)a(A)x =0,

where the last equality uses Cayley-Hamilton’s identity a(A) = 0.
The relation (18) shows that an arbitrary vector x of R” can be expressed as the linear
combination of vectors in G(\;) with 1 <7 < k. O

Then, if x is a generalized eigenvector of grade r of A associated to eigenvalue X\, we can
construct the chain

X, = X

Xr—1 = (A= AD)x,
X1 = (A - )\I)Xg
0 = (A-—ADxy,
where each vector x; belongs to G()). The only eigenvector in this chain is x;. All other

vectors Xa,...,X, are generalized eigenvectors of grade 2,...,r. The effect of A on this
chain is given by

A[x1 X9 ... XT]:[Xl X9 ... XT}J
with
A1 0
J2 A
1
0 A

10



By constructing a basis for each generalized eigenspace G()\;) in terms of such chains, and
letting

Xz[xl X9 ... xn]
be the basis of R" obtained by combining all such bases of G()\;) we find that A can be
expressed as

A=XJXx ! (19)
with ) } ) }
Ji 0 A1 0
J — J] J] == '.. bl
- A1
| 0 Js | | 0 Aj

where each block J; has size r; X r;. The matrix J is called the Jordan form of A and J;
is a Jordan block of size r; corresponding to eigenvalue A;. There may be several Jordan
blocks with the same eigenvalue. If n is the dimension of A, we have r1 +r9... + 15 = n.

Example: If

|
r-
|

1ol

I Il
___|___:_+O_.|_[\1

O

|
SN
IS =

___I___:_T_'I'_
I___:_T
|

| |
J has 3 blocks of size 1, one block of size 2 and one block of size 3 associated to eigenvalue
A = 2. The characteristic polynomial of .J is a(s) = (s—2)8, but there are only 5 eigenvectors

associated to A = 2 (one for each Jordan block). These are given by

1 0 0
0 1 0
0 0 1
0 0 0
=1 2= 1) B=10
0 0 0
0 0 0
| 0 | 0 | L 0 |
o 0
0 0
0 0
ey = (1) ande6: 8
0 1
0 0
[ 0 _ [ 0

11



These eigenvectors have a 1 in the row corresponding to the beginning of each Jordan block
(remember that each Jordan block has only one eigenvector).

Minimal polynomial: Let A be an arbitrary matrix. Consider the set of all polynomials
p(s) such that p(A) = 0. The characteristic polynomial a(s) = det(s] — A) belongs to
this set, since by the Cayley-Hamilton theorem a(A) = 0. However a(s) need not be the
polynomial of smallest degree which is annulled by A. The polynomial m(s) of smallest
degree such that m(A) = 0 is called the minimal polynomial of A.

An important feature of m(s) is that it must divide a(s), i.e., there exists a polynomial
q(s) such that a(s) = m(s)q(s). To see why this is the case, assume that m(s) does not
divide a(s). Then, by Euclidean division, we can find polynomials ¢(s) and r(s) such that

a(s) = q(s)m(s) +r(s)
with degr(s) < degm(s). But a(A) = m(A) =0, so
r(A) = a(4) — ¢(4)m(A) =0,
i.e., we have constructed a polynomial (s) of smaller degree than m(s) such that r(4) = 0,
a contradiction since m(s) is the minimal polynomial. Thus m(s) is a divisor of a(s).
To find the minimal polynomial, observe that if J is the Jordan form of A and p(s) is

an arbitrary polynomial, then
p(A) = Xp(J)X

with
p(J1)

p(J) = ' p(J5)
0

p(Js) |
The minimal polynomial m(s) must be the polynomial p(s) of least degree such that p(J;) =
0 for all Jordan blocks J;. This implies that m(s) is the least common multiple of the minimal
polynomials m;(s) of the Jordan block J;. To find m;(s), note a;(s) = det(sl — J;) =
(s — A;)" where r; is the size of J;. Furthermore

0 1
Jj—=MNI=N; = 0
0 IR |
0
is a nil potent matrix of grade r; since
"o ) -
Nf = 1| #0

12



has ones along its /-th superdiagonal for £ < r; and Nf = 0 for £ > r;. This implies that
the minimal polynomial of J; is equal to its characteristic polynomial, i.e., m;(s) = a;(s) =
(3 — Aj)” -

If {\1,..., A} is the set of distinct eigenvalues of A, the minimal polynomial (the least
common multiple of the polynomials m;(s)) is therefore given by

m(s) = [J(s =27,

where "% = is the size of the largest Jordan block associated to eigenvalue A;.

Example: If we consider the matrix J given in (26), the size of the largest Jordan block
associated to A = 2 is 3, so that m(s) = (s — 2)3.

Comment: At this point, it is worth noting that although the concepts of Jordan form and
minimal polynomial can be useful for analytical derivations, they are somewhat unreliable
from a numerical viewpoint, since small perturbations in the entries of a matrix have the
effect of making all its eigenvalues distinct, thus making the computation of its Jordan form
rather difficult.
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