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Lecture 1

Lecture Topics:
a) Vector space, subspace
b) Matrices: sum, product, invertible matrix

¢) Column and row spaces, right and left nullspaces

Vector space: A vector space is constituted of a pair (V, S) where V is a set of vectors and
S a field of scalars. Throughout this course S will be either R (the field of real numbers)
or C (the field of complex numbers). The pair (V,S) is endowed with two operations: the
addition of two vectors, and the multiplication of a vector by a scalar. In the following a
vector x € V will be denoted with in bold font and a scalar a € S in regular font.

Vector addition: For x, y € V, the addition x+y € V must satisfy the following axioms.

(i) Associativity:
x+(y+z)=x+y) +z

forallx,y,ze V.

(ii) Commutativity:
X+ty=y+x.

(iii) There exists a zero vector 0 such that

x+0=x.

(iv) For every vector x € V, there exists an additive inverse —x € V such that x —x = 0.

Scalar multiplication: For a € S and x € V, the multiplication ax € V must satisfy the
following axioms.

(i) Associativity: a(bx) = (ab)x for all a,b € S and x € V.
(ii) Distributivity of the scalar multiplication with respect to the vector addition:
a(x+y) =ax+by

forallae Sand x,y € V.



(iii) Distributivity of the multiplication with respect to the scalar addition:
(a+b)x=ax+bx
forallg,be Sandx € V.

(iv) There exists a unit scalar 1 € S such that l.x =x forallx € V.

Example 1: V =R"* S =R In this case, an arbitrary vector

T

x=| =

In,

is an n-tuple of real entries z; with 1 <4 < n. Then if

Z1 U1

X=1 T y Y= | Y eR"

| Tn ] L Yn |
and a € R, we have
[z + 1 ] [ ax; |
x+y=| z;,+y and ax = | az;
_$n+yn_ _axn_

The zero-vector and additive inverse —x are given respectively by

0 —I1
0=1]0 —x=| —x
| 0 | —Tp |

When n = 3, R? is the set of real vectors in 3 dimensions, and the addition x +y and scalar

multiplication ax can be represented geometrically as shown in Fig. 1 below. Note that the
vector ax is colinear with x.
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Figure 1: Vector addition and multiplication of a vector by a scalar in R3.

Also, an arbitrary vector of R” can be represented as

n
X = inei (1)
=1

where for 1 < ¢ < n, the entries of basis vector are all zero, except for its i-th entry which
equals one. The basis {e;, 1 <14 < n} is orthonormal since
1 for i=j
T J
ejej =0;;= C
v K { 0 for i1#7.

Example 2: Let S =R, and let V' be the space of piecewise continuous real functions
over interval [0,7]. A function f(t), 0 < ¢ < T belonging to this space is shown in Fig. 2.

f(t)

Figure 2: Piecewise continuous function over interval [0, 7).

The sum of two such functions is given by

(f+9)@) = f() +9(1),

for 0 < ¢t < T, which is also piecewise continuous. The scalar multiplication af(t) corre-
sponds to scaling the function f(t) by a.



The inner product of two functions is given by

(f.9) = /O f(t)g(t) dt.

cx(t) = \/gcos(kwot) , sE(t) = \/gsin(kwot) ,

with k integer, where wy = 27/T is the fundamental frequency associated to the interval
[0, T, the functions {ck(t), & > 0} and {sx(t), kK > 1} are orthonormal since

Then, if we consider

(cky ce) = (Sk, 5¢) = Oke
<Ck7 S@) =0

for all k, £. Furthermore, an arbitrary piecewise continuous function f(t) over [0,7] can be
expressed in Fourier series as

o o
FO) = arce(t) + > brs(t) (2)
k=0 k=1
where the Fourier coefficients {ay, £k > 0} and {bg, k > 1} are given by

T T
a = /0 fexbdt b= /0 F(®)si(t)dt

Subspace: If V is a vector space and W is a set of vectors from V, W is a subspace of V
if it is closed under the operation of vector addition and scalar multiplication, i.e., if x and
y are arbitrary vectors of W and a, b € S, we have ax + by € W.

Example 1: Let V = R?, and let W be the set of vectors belonging to the z1-zy plane,

ie.,
T
X = T2
0
This space is depicted in Fig. 3 below.
W is a subspace of R? since for
T1 Y1 |
X = T2 y ¥ = Y2 ew
0 0 |
we have )
azi + by
ax +by = | azo+bys |,
0
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Figure 3: Space of vectors belonging to the z;-z2 plane.

where the vector ax + by belongs to the z1-z2 plane, since its last entry is zero.

Example 2: Let V = R?, and let W be the set of vectors x colinear with the two axes, i.e.,

I
X = ,
T2

with either 1 or zg zero. W is shown in Fig. 4 below. Then W is not a subspace since for

e[z] e[t er

the vector

T

Figure 4: Set W of vectors colinear with the two axes.

Example 3: Let V =R?, and let W be the set of vectors x in the first quadrant, i.e.

<[]



with 21 > 0, o > 0. This set is shown in Fig. 5 below. W is not a subspace since

x:[i]EWbut —xz[ii]%W.

Z2

Figure 5: First quadrant of R2.

Linear dependence/independence: A set of vectors {vy, ..., vi} is said to be linearly
dependent if we can find a set of scalars a;, 1 < ¢ < k, which not all zero, such that

k
Zaivi =0. (3)
=1

If no such scalars exist, i.e., if

k
Zaivi—0:>a1—a2 =a; =0,
i=1

the vectors {vi, ..., vi} are linearly independent.

Example 1: The vectors

2 1 0
Vi1 = 1 Vo = 1 V3 = 1
0 1

are linearly dependent since
vi+vy3—2vy=0.

as[i] o]

Example 2: The vectors



are linearly independent since

|: a1+2a2 :| |: 0 :|
a1v1+a2v2= = 0

a2
has
as=a1 =0
as its unique solution.
Spanning set: A set of vectors {vi, ..., v} spans a vector space V if for an arbitrary

vector x of V' we can find some scalars a;, 1 < ¢ < k such that

k
x=> avi, (4)
i=1

i.e., x is a linear combination of the vectors v; .

“=[o] o [3] e w[l]

form a spanning set of R?, but it is not a minimum spanning set since {v{, vo} or {vi, v3}

Example:

are also spanning

Matrix: A matrix A is an m by n array of real or complex numbers a;;:

a1 cee alj ... Q1p
A= a;1 cee Qg ce Qin ,
L Am1 --- QGmj --.- Qmn |

where a;; represents the element of row ¢ and column j with 1 <7 <m and 1 < j < n.
The special case of n = 1 is a column vector, and n = 1 is a row vector. Note that A can
be written column-wise as

A:[cl N T cn]
where _ _
G,lj
Cj = Qi
| @mj




denotes the j-th column of A. Similarly, A can be written row-wise as

- T
r
A= riT
T
L T
where
T
r, :[ail N 7Y B a'in]

denotes the i-th row of A.

If both A and B are m X n matrices, their sum C = A + B is an m by n matrix with
elements c;; = a;; + b;j. It is easy to check that the sum is associative and commutative,
i.e.

(A+B)+C=A+(B+C) A+B=B+A.
If A and B are m X ¢ and g X n matrices, respectively, the product C' = AB is an m X n
matrix with elements

q
cij = Y Gikbrj » (5)
k=1

i.e., the elements of the i-th row of A are multiplied term by term with those of the j-th
column of B and the terms summed.

Example: Let

1 -1
A=[_}g2] and B=1|1 1
0 1

Then

4 9
an-o=[ 1 0]

where the entries of C are obtained by using (5). For example
c11=114314+70=4.
Note that in order to be able to compute the product of A and B, the number of

columns of A must be equal to the number of rows of B. The product is associative:
(AB)C = A(BC), but not necessarily commutative, i.e., in general AB # BA. To see this,

consider
01 00
a=[00] ==[15]

10 0 0
o=[33] sae[4]

Then



so that AB # BA. Also, the sum and product are distributive, i.e., (A + B)C = AC + BC
and C(A+ B)=CA+ CB.

A square matrix is an m X n matrix with m = n. The identity matrix I, is an n X n matrix
with ones on the diagonal and zeros elsewhere, i.e.,

1 fori=j
% =Y 0 otherwise .

The identity has the property Al, = I, A = A for any n X n matrix A.

An n x n matrix A is invertible if there exists an n x n matrix A~! such that AA~! =
A71'A = I,,. We shall see later that if A is invertible then A~! is unique; A~! is called the
inverse of A.

Theorem: If A is invertible, then Ax = b has a unique solution x for each choice of b,
and yT' A = ¢’ has a unique solution y for each c.

Proof: If x satisfies Ax = b, pre-multiplying this equation by A~! yields A~!Ax = A~ b,
or equivalently
ILx=x=A"'b.

Since A~'b is uniquely specified, the solution is unique. Similarly post-multiplying y7 A =
¢! by A1 yields y' =cTA~L O

Matrix transpose: The transpose of an arbitrary m x n matrix A = (a;;) is the n x m
matrix AT = (bij) with b;; = aj;. Under transposition the rows of A become the columns
of AT and vice-versa.

Example: If
1 -7
A= PO 1 e am= |0 3
-7 3 2 1 9

To an arbitrary m X n matrix A, we can associate four fundamental spaces.

The column space R(A) is the subspace of R™ spanned by the columns c; of 4, i.e., it is
the set of vectors b € R™ that can be expressed as b = Z?Zl zjc; for some real numbers
zj, 1 < j < n. In matrix form this gives b = Ax with

SO
R(A) ={b e R"™ : b= Ax for some x € R"} .

The row space R(A”) is the space spanned by the rows r; of A, or equivalently by the
columns of AT. Tt is the set of vectors ¢ € R" such that ¢ = Yot YT, or equivalently



¢l = yT A for some y € R™. Thus
R(AT) = {ceR" : ! =y A for some y € R™}
= {ceR":c=ATy for some y € R} .

The right null space N(A) is the set of solutions x of the homogeneous equation Ax = 0,
or equivalently the set of dependence relations existing between the columns of A, i.e.

N(A)={xeR": Ax =0}.

The left null space N (AT) is the set of solutions y € R™ of y7'A = 07 i.e.,

NAY) ={yeR™ : yTA=0"} = {yeR™: ATy = 0}.

Example: If
1 21
A‘[o 1 1]’

the right null space N (A) is obtained by solving

[ 121 ] o 8
2 —
011 s 0
This gives
Il = T3 = —T2,
so that N'(A) is the space spanned by
1
-1
1

10



