UNIVERSITY OF CALIFORNIA, DAVIS Department of Electrical and Computer Engineering

EEC 250

Linear Systems and Signals

Fall 2009

Lecture 1

Lecture Topics:

- a) Vector space, subspace
- b) Matrices: sum, product, invertible matrix
- c) Column and row spaces, right and left nullspaces

Vector space: A vector space is constituted of a pair (V, S) where V is a set of vectors and S a field of scalars. Throughout this course S will be either \mathbb{R} (the field of real numbers) or \mathbb{C} (the field of complex numbers). The pair (V, S) is endowed with two operations: the addition of two vectors, and the multiplication of a vector by a scalar. In the following a vector $\mathbf{x} \in V$ will be denoted with in bold font and a scalar $a \in S$ in regular font.

Vector addition: For \mathbf{x} , $\mathbf{y} \in V$, the addition $\mathbf{x} + \mathbf{y} \in V$ must satisfy the following axioms.

(i) Associativity:

$$\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$$

for all $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$.

(ii) Commutativity:

$$\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x} .$$

(iii) There exists a zero vector **0** such that

$$x + 0 = x$$
.

(iv) For every vector $\mathbf{x} \in V$, there exists an additive inverse $-\mathbf{x} \in V$ such that $\mathbf{x} - \mathbf{x} = \mathbf{0}$.

Scalar multiplication: For $a \in S$ and $\mathbf{x} \in V$, the multiplication $a\mathbf{x} \in V$ must satisfy the following axioms.

- (i) Associativity: $a(b\mathbf{x}) = (ab)\mathbf{x}$ for all $a, b \in S$ and $\mathbf{x} \in V$.
- (ii) Distributivity of the scalar multiplication with respect to the vector addition:

$$a(\mathbf{x} + \mathbf{y}) = a\mathbf{x} + b\mathbf{y}$$

for all $a \in S$ and $\mathbf{x}, \mathbf{y} \in V$.

(iii) Distributivity of the multiplication with respect to the scalar addition:

$$(a+b)\mathbf{x} = a\mathbf{x} + b\mathbf{x}$$

for all $a, b \in S$ and $\mathbf{x} \in V$.

(iv) There exists a unit scalar $1 \in S$ such that $1 \cdot \mathbf{x} = \mathbf{x}$ for all $\mathbf{x} \in V$.

Example 1: $V = \mathbb{R}^n$, $S = \mathbb{R}$. In this case, an arbitrary vector

$$\mathbf{x} = \left[egin{array}{c} x_1 \ dots \ x_i \ dots \ x_n \end{array}
ight]$$

is an n-tuple of real entries x_i with $1 \le i \le n$. Then if

$$\mathbf{x} = \left[egin{array}{c} x_1 \ dots \ x_i \ dots \ x_n \end{array}
ight] \quad , \quad \mathbf{y} = \left[egin{array}{c} y_1 \ dots \ y_i \ dots \ y_n \end{array}
ight] \in \mathbb{R}^n$$

and $a \in \mathbb{R}$, we have

$$\mathbf{x} + \mathbf{y} = \left[egin{array}{c} x_1 + y_1 \\ dots \\ x_i + y_i \\ dots \\ x_n + y_n \end{array}
ight] \quad ext{and} \quad a\mathbf{x} = \left[egin{array}{c} ax_1 \\ dots \\ ax_i \\ dots \\ ax_n \end{array}
ight].$$

The zero-vector and additive inverse $-\mathbf{x}$ are given respectively by

$$\mathbf{0} = \left[egin{array}{c} 0 \ dots \ 0 \ dots \ 0 \end{array}
ight] \qquad -\mathbf{x} = \left[egin{array}{c} -x_1 \ dots \ -x_i \ dots \ -x_n \end{array}
ight].$$

When n = 3, \mathbb{R}^3 is the set of real vectors in 3 dimensions, and the addition $\mathbf{x} + \mathbf{y}$ and scalar multiplication $a\mathbf{x}$ can be represented geometrically as shown in Fig. 1 below. Note that the vector $a\mathbf{x}$ is colinear with \mathbf{x} .

2

Figure 1: Vector addition and multiplication of a vector by a scalar in \mathbb{R}^3 .

Also, an arbitrary vector of \mathbb{R}^n can be represented as

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i \tag{1}$$

where for $1 \le i \le n$, the entries of basis vector are all zero, except for its *i*-th entry which equals one. The basis $\{\mathbf{e}_i, 1 \le i \le n\}$ is orthonormal since

$$\mathbf{e}_i^T \mathbf{e}_j = \delta_{ij} = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{for } i \neq j \end{cases}$$

Example 2: Let $S = \mathbb{R}$, and let V be the space of piecewise continuous real functions over interval [0, T]. A function f(t), $0 \le t \le T$ belonging to this space is shown in Fig. 2.

Figure 2: Piecewise continuous function over interval [0, T].

The sum of two such functions is given by

$$(f+g)(t) = f(t) + g(t) ,$$

for $0 \le t \le T$, which is also piecewise continuous. The scalar multiplication af(t) corresponds to scaling the function f(t) by a.

The inner product of two functions is given by

$$\langle f, g \rangle = \int_0^T f(t) g(t) dt.$$

Then, if we consider

$$c_k(t) = \sqrt{\frac{2}{T}}\cos(k\omega_0 t)$$
 , $s_k(t) = \sqrt{\frac{2}{T}}\sin(k\omega_0 t)$,

with k integer, where $\omega_0 = 2\pi/T$ is the fundamental frequency associated to the interval [0,T], the functions $\{c_k(t), k \geq 0\}$ and $\{s_k(t), k \geq 1\}$ are orthonormal since

$$\langle c_k, c_\ell \rangle = \langle s_k, s_\ell \rangle = \delta_{k\ell}$$

 $\langle c_k, s_\ell \rangle = 0$

for all k, ℓ . Furthermore, an arbitrary piecewise continuous function f(t) over [0,T] can be expressed in Fourier series as

$$f(t) = \sum_{k=0}^{\infty} a_k c_k(t) + \sum_{k=1}^{\infty} b_k s_k(t)$$
 (2)

where the Fourier coefficients $\{a_k, k \geq 0\}$ and $\{b_k, k \geq 1\}$ are given by

$$a_k = \int_0^T f(t)c_k(t)dt$$
 , $b_k = \int_0^T f(t)s_k(t)dt$.

Subspace: If V is a vector space and W is a set of vectors from V, W is a subspace of V if it is closed under the operation of vector addition and scalar multiplication, i.e., if \mathbf{x} and \mathbf{y} are arbitrary vectors of W and a, $b \in S$, we have $a\mathbf{x} + b\mathbf{y} \in W$.

Example 1: Let $V = \mathbb{R}^3$, and let W be the set of vectors belonging to the x_1 - x_2 plane, i.e.,

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \\ 0 \end{array} \right] .$$

This space is depicted in Fig. 3 below.

W is a subspace of \mathbb{R}^3 since for

$$\mathbf{x} = \left[egin{array}{c} x_1 \ x_2 \ 0 \end{array}
ight] \quad , \quad \mathbf{y} = \left[egin{array}{c} y_1 \ y_2 \ 0 \end{array}
ight] \in W$$

we have

$$a\mathbf{x} + b\mathbf{y} = \begin{bmatrix} ax_1 + by_1 \\ ax_2 + by_2 \\ 0 \end{bmatrix},$$

Figure 3: Space of vectors belonging to the x_1 - x_2 plane.

where the vector $a\mathbf{x} + b\mathbf{y}$ belongs to the x_1 - x_2 plane, since its last entry is zero.

Example 2: Let $V = \mathbb{R}^2$, and let W be the set of vectors \mathbf{x} colinear with the two axes, i.e.,

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] ,$$

with either x_1 or x_2 zero. W is shown in Fig. 4 below. Then W is not a subspace since for

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_2 \end{array} \right] \quad , \quad \mathbf{y} = \left[\begin{array}{c} 0 \\ 1 \end{array} \right] \in W$$

the vector

$$\mathbf{x} + \mathbf{y} = \left[\begin{array}{c} 1 \\ 1 \end{array} \right] \not\in W \ .$$

Figure 4: Set W of vectors colinear with the two axes.

Example 3: Let $V = \mathbb{R}^2$, and let W be the set of vectors \mathbf{x} in the first quadrant, i.e.

$$\mathbf{x} = \left[egin{array}{c} x_1 \\ x_2 \end{array}
ight]$$

with $x_1 \geq 0$, $x_2 \geq 0$. This set is shown in Fig. 5 below. W is not a subspace since

$$\mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \in W \text{ but } -\mathbf{x} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \notin W.$$

Figure 5: First quadrant of \mathbb{R}^2 .

Linear dependence/independence: A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is said to be linearly dependent if we can find a set of scalars a_i , $1 \le i \le k$, which not all zero, such that

$$\sum_{i=1}^{k} a_i \mathbf{v}_i = \mathbf{0} . \tag{3}$$

If no such scalars exist, i.e., if

$$\sum_{i=1}^k a_i \mathbf{v}_i = \mathbf{0} \Rightarrow a_1 = a_2 \ldots = a_k = 0,$$

the vectors $\{\mathbf v_1,\,\dots,\,\mathbf v_k\}$ are linearly independent.

Example 1: The vectors

$$\mathbf{v}_1 = \left[egin{array}{c} 2 \ 1 \ 0 \end{array}
ight] \quad \mathbf{v}_2 = \left[egin{array}{c} 1 \ 1 \ 1 \end{array}
ight] \quad \mathbf{v}_3 = \left[egin{array}{c} 0 \ 1 \ 2 \end{array}
ight]$$

are linearly dependent since

$$\mathbf{v}_1 + \mathbf{v}_3 - 2\mathbf{v}_2 = \mathbf{0} .$$

Example 2: The vectors

$$\mathbf{v}_1 = \left[egin{array}{c} 1 \\ 0 \end{array}
ight] \quad , \quad \mathbf{v}_2 = \left[egin{array}{c} 2 \\ 1 \end{array}
ight]$$

are linearly independent since

$$a_1\mathbf{v}_1 + a_2\mathbf{v}_2 = \left[\begin{array}{c} a_1 + 2a_2 \\ a_2 \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right]$$

has

$$a_2 = a_1 = 0$$

as its unique solution.

Spanning set: A set of vectors $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ spans a vector space V if for an arbitrary vector \mathbf{x} of V we can find some scalars a_i , $1 \le i \le k$ such that

$$\mathbf{x} = \sum_{i=1}^{k} a_i \mathbf{v}_i \,, \tag{4}$$

i.e., \mathbf{x} is a linear combination of the vectors \mathbf{v}_i .

Example:

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 , $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$

form a spanning set of \mathbb{R}^2 , but it is not a minimum spanning set since $\{\mathbf{v}_1, \mathbf{v}_2\}$ or $\{\mathbf{v}_1, \mathbf{v}_3\}$ are also spanning

Matrix: A matrix A is an m by n array of real or complex numbers a_{ij} :

$$A = \left[egin{array}{ccccc} a_{11} & \dots & a_{1j} & \dots & a_{1n} \ dots & & & dots \ a_{i1} & \dots & a_{ij} & \dots & a_{in} \ dots & & & dots \ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{array}
ight],$$

where a_{ij} represents the element of row i and column j with $1 \le i \le m$ and $1 \le j \le n$. The special case of n = 1 is a column vector, and n = 1 is a row vector. Note that A can be written column-wise as

$$A = [\mathbf{c}_1 \quad \dots \quad \mathbf{c}_j \quad \dots \quad \mathbf{c}_n]$$

where

$$\mathbf{c}_j = \left[egin{array}{c} a_{1j} \ dots \ a_{ij} \ dots \ a_{mj} \end{array}
ight]$$

denotes the j-th column of A. Similarly, A can be written row-wise as

$$A = \left[egin{array}{c} \mathbf{r}_1^T \ dots \ \mathbf{r}_i^T \ dots \ \mathbf{r}_m^T \end{array}
ight]$$

where

denotes the i-th row of A.

If both A and B are $m \times n$ matrices, their **sum** C = A + B is an m by n matrix with elements $c_{ij} = a_{ij} + b_{ij}$. It is easy to check that the sum is associative and commutative, i.e.

$$(A+B) + C = A + (B+C)$$
 $A+B = B+A$.

If A and B are $m \times q$ and $q \times n$ matrices, respectively, the **product** C = AB is an $m \times n$ matrix with elements

$$c_{ij} = \sum_{k=1}^{q} a_{ik} b_{kj} , \qquad (5)$$

i.e., the elements of the i-th row of A are multiplied term by term with those of the j-th column of B and the terms summed.

Example: Let

$$A = \left[egin{array}{ccc} 1 & 3 & 7 \ -1 & 0 & 2 \end{array}
ight] \quad ext{and} \quad B = \left[egin{array}{ccc} 1 & -1 \ 1 & 1 \ 0 & 1 \end{array}
ight] \,.$$

Then

$$AB=C=\left[egin{array}{cc} 4 & 9 \ -1 & 3 \end{array}
ight] \ ,$$

where the entries of C are obtained by using (5). For example

$$c_{11} = 1.1 + 3.1 + 7.0 = 4$$
.

Note that in order to be able to compute the product of A and B, the number of columns of A must be equal to the number of rows of B. The product is associative: (AB)C = A(BC), but not necessarily commutative, i.e., in general $AB \neq BA$. To see this, consider

$$A = \left[\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right] \qquad B = \left[\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right] \ .$$

Then

$$AB = \left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right] \qquad BA = \left[\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right]$$

so that $AB \neq BA$. Also, the sum and product are distributive, i.e., (A+B)C = AC + BC and C(A+B) = CA + CB.

A square matrix is an $m \times n$ matrix with m = n. The identity matrix I_n is an $n \times n$ matrix with ones on the diagonal and zeros elsewhere, i.e.,

$$a_{ij} = \begin{cases} 1 & \text{for } i = j \\ 0 & \text{otherwise} \end{cases}$$

The identity has the property $AI_n = I_nA = A$ for any $n \times n$ matrix A.

An $n \times n$ matrix A is invertible if there exists an $n \times n$ matrix A^{-1} such that $AA^{-1} = A^{-1}A = I_n$. We shall see later that if A is invertible then A^{-1} is unique; A^{-1} is called the inverse of A.

Theorem: If A is invertible, then $A\mathbf{x} = \mathbf{b}$ has a unique solution \mathbf{x} for each choice of \mathbf{b} , and $\mathbf{y}^T A = \mathbf{c}^T$ has a unique solution \mathbf{y} for each \mathbf{c} .

Proof: If **x** satisfies A**x** = **b**, pre-multiplying this equation by A^{-1} yields $A^{-1}A$ **x** = A^{-1} **b**, or equivalently

$$I_n \mathbf{x} = \mathbf{x} = A^{-1} \mathbf{b}$$
.

Since $A^{-1}\mathbf{b}$ is uniquely specified, the solution is unique. Similarly post-multiplying $\mathbf{y}^T A = \mathbf{c}^T$ by A^{-1} yields $\mathbf{y}^T = \mathbf{c}^T A^{-1}$.

Matrix transpose: The transpose of an arbitrary $m \times n$ matrix $A = (a_{ij})$ is the $n \times m$ matrix $A^T = (b_{ij})$ with $b_{ij} = a_{ji}$. Under transposition the rows of A become the columns of A^T , and vice-versa.

Example: If

$$A = \left[egin{array}{ccc} 1 & 0 & 1 \ -7 & 3 & 2 \end{array}
ight] \hspace{3mm} ext{then} \hspace{3mm} A^T = \left[egin{array}{ccc} 1 & -7 \ 0 & 3 \ 1 & 2 \end{array}
ight] \,.$$

To an arbitrary $m \times n$ matrix A, we can associate four fundamental spaces.

The **column space** $\mathcal{R}(A)$ is the subspace of \mathbb{R}^m spanned by the columns \mathbf{c}_j of A, i.e., it is the set of vectors $\mathbf{b} \in \mathbb{R}^m$ that can be expressed as $\mathbf{b} = \sum_{j=1}^n x_j \mathbf{c}_j$ for some real numbers x_j , $1 \le j \le n$. In matrix form this gives $\mathbf{b} = A\mathbf{x}$ with

$$\mathbf{x} = \left[\begin{array}{c} x_1 \\ x_j \\ x_n \end{array} \right] ,$$

so

$$\mathcal{R}(A) = \{ \mathbf{b} \in \mathbb{R}^m : \mathbf{b} = A\mathbf{x} \text{ for some } \mathbf{x} \in \mathbb{R}^n \}$$
.

The **row space** $R(A^T)$ is the space spanned by the rows \mathbf{r}_i of A, or equivalently by the columns of A^T . It is the set of vectors $\mathbf{c} \in \mathbb{R}^n$ such that $\mathbf{c}^T = \sum_{i=1}^m y_j \underline{r}_i$, or equivalently

 $\mathbf{c}^T = \mathbf{y}^T A$ for some $\mathbf{y} \in \mathbb{R}^m$. Thus

$$\mathcal{R}(A^T) = \{ \mathbf{c} \in \mathbb{R}^n : \mathbf{c}^T = \mathbf{y}^T A \text{ for some } \mathbf{y} \in \mathbb{R}^m \}$$
$$= \{ \mathbf{c} \in \mathbb{R}^n : \mathbf{c} = A^T \mathbf{y} \text{ for some } \mathbf{y} \in \mathbb{R}^m \}.$$

The **right null space** N(A) is the set of solutions **x** of the homogeneous equation A**x** = **0**, or equivalently the set of dependence relations existing between the columns of A, i.e.

$$\mathcal{N}(A) = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0} \}$$
.

The left null space $\mathcal{N}(A^T)$ is the set of solutions $\mathbf{y} \in \mathbb{R}^m$ of $\mathbf{y}^T A = \mathbf{0}^T$, i.e.,

$$\mathcal{N}(A^T) = \{ \mathbf{y} \in \mathbb{R}^m : \mathbf{y}^T A = \mathbf{0}^T \} = \{ \mathbf{y} \in \mathbb{R}^m : A^T \mathbf{y} = \mathbf{0} \}.$$

Example: If

$$A = \left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 1 \end{array} \right] ,$$

the right null space $\mathcal{N}(A)$ is obtained by solving

$$\left[\begin{array}{ccc} 1 & 2 & 1 \\ 0 & 1 & 1 \end{array}\right] \left[\begin{array}{c} x_1 \\ x_2 \\ x_3 \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right] \ .$$

This gives

$$x_1 = x_3 = -x_2 ,$$

so that $\mathcal{N}(A)$ is the space spanned by

$$\left[\begin{array}{c}1\\-1\\1\end{array}\right].$$