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Lecture 2

Lecture Topics:

a) Elementary row operations, row echelon form

Basis and dimension of a vector space

)
b) Gaussian elimination, solution of linear equations
¢)

)

d

Dimension of the row and column spaces, rank of a matrix

Elementary row operations: To transform an arbitrary m X n matrix
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A= ||, (1)

T
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where rZT denotes the i-th row of A, into a form that reveals its structure, we rely on three
types of row operations.

(i) Row scaling. Multiplying the i-th row of A by a constant ¢ # 0 corresponds to
multiplying A on the left by the m x m diagonal matrix

M, = diag{1,...,1,¢,1,...,1} (2)
whose diagonal elements are all equal to 1, except for the ith element which equals c. Then
the product
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M,A = Ag 2 crz-T

keeps all the rows od A unchanged, except the i-th row, which is multiplied by c.



(i) Row permutation. Let e;, 1 < k < m denotes the orthonormal basis of R™ where
vector e, has all zero entries, except the k-th entry which equals one. Then for i < 7,
consider the m times m permutation matrix

My=[e ... €1 € €41 ... €_1 € €11 ... €y | (3)

obtained by exchanging the i-th and j-th columns of the m X m identity matrix I,,. If A
is written row-wise as indicated in (1), by multiplying A on the left by M, we obtain the
matrix

M,A=A, =

which is obtained by exchanging the i-th and j-th rows of A.

(iii) Row combination. Adding to the i-th row of A the j-th multiplied by a constant ¢
corresponds to multiplying A on the left by the m x m matrix

M, =1I,+ ceiejT , (4)

where e; and e; denote the i-th and j-th basis vectors of R™. If A is written row-wise as
indicated in (1), multiplying A on the left by M, gives the matrix

MA=A, =

r

sty

which is obtained by addinf ¢ times row j of A to its i-th row, while keeping all other rows
unchanged.

Note that the elementary matrices My, M, and M, corresponding to the three types of
elementary row operations are all invertible, since each row operation is easy to invert.



Specifically, the inverse operation of scaling the i-th row of A by ¢ # 0 consists in scaling
the i-th row of A by 1/¢, so

Ms_l:diag{]-?"'a]-ac_l’]'""’]'}' (5)

Similarly, the inverse of exchanging the i-th and j-th rows of A consists of switching them
again, so that M 1 = M,. Finally the inverse of adding the j-th row of A times c to the
i-th row consists in subtracting the j-th row of A, times ¢ from the i-th row of A.. Thus

M, = I, — ceje] . (6)

Row echelon form: A key result is that by elementary row operations, we can bring an
arbitrary m x n matrix A to its row echelon form
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where the z’s correspond to arbitrary entries (they can be either zero or nonzero), r is the
number of nonzero rows, and the columns corresponding to the first 1 entry of each row are
called the pivot columns. The indices p; < p3... < p, of the pivot columns are called the
pivot indices.

Thus, for an arbitrary m X n matrix A, we can find an m X n matrix M, where M =
H,]cvzl M;, is the product of elementary matrices, such that

MA=E. (8)

Example: Let
1 2 0 2 1
A= -1 -2 1 1 0
1 2 -3 -7 =2

To compute simultaneously the echelon form E and transformation matrix M, it is conve-
nient to operate on the expanded 3 x 6 block matrix

A=A I ],

where I3 denotes the idenity matrix of size 3, instead of A only. This expansion will make
it easier to keep track of the transformation matrix M. Then by adding the 1st row of A,



to the 2nd row, and subtracting the 1st row from the 3rd row, we obtain

0
0
1

(1 2 0 2 151

0
A, = -1 -2 1 1 o:o 1
1 2 -3 -7 =210 0

12 0 2 1; 100
— (o0 1 3 1l 110
0 0 i 10 1

-3 -9 -3i

Next, adding 3 times the 2nd row to the the 3rd row gives

120215100
0013111 10(=[F M].
0000 0i231

The above example required only the use of row combinations. However, in general it
ia necessary to employ row exchange and row scaling operations. For example

13
A=12 6
2 8

o0 = DN
SO = W N O W

where in the first line we substract two times the first row from the second and third row,
and in the second line the third row is scaled by 1/2 and exchanged with the second row.

Reduced row echelon form: For some problems, it is convenient to work with the reduced
row echelon form F,., which is obtained from FE by using the 1’s in the pivot columns to
eliminate the nonzero entries located in the same column.

For the example we have just considered, subtracting 3 times the second row of E from
the first row gives

1 3 2 10 -4
012 — |01 2|=E.
000 00 0

When A is a square invertible matrix, F, = I and from M A = E, = I, we see that
M=A"

Example: Let
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Then

[132:100_ (13 2] 100
269010 — [005i-210
28 8i0 0 1| _ 4i-2 0 1
32 1 0 0] (13 0§ 9/5 -2/5 0
— 012: -1 0 1/2| — 0105—1/5 —2/5 1/2
001:—2/5 1/5 0 | _0015—2/5 1/5 0
10 0f12/5 4/5 —3/2]
o1 0i-15 —25 12| = [ET:I?,EA*].
00 1i-25 1/5 0] '

An important fact is that elementary row operations do not change the solutions of
Ax = b, and do not change the row space of A.

Lemma 1: Let A be an m X n matrix and M be an invertible m X m matrix. Then
a) {xeR": Ax=b}={x€R" : MAx = Mb}

b) row space of M A = row space of A.

Proof: a) If x satisfies Ax = b, then MAx = Mb; if x satisfies the latter equation,
premultiplying by M~! gives Ax = b.

[b) If ¢ is in the row space of A, then y” A = ¢ for some y € R™. Choosing 2 =y? M~
we have zI’ M A = ¢’ and c is in the row space of M A. Conversely if ¢!’ =z M A for some
z € R™, then ¢! = yT A for yI' =27 M. O

Gaussian elimination, solution of linear equations: Lemma 1 provides the basis for
solving linear equations of the form Ax = b by the method of Gaussian elimination. This
method requires 3 steps:

1) Use elementary row operations to transform Ax = b to the form E,x = b, where
M A = E, is the reduced row echelon form and b, = Mb. The computation of b, can
be achieved by operating on

[Aib]
instead of A only.

2) Determine whether E,x = b, has (i) no solution, (ii) a unique solution, (iii) an infinite
number of solutions. This can be done as follows. Let r be the number of nonzero



rows of E,. Then, if the last mm — r entries of b, are zero, i.e.

A

0

where entries 5;, 1 < ¢ < r are arbitrary, F,x = b, will admit a solution. Otherwise
it has no solution. Assume now that F,.x = b, admits a solution. If r = n, i.e., if all
columns of F, are pivot columns, the solution is unique. On the other hand, if r < n
(there exists nonpivot columns), there is an infinite number of solutions.

3) The entries zp,,p, ... zp, of x corresponding to the pivot columns are called basic
variables. The remaining entries are called nonbasic. Then if E,x = b, admits a
solution, the set of all solutions can be obtained by using E,x = b, to express the
basic variables in terms of both b, and the nonbasic variables, which act as free
coefficients parametrizing the set of all solutions.

Example: Consider the two equations

Ax =b; and Ax=bhy,

with }
1 2 0 2 1 1 1
A= -1 -2 1 1 0 b; = 0 b= |1
1 2 -3 -7 =2 -2 1

By applying elementary operations, we find

, 102 0 2 1' 11
[A,b1 bl] = |-1-2 1 1 ol 01
1 2-3-7-21-21
12 0 2 1; 11 1202111
— oo 1 3 1l 12 — foo131i12
00 -3 -9 —3i-3 0 0000 0i0 6
|
= [ B {ba ba].
If we consider the equation
E,x =by1, (10)
with
Z1
Z2
X = z3 )
T4
T5



by observing that the third entry of b,; is zero, coinciding with the zero third row of E,,
we conclude that (10) admits a solution. Since the pivot columns of E, are the first and
third columns, z1 and z3 are the basic variables, and the nonbasic variables are x5, 4 and
x5. The set of solutions of (10) is given by

n)_[1]_[221]|2
z3 | |1 03 1 4
Ts5
Since z9, x4 and z5 are free, there exists an infinite number of solutions.

On the other hand, equation
E.x=b,

has no solution, since the third entry of b,y is nonzero.
Basis: A set of vectors {ey, ..., e,} forms a basis of a vector space V if:

(i) the vectors {eq, ..., e,} are linearly independent;

(ii) they span the space V, i.e. any vector v € V can be expressed as

n
vV = E a;€e;
=1

with g; € R for 1 < i < n.

Example: Let {e;, 1 <i < n} be the family of vectors of R” such that all entries of e; are
zero, except its i-th entry wich equals one. These vectors form a basis of R" since

a1
n .
E a;e; = a; =0
=1 :

an |

implies a; = 0 for all 7, so the vectors e; are linearly independent. Furthermore an arbitrary
vector x of R” can be expressed as

Z1
. n
X = Z; = E zi€;,
: =1
Tn

so that {e;, 1 <1i < n} spans R".

Lemma 2: The nonzero rows of the echelon form E (or reduced row echelon form FE,) of
A form a basis of the row space of A.



Proof: We have E = M A with M invertible since it is the product of invertible elementary
matrices. According to part b) of Lemma 1, the row space of E = row space of A, so that
the nonzero rows of F span the row space of A. Let siT, 1 <4 < r be the nonzero rows of E,
and let >°7_; a;s] = 07 be a zero linear combination of these rows. This can be expressed
in in matrix form as

aTE=0T. (11)

where |
0...0 i_l:wv ...T X...X

T

=y

0 0 i_la::c ... IT...X
..... -

T

eyl
Il

0 0 0 Lla::v
0 0 0 0 Lla:

is the matrix formed by retaining the nonzero rows of E. By matching both sides of equation
(11) from left to right we find

a1=0,a3=0, ..., a, =0

so that the nonzero rows {sI', 1 <i < r} of E are linearly independent. Thus, they form a
basis of the row space of A. O

Lemma 3: If A is m X n with m < n, the homogeneous system Ax = 0 admits a solution
x # 0.

Proof: Ax = 0 is equivalent to F.x = 0. Since m < n, some of the entries z; of x are
nonbasic variables. Selecting a nonzero value for at least one of the nonbasic variables, and
solving for the basic variables, we obtain a nonzero solution of E.x = 0, and therefore of
Ax = 0. O

An important result is that all bases of a vector space V' admit the same number of
basis vectors, which is called the dimension of V.

Theorem 1: If {vy, ..., v,} and {wy, ..., Wy, } are two bases of V', then n = m.
Proof: Assume that m < n, and let
V:[vl vn] and Wz[wl wm]

be matrices with columns {v;, 1 < j < ¢gn} and {w;, 1 < i < m}, respectively. Since
{w;, 1 <i < m} is a basis, each vector v; can be expressed as a linear combination

m
v = E Qi Wi .
=1
This can be written in matrix form as
V=WA,

where A is the m x n matrix with entries a;; for 1 <4 <m, 1 < 5 < n. Since m < n,
according to Lemma 3, we can can find x # 0 such that Ax = 0 so that Vx = 0. This



means that the vectors {v1, ..., v} are linearly dependent, so they cannot form a basis of
the vector space V', a contradiction. Thus m = n. O

Example: Let V be the subspace of R? formed by the vectors perpendicular to

o[ 1.

This subspace is shown in Fig. 1 below.
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Figure 1: Suspace V of vectors orthogonal to u.

Then a basis of V' is given by

1 0
vV = 1 €3 = 0
0 1

and V has dimension 2. Geometrically, V' is the plane perpendicular to the zi-zo plane
which bisects the first quadrant.

Because of Theorem 1, the dimension of a vector space is defined unambiguously as the
number of vectors in a basis. Let us now define the rank of a matrix as the dimension of its
row space. A key result is as follows.

Theorem 2: The rank of a matrix A is equal to the dimension of its column space, i.e.

rank (A) 2 dim row space R(AT) (12)
= dim column space R(A) . (13)
Proof: We show that
dim row space of A = dim row space of E, = r (14)
= dim column space of £, = dim column space of A. (15)

Note in this respect that although elementary row operations do not change the row space,
i.e., row space of A = row space of E, = MA, they change the column space, i.e., in
general we have column space of A # column space of F,.. However, as is shown below,



the dimension of the column space is not affected by elementary row operations. To prove
(14), note that according to Lemma 2, the dimension of the row space of A = the number
of nonzero rows of E, = r.

Then, if we consider the reduced row echelon form

—O...Oi_lxx Ox...x O:(;...x-
0 0 }_1;1: z Ox
....... -
Er=1 0 0 L1z
0 0
- 0 0 -
we see that the pivot columns
-0
o -0
0 1 0
f,=|0|=e,f,=|0]|=e,f, 1| =e
[ 0] [ 0 :
_0_

are clearly linearly independent, since they are the first r vectors of the orthonormal basis of
R"™. Furthermore, all the nonpivot columns of F,. can be expressed by inspection as linear
combinations of the pivot columns {f,,, ..., f, }. Thus, the pivot columns {f, , ..., f, }
form a basis of the column space of E,, so

r = dim column space of E, .

Next, we observe that Ax = 0 and E,x = 0 are equivalent since they can be obtained
from each other by premultiplication by M or M~!, respectively. This means that the set
of dependence relations between the columns of F, and those of A are the same. Thus, if
{cp, ... cp, } are the columns of A corresponding to the pivot columns of E,, they are linearly
independent (the pivot columns of E, are independent) and all the other columns of A can
be expressed as linear combinations of {c,,, ..., ¢p,}. This means that {c,,, ..., ¢, } isa
basis of the column space of A, so that

r = dim column space of A, (16)
which proves Theorem 2. O
Example: Let
1 2 01
A=]101 10
1 2 01

10



Using elementary row operations, we find

1 2 01 1 2 01 10 -1 1
A=]10110|]—]0110|—]01 1 0]|=E
12 01 0 00O 00 0 O
A basis of the row space of A is given by
1 0
0 1
9010
1 0

Also, since the pivots of E, are located in the 1st and 2nd columns, a basis of the column
space is
2

1
{{of. 1]
1 2

so that dim row space of A = dim column space of A = rank(A) = 2. Note also that the
column space of A is different from the column space of E,, which is spanned by

1 0
0| and | 1 |}.
0 0

Yet they have the same dimension.
A consequence of the previous result is as follows.
Theorem 3: An n X n matrix A is invertible if and only if rank (4) = n.

Proof: If A is invertible, there exists a matrix B such that BA = AB = I,. From these
identities we can immediately conclude that the columns and rows of A span

column space of A = row space of A =R" ,

so that rank(A) = n. Conversely if A is n x n with rank(A) = n, its reduced row echelon
form E, will have no zero row, i.e., each row contains a pivot. Since it is square, all its
columns will be pivot columns, so that F, = M A = I,,, which shows that A is invertible.[]
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