UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering

EEC250

Linear Systems and Signals

Fall 2009

Lecture 4

Topics:

- a) Determinant of a matrix, column operations, Laplace's expansion.
- b) Characteristic polynomial, Cayley-Hamilton theorem, eigenvalues/eigenvectors.
- c) Diagonalizable matrices, Jordan form, minimal polynomial.

Determinant: To motivate the concept of determinant of a square matrix A, consider the case where A is a 2×2 matrix with columns $\mathbf{a}_1, \mathbf{a}_2 \in \mathbb{R}^2$. If we view \mathbb{R}^2 as embedded in the three-dimensional space \mathbb{R}^3 , the outer product

$$\mathbf{a}_1 \times \mathbf{a}_2 = \det(\mathbf{a}_1, \mathbf{a}_2)\mathbf{e}_3 \tag{1}$$

where e_3 is the unit vector along the third axis and

$$\det(\mathbf{a}_1, \mathbf{a}_2) = |\mathbf{a}_1| |\mathbf{a}_2| \sin(\theta) \tag{2}$$

measures the area of the parallelogram spanned by \mathbf{a}_1 and \mathbf{a}_2 as shown in Fig.1 below.

Figure 1: Interpretation of the determinant in two dimensions as the oriented area of the parallelogam spanned by \mathbf{a}_1 and \mathbf{a}_2 .

In expression (2),

$$|\mathbf{a}_i| = (\mathbf{a}_i^T \mathbf{a}_i)^{1/2}$$

denotes the length (Euclidean norm) of vector \mathbf{a}_i for i = 1, 2 and θ is the oriented angle going from vector \mathbf{a}_1 to vector \mathbf{a}_2 , so that $\det(\mathbf{a}_1, \mathbf{a}_2)$ is an *oriented area* in the sense that

$$\det(\mathbf{a}_2,\mathbf{a}_1) = -\det(\mathbf{a}_1,\mathbf{a}_2) ,$$

since when \mathbf{a}_1 and \mathbf{a}_2 are interchanged, θ becomes $-\theta$, and $\sin(-\theta) = -\sin\theta$.

From the above definition, we see that $det(\mathbf{a}_1, \mathbf{a}_2) = 0$ whenever $\sin \theta = 0$, i.e. for $\theta = 0, \pi$. Thus, the determinant of vectors \mathbf{a}_1 and \mathbf{a}_2 is zero whenever they are colinear.

For the 2×2 case, if

$$A = \left[\begin{array}{cc} \mathbf{a}_1 & \mathbf{a}_2 \end{array} \right] = \left[\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array} \right] ,$$

an analytical expression equivalent to (2) is given by

$$\det A = \det(\mathbf{a}_1, \mathbf{a}_2) = a_{11}a_{22} - a_{21}a_{12}.$$

Consider now an $n \times n$ matrix A with columns $\mathbf{a}_1, \mathbf{a}_2, \ldots, \mathbf{a}_n$. Based on the above motivation, we say that $\det(\mathbf{a}_1, \ldots, \mathbf{a}_n)$ is a measure of the oriented volume of the parallelepiped of \mathbb{R}^n spanned by vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$. Thus, $\det(\mathbf{a}_1, \ldots, \mathbf{a}_n)$ is a map from $(\mathbb{R}^n)^n$ to \mathbb{R} :

$$(\mathbf{a}_1,\ldots,\mathbf{a}_n)\in(\mathbb{R}^n)^n\to\det(\mathbf{a}_1,\ldots,\mathbf{a}_n)\in\mathbb{R}$$

which has the following properties:

(i) It is linear with respect to each vector \mathbf{a}_i , $1 \le i \le n$ taken separately. Thus, if \mathbf{x} and \mathbf{y} are two arbitrary vectors of \mathbb{R}^n and if u and v are arbitrary real numbers

$$\det(\mathbf{a}_1, \dots, \mathbf{a}_{i-1}, u\mathbf{x} + v\mathbf{y}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_n) = u \det(\mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{x}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_n) + v \det(\mathbf{a}_1, \dots, \mathbf{a}_{i-1}, \mathbf{y}, \mathbf{a}_{i+1}, \dots, \mathbf{a}_n) .$$
(3)

(ii) If vectors \mathbf{a}_i and \mathbf{a}_j with i < j are interchanged, we have

$$\det(\mathbf{a}_1, \dots, \mathbf{a}_i, \dots, \mathbf{a}_i, \dots, \mathbf{a}_n) = -\det(\mathbf{a}_1, \dots, \mathbf{a}_i, \dots, \mathbf{a}_i, \mathbf{a}_n) \tag{4}$$

(iii) If there exists a nontrivial linear dependence relation

$$\sum_{i=1}^{n} u_i \mathbf{x}_i = \mathbf{0} \text{ with } \mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \neq \mathbf{0}$$
 (5)

between vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$, then

$$\det(\mathbf{a}_1,\ldots,\mathbf{a}_n)=0.$$

This is due to the fact that when (5) is satisfied, the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_n$ belong to a lower dimensional hyperplane of \mathbb{R}^n so that the volume of the parallelepiped spanned by $\mathbf{a}_1, \ldots, \mathbf{a}_n$ is zero,

The above three axioms can be used to derive the following analytical expression for the determinant of $A = (a_{ij}, 1 \le i, j \le n \text{ in terms of its entries:}$

$$\det A = \sum_{\pi} (-1)^{t(\pi)} a_{1\pi(1)} a_{2\pi(2)} \dots a_{n\pi(n)}, \qquad (6)$$

where in (6) the sum is over all permutations π of the index set $\{1, 2, ..., n\}$, and $t(\pi)$ is the number of transpositions occurring in the permutation σ . For example, if we consider the permutation

$$\{1, 2, 3, 4, 5\} \xrightarrow{\pi} \{2, 4, 3, 1, 5\}$$

 $t(\pi)$ can be computed by observing that

- -2 occurs before 1
- -4 occurs before 1 and 3
- -3 occurs before 1
- so that $t(\pi) = 4$.

The expression (6) shows that $\det A$ is obtained by performing all the products of n entries of A such that one element of each row and one of each column appears in the product. In the 3×3 case, with

$$A = \left[egin{array}{ccc} a_{11} & a_{12} & a_{13} \ a_{21} & a_{22} & a_{23} \ a_{31} & a_{32} & a_{33} \end{array}
ight] \, ,$$

this leads to the usual expression

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} -a_{11}a_{23}a_{32} - a_{12}a_{21}a_{33} - a_{13}a_{22}a_{31}.$$

Elementary column operations: The three axioms of determinants can be used to characterize the effect of elementary column operations on matrix determinants.

(i) Multiplication of a column by $c \neq 0$. Let

Then, according to (3)

$$\det A_s = c \det A$$
.

(ii) Exchange of two columns. If

$$A = [\mathbf{a}_1 \dots \mathbf{a}_i \dots \mathbf{a}_j \dots \mathbf{a}_n] \longrightarrow A_p = [\mathbf{a}_1 \dots \mathbf{a}_j \dots \mathbf{a}_i \dots \mathbf{a}_n],$$
 then $\det A_p = -\det A$.

(iii) Adding to a column a multiple of another column. Let

$$A = [\mathbf{a}_1 \dots \mathbf{a}_i \dots \mathbf{a}_j \dots \mathbf{a}_n] \longrightarrow A_c = [\mathbf{a}_1 \dots \mathbf{a}_i + v\mathbf{a}_j \dots \mathbf{a}_j \dots \mathbf{a}_n],$$

with $v \in \mathbb{R}$. The multilinearity property (3) implies

$$\det A_c = \det A + v \det B$$

where the matrix

$$B = [\mathbf{a}_1 \quad \dots \quad \mathbf{a}_j \quad \dots \quad \mathbf{a}_j \quad \dots \quad \mathbf{a}_n]$$

has two identical columns, so that according to the third axiom of determinants $\det B = 0$. Hence we conclude that $\det A_c = \det A$, so that an elementary linear combination of columns does not affect the determinant.

Since we can always use elementary column operations to reduce an arbitrary square matrix A to a lower triangular matrix L whose determinant is the product of its diagonal elements, the following strategy can be employed to evaluate determinants.

- **Step 1:** Use elementary column (resp. row) operations to reduce A to a lower (resp. upper) triangular matrix L (resp. U), while keeping track of the effect of the elementary operations on the determinant of A.
- **Step 2:** Evaluate the determinant of L (resp. U).

Example: We have

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 3/2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 3/2 & 0 & 0 \\ 0 & -1 & 4/3 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 2 & 0 & 0 & 0 \\ -1 & 3/2 & 0 & 0 \\ 0 & -1 & 4/3 & 0 \\ 0 & 0 & -1 & 5/4 \end{bmatrix} = L,$$

where elementary column operations are used to bring A to the lower triangular form L. Specifically, on the first line, we multiply column 1 by 1/2 and add it to column 2. Then on the second line we multiply column 2 by 2/3 and add it to column 3. Finally, we multiply column 3 by 3/4 and add it to column 4. Since L is lower triangular

$$\det A = \det L = 2 \times \frac{3}{2} \times \frac{4}{3} \times \frac{5}{4} = 5$$
.

Laplace's expansion: Another useful result is that the determinant of an $n \times n$ matrix A can be expanded in terms of the entries of row i as

$$\det A = \sum_{i=1}^{n} a_{ij} C_{ij} \tag{7}$$

where the cofactor C_{ij} of the (i,j)-th element a_{ij} of A is given by

$$C_{ij} = (-1)^{i+j} \det A_{ij}$$
, (8)

where A_{ij} is the $(n-1) \times (n-1)$ matrix obtained by deleting the *i*-th row and *j*-th column of A. In (7) the choice of row *i* is arbitrary. det A admits also a similar expression in terms of the entries of column j. The above formula is particularly convenient if A contains rows or columns with many zero entries.

Example: Consider the $n \times n$ tridiagonal matrix.

If $D_n = \det A_n$, by expanding D_n with respect to the first row of A_n we find

$$D_{n} = 2D_{n-1} + \det \begin{bmatrix} -1 & -1 & & & & \\ 0 & 2 & -1 & & 0 & \\ \vdots & -1 & 2 & -1 & & \\ \vdots & & \ddots & \ddots & \ddots & \\ \vdots & 0 & & \ddots & \ddots & \\ 0 & & & & -1 & 2 \end{bmatrix}$$
$$= 2D_{n-1} - D_{n-2},$$

with $D_1 = 2$, $D_2 = 3$. This yields $D_n = n + 1$ and for n = 4 we obtain $D_4 = 5$, which is exactly the result obtained in the first example on page 4.

Properties of determinants:

(i) If A and B are two square matrices of equal size, we have

$$\det AB = \det BA = \det A \det B.$$

(ii) Applying the above identity for $B = A^{-1}$, we find

$$\det A^{-1} = 1/\det A$$
.

- (iii) $\det A^T = \det A$.
- (iv) Laplace's expansion of the determinant of A can be written in matrix form as

$$A\tilde{A} = (\det A)I_n$$
,

where \tilde{A} is the adjugate matrix of A. $\tilde{A} = (\tilde{a}_{ij}, 1 \leq i, j \leq n)$ is the transpose of the matrix formed by the cofactors of A, i.e., $\tilde{a}_{ij} = C_{ji}$ for all i and j.

Characteristic polynomial: Let A be an $n \times n$ matrix. Then $a(s) = \det(sI - A)$ is the characteristic polynomial of A. Using Laplace's formula to expand

$$a(s) = \det(sI - A) = \det \begin{bmatrix} s - a_{11} & -a_{12} & \cdots & -a_{1n} \\ -a_{21} & s - a_{22} & & & \\ \vdots & & \ddots & & \\ -a_{n1} & & & s - a_{nn} \end{bmatrix}$$
,

we see that a(s) is a polynomial of degree n where the coefficient of s^n equals 1. Thus

$$a(s) = s^n + a1s^{n-1} + \ldots + a_n = \prod_{i=1}^k (s - \lambda_i)^{n_i},$$

where the multiplicities n_i of roots λ_i with $1 \leq i \leq k$ satisfy

$$\sum_{i=1}^k n_i = n \, .$$

Cayley-Hamilton theorem: An important property of matrix A is that it annihilates its charcteristic polynomial, i.e.,

$$a(A) = A^n + a_1 A^{n-1} + a_2 A^{n-2} + \dots + a_n I_n = 0.$$
(9)

This important result can be established by using the identity

$$(sI - A)(\widetilde{sI - A}) = a(s)I_n \tag{10}$$

and noting that the adjugate matrix $\widetilde{sI-A}$ is a matrix polynomial of degree n-1, so it can be written as

$$\widetilde{sI - A} = R1s^{n-1} + R_2s^{n-2} + \dots + R_n.$$
 (11)

Substituting (11) in (10) and identifying successive coefficients of s^i with $0 \le i \le n$ in decreasing order on both sides of (10)

$$s^{n}$$
 : $R_{1} = I$
 s^{n-1} : $R_{2} - AR_{1} = a_{1}I$
...
 s^{0} : $-AR_{n} = a_{n}I$,

and progressively eliminating R_1, R_2, \ldots, R_n from the above relations yields (9).

Eigenvalues and eigenvectors: $\lambda \in \mathbb{C}$ is an eigenvalue of A and $\mathbf{x} \in \mathbb{C}^n$ is a right eigenvector associated with it if

$$A\mathbf{x} = \lambda \mathbf{x}$$

with $\mathbf{x} \neq \mathbf{0}$.

Since $(\lambda I - A)\mathbf{x} = 0$, the matrix $\lambda I - A$ is singular so that $a(\lambda) = \det(\lambda I - A) = 0$, i.e., λ is one of the roots $\lambda_1, \ldots, \lambda_k$ of a(s). The eigenvalues of A can be complex, but since the coefficients a_{ij} of A are real, if λ_i is an eigenvalue of A with multiplicity n_i , λ_i^* is also an eigenvalue with the same multiplicity. The eigenvalues of A are therefore symmetric with respect to the real axis, as depicted in Fig.2 below.

The right eigenvectors of A associated with distinct eigenvalues have the following property.

Figure 2: Real axis symmetry of the eigenvalues of a real matrix.

Lemma 1: If $\{\mathbf{x}_i, 1 \leq i \leq k\}$ are right eigenvectors of A associated with eigenvalues $\{\lambda_i, 1 \leq i \leq k\}$ such that $\lambda_i \neq \lambda_j$ for $i \neq j$, they are linearly independent.

Proof: Suppose there exists a nontrivial linear dependence relation between the vectors \mathbf{x}_i , so that

$$\sum_{i=1}^{k} u_i \mathbf{x}_i = \mathbf{0} \,, \tag{12}$$

where at least one of the coefficients u_i is different from zero, say $u_1 \neq 0$. Then, multiplying (12) on the left by $\prod_{i=2}^k (A - \lambda_i I)$ and observing that $A - \lambda_i I$ and $A - \lambda_j I$ commute, we find

$$\prod_{i=2}^k (A - \lambda_i I) \Big(\sum_{j=1}^k u_j \mathbf{x}_j \Big) = u_1 \prod_{i=2}^k (\lambda_1 - \lambda_i) \mathbf{x}_1 = \mathbf{0},$$

which is a contradiction since $u_1 \neq 0$, $\prod_{i=2}^k (\lambda_1 - \lambda_i) \neq 0$ and $\mathbf{x}_1 \neq \mathbf{0}$. Thus, the vectors $\{\mathbf{x}_i, 1 \leq i \leq k\}$ must be linearly independent.

The eigenstructure of A is particularly simple when it has n distinct eigenvalues $\lambda_1, \ldots, \lambda_n$. In this case, as shown above, the corresponding right eigenvectors $\{\mathbf{x}_i, 1 \leq i \leq n\}$ are linearly independent and form a basis of \mathbb{R}^n . The relations $A\mathbf{x}_i = \lambda_i \mathbf{x}_i$, $1 \leq i \leq n$ can be written in matrix form as

$$AX = X\Lambda \tag{13}$$

with

$$X \stackrel{\triangle}{=} [\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n]$$

and

$$\Lambda = \mathrm{diag} (\lambda_1, \lambda_2, \dots, \lambda_n)$$
.

Since the columns of X form a basis of \mathbb{R}^n , X is invertible so that

$$A = X\Lambda X^{-1} \,. \tag{14}$$

This shows that A is related to the diagonal matrix Λ through a similarity transformation. In this case, A is said to be diagonalizable. In this context, it is useful to observe that

Lemma 2: If A and $B = TAT^{-1}$ are related through an invertible similarity transformation T, they have the same characteristic polynomial.

Proof:

$$det(sI - B) = det (T(sI - A)T^{-1})$$

= det $T det(sI - A) det T^{-1} = det(sI - A)$,

where the last equality was obtained by using $\det T^{-1} = 1/\det T$.

When A does not have distinct eigenvalues, it still may be possible to diagonalize it. This depends on whether for each eigenvalue λ_i with multiplicity n_i , we can find n_i independent eigenvectors $\mathbf{x}_{i\ell}$, $1 \leq \ell \leq n_i$ associated to λ_i . When this is the case, the identity (13) remains valid with

$$X = \begin{bmatrix} X_1 & X_2 & \dots & X_k \end{bmatrix}$$

$$\Lambda = \operatorname{diag} (D_1, D_2, \dots, D_k),$$

where

$$X_i = [\begin{array}{cccc} \mathbf{x}_{i1} & \dots \mathbf{x}_{i\ell} & \dots & \mathbf{x}_{in_i} \end{array}] \quad \text{and} \quad D_i = \lambda_i I_{n_i} .$$

The columns of X are still linearly independent. To see this, assume that there exists a linear dependence relation

$$\sum_{i=1}^{k} \left(\sum_{\ell=1}^{n_i} u_{i\ell} \mathbf{x}_{i\ell} \right) = \mathbf{0} \tag{15}$$

between the columns of X. Let

$$\mathbf{x}_i \stackrel{\triangle}{=} \sum_{\ell=1}^{n_i} u_{i\ell} \mathbf{x}_{i\ell} \ .$$

Depending on whether the coefficients $u_{i\ell}$, $1 \leq \ell \leq n$ are all zero or not, \mathbf{x}_i is either the zero vector or an eigenvector of A associated with eigenvalue λ_i (it is a linear combination of such eigenvectors). If $\mathbf{x}_i \neq \mathbf{0}$ for at least one i, the relation (15) indicates that there exists a linear dependence relation between several eigenvectors of A associated to distinct eigenvalues λ_i , $1 \leq i \leq k$. According to Lemma 1, this is impossible, so that we must have $\mathbf{x}_i = 0$ for all i. But for each i, the eigenvectors $\mathbf{x}_{i\ell}$ with $1 \leq \ell \leq n_i$ are linearly independent, so we must have $u_{i\ell} = 0$ for all i and ℓ . Thus the columns of X are linearly independent, so that X is invertible and A admits the representation (14).

Consider now the case where A has some eigenvalues λ_i for which the number of independent eigenvectors is less than their multiplicity n_i in a(s). In this case, A cannot be diagonalized, but we can represent it in terms of its generalized eigenvectors.

Definition: $\mathbf{x} \neq \mathbf{0}$ is a generalized eigenvector of grade r of A if

(i)
$$(\lambda I - A)^{\ell} \mathbf{x} \neq \mathbf{0}$$
 for $\ell < r$

(ii)
$$(\lambda I - A)^r \mathbf{x} = \mathbf{0}$$
.

Let $G(\lambda_i) = \{\mathbf{x} : (\lambda I - A)^r \mathbf{x} = 0 \text{ for some } r\}$ be the generalized eigenspace of A associated to eigenvalue λ_i . Then Lemma 1 can be extended as follows.

Lemma 3: If $\{\mathbf{x}_i, 1 \le i \le k\}$ are generalized eigenvectors of A corresponding to eigenvalues $\{\lambda_i, 1 \le i \le k\}$ with $\lambda_i \ne \lambda_j$ for $i \ne j$, they are linearly independent.

Proof: For each i, since \mathbf{x}_i is a generalized eigenvector of A corresponding to λ_i , we have $(\lambda_i I - A)^{r_i} \mathbf{x} = \mathbf{0}$ for some r_i . Then, suppose there exists a nontrivial linear dependence relation

$$\sum_{i=1}^{k} u_i \mathbf{x}_i = \mathbf{0} \tag{16}$$

between the \mathbf{x}_i s, where at last one of the coefficients u_i is different from zero, say $u_1 \neq 0$. Consider now the polynomials

$$p_1(s) = (s - \lambda_1)^{r_1}$$
 , $p_2(s) = \prod_{i=2}^k (s - \lambda_i)^{r_i}$.

By multiplying (16) on the left by $p_2(A)$, we find

$$u_1 p_2(A) \mathbf{x}_1 = 0$$

where $u_1 \neq 0$, so that $p_2(A)\mathbf{x}_1 = 0$. On the other hand, we also know that $p_1(A)\mathbf{x}_1 = 0$. Since $p_1(s)$ and $p_2(s)$ have no common roots, they are coprime, so that there exist polynomials $m_1(s)$ and $m_2(s)$ such that

$$m_1(s)p_1(s) + m_2(s)p_2(s) = 1.$$

This implies that

$$\mathbf{x}_1 = m_1(A)p_1(A)\mathbf{x}_1 + m_2(A)p_2(A)\mathbf{x}_1 = 0$$
,

which is a contradiction since the vector \mathbf{x}_1 must be nonzero in order to be a generalized eigenvector of A.

Then, we have:

Lemma 4: Any vector \mathbf{x} of \mathbb{R}^n can be expressed as a linear combination of vectors in $G(\lambda_i)$ for $1 \le i \le k$, i.e.,

$$\mathbb{R}^n = G(\lambda_1) \oplus G(\lambda_2) \dots \oplus G(\lambda_k). \tag{17}$$

This means that a basis of \mathbb{R}^n can be obtained by combining bases of generalized eigenspaces $G(\lambda_i)$.

Proof: According to Lemma 3, vectors belonging to different eigenspaces $G(\lambda_i)$ are linearly independent. To show that they span \mathbb{R}^n , consider the characteristic polynomial

$$\det(sI - A) = a(s) = \prod_{i=1}^{k} (s - \lambda_i)^{n_i}$$

and let

$$p_i(s) = \prod_{j \neq i} (s - \lambda_j)^{n_j}$$

for $1 \leq i \leq k$. The polynomials $p_i(s)$ are coprime, so that there exist polynomials $m_i(s)$ such that

$$1 = \sum_{i=1}^k m_i(s) p_i(s) .$$

This implies

$$I = \sum_{i=1}^k m_i(A) p_i(A) ,$$

so that for an arbitrary vector $\mathbf{x} \in \mathbb{R}^n$ we have

$$\mathbf{x} = \sum_{i=1}^{k} \mathbf{x}_i \tag{18}$$

with

$$\mathbf{x}_i \stackrel{\triangle}{=} m_i(A)p_i(A)\mathbf{x}$$
.

For each i, \mathbf{x}_i belongs to the generalized eigenspace $G(\lambda_i)$ since

$$(\lambda_i I - A)^{n_i} \mathbf{x}_i = m_i(A) a(A) \mathbf{x} = \mathbf{0} ,$$

where the last equality uses Cayley-Hamilton's identity a(A) = 0.

The relation (18) shows that an arbitrary vector \mathbf{x} of \mathbb{R}^n can be expressed as the linear combination of vectors in $G(\lambda_i)$ with $1 \leq i \leq k$.

Then, if **x** is a generalized eigenvector of grade r of A associated to eigenvalue λ , we can construct the chain

$$\mathbf{x}_r = \mathbf{x}$$
 $\mathbf{x}_{r-1} = (A - \lambda I)\mathbf{x}_r$
 \dots
 $\mathbf{x}_1 = (A - \lambda I)\mathbf{x}_2$
 $\mathbf{0} = (A - \lambda I)\mathbf{x}_1$,

where each vector \mathbf{x}_j belongs to $G(\lambda)$. The only eigenvector in this chain is \mathbf{x}_1 . All other vectors $\mathbf{x}_2, \ldots, \mathbf{x}_r$ are generalized eigenvectors of grade $2, \ldots, r$. The effect of A on this chain is given by

$$A \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_r \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_r \end{bmatrix} J$$

with

$$J \stackrel{\triangle}{=} \left[egin{array}{cccc} \lambda & 1 & & 0 \\ & \lambda & \ddots & \\ & & \ddots & 1 \\ 0 & & \lambda \end{array}
ight].$$

By constructing a basis for each generalized eigenspace $G(\lambda_i)$ in terms of such chains, and letting

$$X = [\begin{array}{ccccc} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{array}]$$

be the basis of \mathbb{R}^n obtained by combining all such bases of $G(\lambda_i)$ we find that A can be expressed as

$$A = XJX^{-1} (19)$$

with

where each block J_j has size $r_j \times r_j$. The matrix J is called the *Jordan form* of A and J_j is a Jordan block of size r_j corresponding to eigenvalue λ_j . There may be several Jordan blocks with the same eigenvalue. If n is the dimension of A, we have $r_1 + r_2 \ldots + r_s = n$.

Example: If

$$J = \begin{bmatrix} 2 & 0 & 1 & 1 & 0 \\ 0 & 2 & 0 & 1 & 0 \\ 1 & 2 & 2 & 1 & 1 \\ 2 & 1 & 2 & 1 & 1 \\ 0 & 1 & 0 & 2 & 1 \\ 1 & 0 & 0 & 2 & 1 \\ 0 & 1 & 0 & 0 & 2 \end{bmatrix},$$

$$(20)$$

J has 3 blocks of size 1, one block of size 2 and one block of size 3 associated to eigenvalue $\lambda = 2$. The characteristic polynomial of J is $a(s) = (s-2)^8$, but there are only 5 eigenvectors associated to $\lambda = 2$ (one for each Jordan block). These are given by

$$\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \qquad \mathbf{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

These eigenvectors have a 1 in the row corresponding to the beginning of each Jordan block (remember that each Jordan block has only one eigenvector).

Minimal polynomial: Let A be an arbitrary matrix. Consider the set of all polynomials p(s) such that p(A) = 0. The characteristic polynomial $a(s) = \det(sI - A)$ belongs to this set, since by the Cayley-Hamilton theorem a(A) = 0. However a(s) need not be the polynomial of smallest degree which is annulled by A. The polynomial m(s) of smallest degree such that m(A) = 0 is called the minimal polynomial of A.

An important feature of m(s) is that it must divide a(s), i.e., there exists a polynomial q(s) such that a(s) = m(s)q(s). To see why this is the case, assume that m(s) does not divide a(s). Then, by Euclidean division, we can find polynomials q(s) and q(s) such that

$$a(s) = q(s)m(s) + r(s)$$

with $\deg r(s) < \deg m(s)$. But a(A) = m(A) = 0, so

$$r(A) = a(A) - q(A)m(A) = 0,$$

i.e., we have constructed a polynomial r(s) of smaller degree than m(s) such that r(A) = 0, a contradiction since m(s) is the minimal polynomial. Thus m(s) is a divisor of a(s).

To find the minimal polynomial, observe that if J is the Jordan form of A and p(s) is an arbitrary polynomial, then

$$p(A) = Xp(J)X^{-1}$$

with

$$p(J) = \left[egin{array}{cccc} p(J_1) & & & & & & 0 \ & & \ddots & & & & 0 \ & & & p(J_j) & & & & \ & & 0 & & \ddots & & \ & & & & p(J_s) \end{array}
ight] \,.$$

The minimal polynomial m(s) must be the polynomial p(s) of least degree such that $p(J_j) = 0$ for all Jordan blocks J_j . This implies that m(s) is the least common multiple of the minimal polynomials $m_j(s)$ of the Jordan block J_j . To find $m_j(s)$, note $a_j(s) = \det(sI - J_j) = (s - \lambda_j)^{r_j}$ where r_j is the size of J_j . Furthermore

$$J_j-\lambda_j I=N_j=\left[egin{array}{cccc} 0&1&&&&&\ &\ddots&\ddots&&&0\ 0&&\ddots&\ddots&1\ &&&&0 \end{array}
ight]$$

is a nil potent matrix of grade r_j since

has ones along its ℓ -th superdiagonal for $\ell < r_j$ and $N_j^{\ell} = 0$ for $\ell \ge r_j$. This implies that the minimal polynomial of J_j is equal to its characteristic polynomial, i.e., $m_j(s) = a_j(s) = (s - \lambda_j)^{r_j}$.

If $\{\lambda_1, \ldots, \lambda_k\}$ is the set of distinct eigenvalues of A, the minimal polynomial (the least common multiple of the polynomials $m_i(s)$) is therefore given by

$$m(s) = \prod_{i=1}^k (s - \lambda_i)^{r_i^{\max}},$$

where $r_i^{\text{max}} = \text{is the size of the largest Jordan block associated to eigenvalue } \lambda_i$.

Example: If we consider the matrix J given in (26), the size of the largest Jordan block associated to $\lambda = 2$ is 3, so that $m(s) = (s-2)^3$.

Comment: At this point, it is worth noting that although the concepts of Jordan form and minimal polynomial can be useful for analytical derivations, they are somewhat unreliable from a numerical viewpoint, since small perturbations in the entries of a matrix have the effect of making all its eigenvalues distinct, thus making the computation of its Jordan form rather difficult.