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Lecture 3

Topics:
a) Computation and characterization of the four fundamental spaces of a matrix

b) Linear map, change of basis, similarity transformation

As we saw in Lecture 1, we can associate four fundamental spaces to an arbitrary m xn
matrix A:

(i) The column space

R(A) ={b € R™ :,b = Ax for some x € R"} (1)
(ii) The row space
R(AT) = {ceR":c= ATy for somey € R™}
= {ceR": c" =y" A for some y € R™} (2)
(iii) The right null space
N(A)={xeR": Ax =0} (3)
(iv) The left null space
NA) ={yeR": ATy =0} ={y e R" : yT'A=0"}. (4)

It turns out that all four fundamental spaces can be computed from the row echelon
form E (or the reduced row echelon form E,) of the matrix A, and from the matrix M
(resp. M,) corresponding to the combination of the elementary operations bringing A to
the form E (resp. E,). To see this, consider the following example.

Example: Let

01 2 3 4
A=101 2 4 6
00 01 2
Then, we have
MA=FE
with
1 00 01 2 3 4
M=|-1 10 , E=10 0 0 1 2
1 -1 1 00 00O



Since elementary row operations do not change the row space of A, the row space of A is
given by the nonzero rows of E. Thus, we have:

row space = R(A’) = space spanned by {

FNGICIN RS )
N = O OO
—

The elementary row operations change the column space of A, but if a set of columns of A
is linearly independent, the same set of columns of F is independent. This is due to the fact
that the solutions of Ax = 0 do not change if we we perform elementary operations on the
rows of A Then,. since the columns of E where the pivot elements are located (here, the
second and fourth columns) constitute a basis for the column space of E, the corresponding
columns of A constitute a basis for the column space of A. Thus,

1 3
column space = R(A) = space spanned by {| 1 | , | 4 |},
0 1

where the two vectors spanning R(A) are the second and fourth columns of A.

The left null space of A is obtained by examining the rows of F that are zero. Since these
rows are zero, the corresponding row vectors of M are in the left null space of A. These row
vectors are necessarily independent since M is invertible, so that they constitute a basis of
the left null space of A. Here the third row of E =0, so

1
left null space = N'(AT) = space spanned by {| —1 |},
1

where the vector spanning A'(AT) is the transpose of the third row of M.
To find the right null space of A, it is convenient to compute the reduced row echelon form
E,. For the example considered here

0120 -2
M,A=E.,=|0 0 0 1 2 ,
0 00O0 O
with
1 -3 0 4 -3 0
M,=10 1 0|M=|-1 10
0 01 1 -1 1

A basis of the right null space of A is obtained by expressing each nonpivot column of FE,
(here, the first, third and fifth columns) in terms of the pivot columns. Since the pivot
columns of E, are the standard orthonormal basis vectors e1, e, ..., €., where r = rank



of A, this is easy to accomplish. Here

0 1 0
15 column of E, = 0[=0.1]0]4+0.]1
0 0 0
[ 2 1 0
3rd column of F, = 0l=2.101|+0.]1
| 0 0 0
[ —2 1 0
5% columnof B, = | 2 |=—-2.|0|+2]1
| 0 0 0

The above expressions yield linear dependence relations between the columns of E, and
therefore of A, so that

right null space = N (A) = space spanned by {

OO O O =

OO = N O

=N O DN O
—~

By using the procedure described above, we see that if A has rank r, we can generate
n — 7 vectors Xi, ..., X,_, (one for each nonbasic column of E,) in the null space of A.
These vectors are clearly independent since each has one nonbasic variable equal to one,
and all other nonbasic variables equal to zero. To see that they span the whole right null
space N'(A), let y be an arbitrary vector of N'(4), so that Ay = 0. In this case we have
also E,y = 0. Then, consider

2=y — Y YiXk (5)
k=1

where xi, 1 < k < n —r are the vectors of N (A) constructed above and i, is the index of
the k-th nonbasic variable of y, and y;, the corresponding variable. We have

Ez=0 (6)

where all the nonbasic variables of z are zero. Since the submatrix of F, obtained by
retaining only the pivot columns of £, has the form

o]



where I, denotes the r x r identity matrix, the relation (6) implies z = 0. Thus

n—r
y = Zyikxk ’ (7)
k=1
so that {x1, X9, ..., Xp—r} is a basis of N'(A), as claimed.

To explore further the structure of the right and left null spaces of A, it is convenient
to introduce the following concept.

Orthogonal complement: Let W be a subspace of R”. Its orthogonal complement W+
is given by

Wt={uecR" :u'w=0forallwe W}. (8)
To verify that W= is a subspace of R”, let u; and uy be two vectors of W, so that

ulTw = usz =0
for all w € W. Then if @ and b are two arbitrary scalars of R, we have

Yw=0

(auy + buy
for all w € W, so that au; + buy € W.

Example: Let W be the one-dimensional subspace of R® formed by vectors colinear with

1
w= |1
0
x3
€3
-1 0 1
B — T
/; K 2
/ /
/ /
u A w
1
x1

Figure 1: Orthononal complement of the space W spanned by w.

Then W is the plane perpendicular to the vector w. It is spanned by the vectors

1 0
u=| -1 and e3=| 0
0 1



as shown in Fig. 1.
Properties of orthogonal complements:
(i) No nonzero vector can be perpendicular to itself:
Wnw*={0}.
(ii) The orthogonal complement of the orthogonal complement is the original subspace:
wht=w.

This can be seen by noting that the vectors w of W have the property that w/u =0
for all vectors u of W+ .

(iii) R™ is the direct sum of W and W+:
R' =W e Wt
This means that any vector x of R® can be decomposed as
X = x” + xJ‘
where xIl € W and x- € Wt.

Property (iii) can be verified by observing that an arbitrary basis {e{, ..., e;} of W can
always be completed into a basis of R” by selecting basis vectors {e,1, ..., €,} which are
perpendicular to W. Then an arbitrary vector x of R* can be expressed as

n
X = g a:iei:x”—l—xj‘,

=1
where
q
X” = E rie; €W
=1
n
XJ' = E Z;€; € WJ' .
i=q+1

The four fundamental spaces of A can be characterized as follows.

Theorem: We have
N(4) =R(A")*" 9)

N(AT) =R(A)*. (10)
Proof: Since (10) is obtained by replacing A by AT in (9), we only need to prove (7). If x
is an arbitrary vector of N'(A), it satisfies

Ax=0.



Similarly, if ¢ is an arbitrary vector of R(A”), we have
ufA=c" (11)
for some u € R™. Multiplying (11) on the right by x yields
c'x=ulAx=0

for x € N(A) and ¢ € R(AT), so that N (A) and R(AT) are two mutually orthogonal
subspaces of R".

In order to show that N'(A) = R(AT)*, we must prove that all the vectors orthogonal to
R(AT) are in N'(A). But the dimension of R(A”), the row space of A is r = rank(A). This

implies that its orthogonal complement has dimension n — r. The basis {x1, ..., X,—,} of
N(A) that we have constructed earlier has precisely n — r elements (one for each nonbasic
column of E,), so that N'(4) = R(AT)*,. O

From the above result we see that

R* = R(AT) @ N(A) (12)
R™ = R(A)oN(AT). (13)

To interpret these decompositions, note that A just maps its domain R” into its range space
R(A) C R™. Then, since A maps vectors in its null space N (A) onto the zero vector 0, the
decomposition (12) shows that the range space R(A) (the column space of A) is effectively
generated by applying A to R(AT) (the row space of A). In other words, A maps its row
space into its column space, as indicated by the diagram shown in Fig. 2.

Figure 2: Mapping of the domain R of A into its range space.

By duality, AT is a map of R™ into R(AT) C IR". It maps the column space of A into its
row space.



Another byproduct of decompositions (12) and (13) is that if A is a matrix of size m X n
and rank r, we have

n=dim (R") = dim domain (4)
= dim R(4) +dim N(A)=r+ (n—1) (14)
m = dim (R™) = dim domain (A7)
= dim R(AT) + dim N(AT) =7+ (m — 1), (15)

where dim (V') denotes the dimension of a vector space V, and where we have used the fact
that
dimR(A) = dimR(AT) =r (16)

(the dimension of the row or column space of A equals its rank). To interpret (14), note
that A acts on vectors x € R". These vectors have n degrees of freedom. They are mapped
by A into vectors y = Ax in the range of A which have only r degrees of freedom. The
remaining n —r degrees of freedom can be accounted for by noting that the null space N'(A)
of vectors x such that Ax = 0 has dimension n — r.

Summary: If A has size m x n and rank r, we have
(i) M(A) =R(AT)" , N(AT) =R(A)*
(i) dimR(A) = dimR(AT) =r
dimN(A)=n—7r , dimN(AT)=m —r.

Linear map: Consider two vector spaces V and W andamap L:veV —-w=LveW.
L is a linear map if when wy = Lvy and wo = Lvs, where vi and vo are arbitrary vectors
of V, then

awi + bwy = L((J,V1 + bVQ)

for arbitrary real scalars a and b.

Example: Consider the discrete-time linear time-invariant system with impulse response
h(k) shown in Fig. 3.

v(k) — h(k) —— w(k)

Figure 3: Discrete-time linear time-invariant system.

The output sequence w(k) corresponding to an input sequence v(k) is given by

w(k) = (hxv)(k) = Y h(k—1v(l). (17)

l=—



If the impulse response h(-) is summable, so that the system is BIBO stable, the system
(17) defines a linear map from the vector space V = [°°(Z) of bounded integer-indexed
sequences into W = [*°(Z). It is easy to verify that this map is linear since

hx (avi +bvy) = ahx*v1+ bh* vo

= awy + bws,
where w; = h xv; for i =1, 2.

Matrix representation of a linear map: We restrict our attention to the case where
the vector spaces v and W are finite dimensional. Let {e;, 1 < j < n} be a basis of V' and
{f;, 1 <i < m} a basis of W. Then, arbitrary vectors v € V and w € W can be expressed
in terms of the basis vectors {e;, 1 <j <n} and {f;, 1 <i <m} as

n m
vV = E z;€; , W= E yifi .
j=1 i=1

If L is a linear map, then

n
w=Lv= E ijej
Jj=1

where each vector Le; € W can be expressed in terms of the basis {f;, 1 <i < m} of W as
m

Le; = Zaz’jfi ) (18)
i=1

for 1 < j <n. If w= Lv, we have therefore

W:[fl fm]y:[Lel en]x (19)
with
Y1 T1
Al 7 A
y = , X=
Ym Iy
and
Substituting (20) inside (19) yields
[f1 ... £, ](y—A4Ax)=0, (21)
and since the vectors {f ,..., f } are linearly independent, this implies
y = Ax. (22)

Thus, the matrix A = (a;5, 1 <i <m, 1 < j < n) obtained by expressing the transformed
basis vectors Le; of V in terms of the basis vectors of W in (18), expresses the coordinates
y of w = Lv in terms of the coordinates x of v.



Example: Let V = W = R®. Then a basis for both V and W is given by

a-[3] e[2]

Let L be a 7/4 rotation about the origin whose effect on an arbitrary vector v is shown in
figrota.

)
w
/4
€2 / v
z1
0 el

Figure 4: 7/4 rotation about the origin in R?.

L is clearly linear and

1 1 1 1
ber = ﬁ[l] NNV

1 -1 1 1
bex = ﬁ[ 1]: VAV

so that the matrix representation of L is
1 1 -1
A=— ;
v R

Change of basis: Consider two bases of R", say {€¢'d, 1 <i < n} and {e*V, 1 <i <n}.
Since both are bases we can express any vector e;lew of the new basis in terms of the old
basis vectors, i.e.

new _ Z eOIdt” (23)

Let A A
Erew=[€ ... el ] Eug=[ed ... ed]

denote the two square n X n matrices whose columns correspond to the new and old basis
vectors, respectively. Then identity (21) can be rewritten in matrix form as

EneW = oldTa (24)



with T = (¢;;, 1 <14, j < n. Similarly, we can express the old basis vectors in terms of the

new basis vectors as
n
old __ new . .
e’ = E e;“"s;;
i=1

for 1 < j < n, or equivalently as
Eoq = EnewS (25)

with § = (s;5) 1 <4, j <n. Substituting (25) inside (24) yields
Enew(I —ST)=0. (26)
But since the columns of E,¢,, are linearly independent, E,,, is invertible so that
I=8T=TS§S, (27)

ie. S=T"1.
In terms of both the old and new bases, an arbitrary vector v of R” can be expressed as

n

n
v = § :xg)ldegld — § :x?ewe?ew
i=1

i=1
= EyaXold = EnewXnew (28)
with d
o n
9 xlew
A ) A
Xold = : Xnew = :
old ne
T ™
But Egg = EpewT !, so that
_ m—1
Lnew — T Lold - (29)

Comparing (25) and (29), we see that basis vectors and vector coordinates are transformed
in opposite ways, i.e. going from the old to the new basis vectors corresponds to a multipli-
cation by T, but going from the old to the new coordinates corresponds to a multiplication
by T~ 1.

Now let L be a linear map from R"” to R" which is represented by the matrix Ayq with
respect to the basis {€9!9, 1 <4 < n}. In other words, if w = Lv, the coordinates yoq and
Xold of w and v are related through

Yold = AoldYold -
If we now perform the change of basis (24), we find
Ynew =T 'Yold = T Aola TXnew ,
so that with respect to the new basis {e]*", 1 <i < n}, L is represented by

Anew = T_leldT . (30)

10



The transformation (30) relating Apew and Agyq is called a similarity transformation.

Example: Consider the change of basis of R?> where we go from the standard orthonormal
basis

to the new basis

as shown in Fig. 5 below.

wgld
old
new - _1_ . _e_2 _________ new
€5 . €]
! I
! I
! I
I
| 1 I
| .’L‘?ld
-1 0 edld 2

Figure 5: Basis vectors of the old and new bases.

Clearly
[ erllew e121ew ] — [ ecl)ld egld ]T
with
2 —1
r=[1 ]
and

[ o )= [ e e |7l

Then if x is an arbitrary vector of R?> whose coordinates with respect to {e$'9, e3'd} are

(x9'4, 29!4), its coordinates with respect to {e]°V, e§*"} are given by
$111ew - T_l x(l)ld

1 1 1
-1_ *
=3 [ -1 2 ] '
Now let R be a rotation by 7/2 with respect to the origin. R is a linear map which maps

€9 into e9!d and €94 into —e$'¢, so that

with

[ Re(l)ld Regld ] — [ etl)ld egld ] Aold

11



where
0 -1
Agg =
old |: 1 0 :|
is the matrix representation of the rotation R in the basis {€9'9, e3!4}. In the new basis, R
is represented by

Anew = T_leldT
_ 1 1 1[0 —1][2 -1
T30 -1 2 1 0 1 1

11 -2
~ 3|5 1|°
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