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Abstract

Following a conjecture of Carmichael, Massé and Theodorescu [5], this
paper shows that regular and reciprocal multivariate stationary Gaussian
processes over Z are necessarily Markov. This result is proved in two
steps. We consider first minimal reciprocal processes, i.e. processes which
admit a second-order model driven by a full rank noise process [14], [13].
By solving a generalized eigenvalue problem or an equivalent algebraic
Riccati equation, a first-order Markov model is constructed for these pro-
cesses. Observing that if a process is regular and reciprocal, it admits a
minimal and reciprocal subsequence, it is then shown that regular recip-
rocal processes are Markov.
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1 Introduction

In this paper we consider multivariate stationary Gaussian reciprocal processes over
Z. Reciprocal processes were introduced in 1932 by Bernstein [3]. A process z(k)
with k£ € Z is said to be reciprocal if given an arbitrary interval I = [K, L], the values
of z(-) in the interior and exterior of I are conditionally independent given z(K) and
x(L). From this definition, it is easy to deduce that if a process is Markov, it is
necessarily reciprocal. However, the converse is not true in general. The properties
of reciprocal processes were studied in detail by Jamison [9]-[10] who, among other
results, proposed a classification for all scalar stationary Gaussian reciprocal processes
over a finite interval. This classification was subsequently amended first by Chay [6],
and then by Carmichael, Massé and Theodorescu [4]. An interesting feature of the
resulting classification is that, with a single exception, all scalar stationary Gaussian
processes that are reciprocal but not Markov can only exist over finite intervals. The
only exception is the process

z(k) = X cos(0k) + Y sin(0k), (1.1)

with £ € Z, where X and Y are two independent zero-mean Gaussian random vari-
ables with variance o2, and 7/ is irrational. This process is reciprocal and station-
ary with covariance R(k) = o2 cos(6k). However, it is completely predictable from
its infinitely remote past and future, so that we can conclude that scalar stationary
Gaussian processes that are both regular (i.e. they do not contain any component
predictable from the infinite past and future) and reciprocal over Z are necessarily
Markov.

The exception represented by process (1.1) owes its existence to the discrete nature
of the index set Z. In the continous-time case, when k£ € R, it is easy to check that
the maximum interval over which (1.1) remains reciprocal is [0, 7/#). Thus, all scalar
stationary Gaussian reciprocal processes over R are Markov. Observing that among
the second-order reciprocal processes studied by Miroshin [18] and Abrahams [1],
those existing over the entire real line had also the Markov property, Carmichael,
Massé and Theodorescu [5] conjectured that all multivariate stationary Gaussian
processes that are reciprocal over R must be Markov. This conjecture is proved here.
However, since we consider the case where the index set is Z, we impose the additional
constraint that the processes that we study must be regular, so as to exclude processes
such as (1.1).

In order to motivate the above problem, it is worth noting that Markov random
fields [15, 21, 23] reduce in one dimension to reciprocal processes, not Markov pro-
cesses. Since Markov random field models have found many applications in image
processing, the study of reciprocal processes is a natural stepping stone for develop-
ing better representations and estimation algorithms for these fields. In [12], Krener
proposed a description of reciprocal diffusion processes “with full rank noise” in terms
of second-order stochastic differential equations. In an attempt to clarify some as-
pects of this theory, discrete- and continuous-time Gaussian reciprocal processes were



examined in [14] and [13], respectively, again under the full-rank noise assumption. In
these papers, it was shown that while Gauss-Markov processes admit first-order state-
space models driven by white noise, Gaussian reciprocal processes admit self-adjoint
second-order models driven by locally correlated noise, where the noise correlation
structure is specified by the model dynamics. In this context, it became clear that
these second-order models are identical to conditional models of Gauss-Markov ran-
dom fields introduced earlier by Rozanov [19, 21] and Woods [23].

Higher-order and mixed-order reciprocal Gaussian processes defined over a finite
interval were studied by Frezza [7], who showed that they can be characterized in
terms of self-adjoint models of higher-order with Dirichlet boundary conditions. Mod-
els of this type are employed here to characterize the spectral density of regular re-
ciprocal/Markov processes over Z, where the Dirichlet condition is replaced by an
asymptotic boundedness condition for the variance of the process of interest.

This paper is organized as follows. In Section 2, the concepts of regularity and
minimality for stationary Gaussian processes are reviewed. The minimality property
is equivalent to the full-rank noise assumption of [14, 13|, but is applicable to general
stationary Gaussian processes, instead of being restricted to reciprocal processes. In
Section 3, it is shown that minimal reciprocal processes are necessarily Markov. The
procedure that we employ is constructive and relies on a spectral factorization of
the second-order model describing the reciprocal process of interest. This spectral
factorization is closely connected to the solution of algebraic Riccati equations, which
are studied in detail in Section 4. Finally, in Section 5, we prove the main result,
namely that stationary Gaussian regular reciprocal processes are necessarily Markov.

2 Regularity and Minimality

Consider a stationary zero-mean Gaussian process z(k) € R™, k € Z with covariance
R(k — 1) = E[z(k)z™ (1)]. Its covariance function can be represented as

R(k) = /_ W FRGF(N) (2.1)

where the spectral matrix measure F'(\) is such that its increments F'(Ag) —F'(A\1) with
Ay > Ay are Hermitian nonnegative definite. It can be decomposed into absolutely
continuous and singular components as

Foy = [ A S(u)du+ Fy()) (2.2)

where S(A) is the spectral density matrix of z(k), and Fy(\) is a measure which is
singular with respect to the Lebesgue measure on [—, 7].

Now, let K be an arbitrary finite set of Z, and let U be the set of such finite sets.
Consider the Hilbert spaces of random variables

H = H{z(l),leZ} (2.3a)
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Hx = H{z(l),l€Z- K} (2.3b)
Hy, = [)Hk. (2.3¢)

If k€ Z and p > 1 is a positive integer, let
Hpp = Hg—ppyp) = H{z(l) for |l — k| > p} (2.4a)

be the Hilbert space spanned by the random vectors z(l) where [ is a least at distance
p from point k. With £ fixed, for an arbitrary set K we can always select p sufficiently
large so that K C [k — p, k + p] and thus Hy, C Hg. This implies that H,, can also
be represented as
Hy = () Hip- (2.4b)
p>1
Consider now the interpolation problem consisting of estimating x(k) from all the
x(1)’s such that [ is at least at distance p from £, i.e. with |[—k| > p. The interpolation
error is given by

d(k;p) = z(k) — Elz(k)|Hk,] (2.5)

and has for covariance matrix D(p) = E[d(k;p)d?T (k;p)]. Clearly D(p + 1) > D(p),
i.e. D(p) is an increasing matrix sequence. Then we can introduce the following
concepts.

Definition 2.1 A stationary Gaussian process x(k) is reqular if Hyn = {0}, and
singular if Hy = H. Also, x(k) is minimal of order p if D(p) is positive definite.

In the following, if z(k) is minimal of order 1, it will be called minimal, for short.
Note that this minimality concept bears no relation with the minimality property of
linear systems. In [17, 20], the following minimality criterion was presented.

Theorem 2.1 A stationary Gaussian process x(k) is minimal if and only if F(\) is
absolutely continuous and

/j SL)dA < 0. (2.6)

A consequence of (2.6) is that a necessary condition for S(A) to be the spectral density
matrix of a minimal process is that it must be invertible almost everywhere on [—, 7].
Although simple tests for the reglarity and minimality of order p of scalar sta-
tionary Gaussian processes are given in [19, 20], it does not appear that there exist
corresponding tests in the multivariate case. For our purposes, we shall need only
the fact that if z(k) is regular, it is necessarily minimal of order p for some p. To see
this, consider the error d(k, ) = x(k) — E[z(k)|Hw] associated with the estimation
of z(k) given Hy, and let D(oc0) be its covariance matrix. From the representation

(2.4b) of Hy, we can deduce that
lim D(p) = D(c0). (2.7)
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Now if z(k) is regular, Hy, = {0} and d(k,00) = z(k), so that D(o0) = R(0) > 0,
where we have assumed here that x(k) is a full rank process, i.e. that there does not
exist a nontrivial linear dependence relation 7 ; a;x;(k) = 0 between the entries of
x(k). Since the increasing sequence D(p) tends to R(0) > 0 as p — oo, we see that
for p sufficiently large, D(p) will be positive definite, so that x(k) is minimal of order
p for p sufficiently large.

The following example illustrates the concept of minimality of order p.

Example 2.1: Consider the stationary Gauss-Markov process
z(k+1) = Az(k) + w(k) (2.8)

where w(k) is a zero-mean white Gaussian noise process with intensity matrix @,
where the rank of Q is m < n and if Q'/? denotes an arbitrary square root of @,
(A, Q'?) is reachable. Then

S(A) = (e — A)7'Q(e™ M — AT) ! (2.9)

where S(A) has rank m < n. Since S()) is not invertible anywhere on [—, 7|, (k) is
not minimal of order 1. However, it is minimal of order p provided that p > u, where
p is the reachability index of (A4, Q'/?), i.e. u is the smallest integer such that

R(p) = QY AQYV* .. Ar1Q/2 ] (2.10)

has full rank.
To see this, note that since z(k) is Markov, it is also reciprocal, so that

. A
Z(k;p) = Elz(k) | Hyp] = Elz(k)|z(k — p), z(k + p)]. (2.11)
To compute this estimate, we can use the p-step Markov model
z(k +p) = APz(k) + w(k; p) (2.12a)

where

p—1
wk;p) =Y Awk+p—t—1) (2.12b)
s=0
is a zero-mean white Gaussian noise with intensity
p—1
Qp) = R(p)R" (p) = Y A'Q(AY", (2.13)
s=0

where Q(p) > 0 provided that p > p. Then, it is shown in Section 4 of [14] that the
estimate Z(k;p) is given by

Z(k;p) = D(p)(Q ' (p) APz (k — p) + (A") Q™' (p)x(k + p)) (2.14a)
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where the error covariance matrix
1

D(p) = (@'(p) + (") Q' (A7) (2.14b)
is positive definite, so that z(k) is minimal of order p for p > p. O

Another useful observation is that if (k) is a minimal stationary Gaussian process
of order p, the subsampled process = (1) = z(Ip) is minimal of order 1.

3 Minimal Reciprocal Processes

In this section we show that if a stationary Gaussian process process z(k) € R is
both reciprocal and minimal, it is necessarily Markov. Without loss of generality, z(k)
is assumed to have zero-mean. First, observe that if z(k) is reciprocal, its conditional
expectation given Hj; can be expressed as

Elz(k)|Hg1] = F-x(k — 1) + Fra(k + 1). (3.1)

The residual
dik)=xz(k) — F z(k—1)— Fiz(k + 1) (3.2)

is then uncorrelated with z(() for [ # k, and
E[d(k)z"(0)] = R(k) — F_R(k — 1) — FL R(k + 1) = Dé(k) (3.3)

where D denotes the covariance of d(k), and 6(k) is Kronecker’s delta function. When
z(k) is minimal, the covariance D is invertible, and multiplying (3.2) on the left by
D! gives the second-order model

Myx(k) — M_z(k —1) — M z(k+ 1) = e(k) (3.4)

with
My=D" |, My=D"'F, , e(k)=D"'d(k), (3.5)

which was used in [14] to study Gauss-Markov minimal reciprocal processes. If we
denote by Z the forward shift operator Z f(k) = f(k + 1), it was shown in [14] that
the second-order difference operator

A=MJI-M_Z'—M.Z (3.6a)
associated to (3.4) is self-adjoint, i.e.,
My=MI | M, =M", (3.6b)
and the covariance E(k,l) = Ele(k)e” (1)] of the input noise e(k) satisfies

(i) E(k,))=0 for [k—1I|>1, (3.72)

6



(ii) E(k, k) =My , E(kk+1)=—M, . (3.7b)

The driving noise e(k) for model (3.4) is therefore not white, but locally correlated,
in the sense that e(k) is correlated with the noises at neighboring points £ — 1 and
k + 1, but not with noises at points whose distance from k is greater than 1. Also,
according to (3.7b), the covariance of e(k) is specified entirely in terms of the matrices
M, and M. defining the dynamics of the second-order model (3.4).

Multiplying (3.2) on the left by D™!, we see that the covariance R(k) satisfies the
second-order difference equation

AR(k) = I8(k). (3.8)

This equation leads to the following characterization of minimal reciprocal processes
in terms of their spectral density matrix.

Theorem 3.1 Let x(k) be a stationary Gaussian reciprocal process over Z. Then
x(k) is minimal iff its spectral measure F(\) is absolutely continuous and

S(\) = (Mg — M_e™* + M, &)™} (3.9)
where the polynomial matrix
M(z) =My —M_z""' — M,z (3.10)
has no zero on the unit circle.

Proof: If z(k) is minimal, we know from Theorem 2.1 that its spectral measure is
absolutely continuous. In addition, its covariance satisfies (3.8), which after Fourier
transformation yields

M(EMSW\) =1 (3.11)

so that (3.9) is satisfied. Also, since S(\) must be summable over [—7, 7], the expres-
sion (3.9) for S(A) precludes the existence of zeros of M(z) on the unit circle.

Conversely, assume that the spectral measure of (k) is absolutely continuous and
its density S(\) satisfies (3.9), where M (z) has no zero on the unit circle. Then we
have .

SHN)d\ = My, (3.12)

i.e., S71()) is summable over [—m, 7], and according to Theorem 2.1, z(k) is minimal.
O

Thus, to an arbitrary minimal stationary Gaussian reciprocal process z(k), we
can associate a second-order Laurent polynomial M(z) without zeros on the unit
circle. Our proof of the fact that x(k) is Markov relies on a spectral factorization of



M (z). However, instead of considering M (z) directly, we examine the homogeneous

polynomial matrix
M(s,t) = —M t* + Myst — M, s* (3.13)

which is related to M (z) through the transformation M(s,t) = stM(s/t). The moti-
vation for considering M (s, t) instead of M(z) is that we want to handle the zeros of
M(z) at z = 0 and z = oo simultaneously. The self-adjointness of operator A implies
that M (s,t) has the parasymmetry property

M(s,t) = M"(t,s). (3.14)

Let p(s,t) = det M(s,t). If (so,t9) # (0,0) is such that p(so,to) = 0, 2o = to/s0 is
said to be a mode of M (s,t). Note that we may have z = oo if sg = 0. Then we have
the following result.

Lemma 3.1 If M(s,t) corresponds to a minimal stationary Gaussian reciprocal pro-
cess in R™, p(s,t) = det M (s,t) is a scalar homogeneous polynomial of degree 2n such
that p(s,t) = p(t,s), and M(s,t) has no mode on the unit circle. This implies that
p(s,t) admits a factorization of the form

p(s,t) =c f[l(s —tz;)(t — sz;) (3.15)

where ¢ is a constant and |z;| < 1 for all i, i.e. M(s,t) has n modes strictly inside,
and n modes strictly outside the unit circle.

Proof: The parasymmetry property of M(s,t) implies p(s,t) = p(t,s). Also, since
the entries of the n x n matrix M(s,t) are homogeneous of degree 2, and p(s,t) =
det M (s,t) is not identically zero, p(s,t) is homogeneous of degree 2n. The property
p(s,t) = p(t, s) implies that if 2, is a mode of M(s,t), so is z,'. Furthermore, since
M (z) has no zero in the unit circle,

M(eM? e7M?) = My — Mye* — M e = 571()) (3.16)

is invertible for all A € [—m, 7], so that M(s,t) has no mode on the unit circle. These
two properties imply the existence of the factorization (3.15). O

As a side comment, note that since M (s,t) has real matrix coefficients, if zq is a
mode of M(s,t), z; must also be a mode. Thus, the complex modes of M(s,t) occur
in groups of four: zy, 23, 25", (25)~%; and the real modes in groups of two: 2z, and

-1
2y -

Next, observing that the second-order stochastic model (3.4) can be rewritten as
the first-order descriptor system

i]l@llal e
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with

0 -1 -M_ 0
s A as[ ) o

we are led to the study of the matrix pencil {£, A}. As a first step, note that
det(s€ —tA) = (—1)"det M(s,1), (3.18)

so that the modes of s€ —t.A and M (s, t) are the same. Also, there exists a one-to-one
correspondence between the generalized right eigenvectors of s€ — tA and M (s,1).
To see this, note that if [z}, ul]? # 0 is a generalized right eigenvector of s€ — t.A
associated to the mode (sg, %) # (0,0) ,i.e.

Lo Sl o) e

by eliminating ug from (3.19), we obtain
M(SQ, t()).TO =0. (320)

In this identity we have 4 # 0, since according to (3.19) zo = 0 would imply sguy =
toug = 0, and thus ug = 0, a contradiction since the vector [z], uj]” is nonzero. Thus,
xo # 0 is a generalized right eigenvector of M (s,t) corresponding to (s, tp).

Then, we compute the stable generalized eigenspace of {€, A}, i.e. we find

U

0 -I X —-M_ 0 X
b ol SlE] e
where S has full column rank, and J has all its eigenvalues stricly inside the unit

circle. The matrices S and J can be obtained by computing the generalized real
Schur decomposition ([8], p. 396)

S:[X]ER2HXH, JERan

such that

Q'€Z=F , Q"AZ =G (3.22)

of the pencil {&, A}, where ) and Z are orthogonal matrices, G is upper triangular,
and F'is quasi-upper-triangular, i.e. it has the structure

Fll F12 Flm
F22
F= , (3.23)
0 .
me



where each diagonal block Fj; is either a 1 X 1 matrix or a 2 X 2 matrix with complex
conjugate eigenvalues. In this decomposition, it is always possible to guarantee that
the n x n blocks F, and G, in the partition

Fs Fs§ _ Gs Gs§
F:lo Fg],G_lO GJ (3.24)

correspond to the stable eigenmodes of the pencil {€, A}, i.e. J = G, 'Fj is stable.
Then S is the matrix formed by the first n columns of Z.
Given the matrices X, U and J, we can prove the following results.

Lemma 3.2 U'X is a symmetric matriz.
Proof: The identity (3.21) yields

UJ] = M_X (3.25a)
M. XJ = MX-U. (3.25b)

Premultiplying (3.25b) by X7 and taking (3.25a) into account gives
JTUTX T = XTMyX — X™U. (3.26)

Taking the transpose of (3.26) and subtracting it from (3.26), we find
A—J'AJ =0 (3.27)

where A = XTU —-UT X. Since J is stricly stable, the unique solution of the Lyapunov
equation (3.27) is A = 0, so that UT X is symmetric. a

Lemma 3.3 X is an invertible matriz.
Proof: From (3.25a)-(3.25b) we have

XTM(s,t)X = XT(-M,Xs*+ MyXst— M Xt*)X
= XT(=sM,X +tU)(sI —tJ). (3.28)

Next, taking into account (3.25a) and the symmetry of U7X, we find
XTM(s,t)X = (tI — sJOUT X (sI —t.J), (3.29)

so that
(tI — sJO) ' XT M (s, )X (s — Jt)' = U X. (3.30)

Now if v is a vector in the null-space of X, i.e. Xwv = 0, by pre- and post-
multiplying (3.30) by vT and v, respectively, we get

vt — sJV) P XT M (s, t) X (sI — tJ) 'v = 0. (3.31)
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Setting s = e/*/2 and t = e~7*/2 in the above identity and noting that M (e/*/2, e=7*/2) =
S~L(X) > 0, we conclude that

X —J)tv=0 (3.32a)
or equivalently
XJF = 0. (3.32b)
In this case Uv = MyXv — M, X Jv = 0. But S has full rank, so that we must have
v = 0. This shows that X is invertible. O
Lemma 3.4 Let
A=XJX' | N=UX!, (3.33)

Then, A is strictly stable, N is symmetric positive definite, and M (s,t) admits the
spectral factorization
M(s,t) = (tI — sAT)N(sI — tA) (3.34)

Proof: Multiplying (3.29) on the left by X7 and on the right by X! gives (3.34).
Clearly A is strictly stable since it is related to the strictly stable matrix J via a
similarity transform. The symmetry and positive definiteness of N is a consequence
of (3.34), since in this case

SN = M (M2, e N?) = (e M — AT)N (] — A) (3.35)

which shows that N is related to S~!(\) > 0 via an invertible congruence transfor-
mation. O

The factorization (3.34) provides the key to showing that a minimal stationary
Gaussian reciprocal process z(k) is necessarily Markov. Specifically, according to
Theorem 3.1, the polynomial matrix M (s,t) corresponding to z(k) has no mode on
the unit circle. In this case, the stable eigenspace of the pencil (3.17b) has dimension
n, and we can construct a factorization of the form (3.35) for S~!(\), where N is
positive definite and A has all its eigenvalues indide the unit circle. Consequently

S(A) = (M — A)TINTHe AT — AT, (3.36)
so that z(k) is a Markov process with state-space model
z(k+1) = Az(k) + w(k) (3.37)

where w(k) is a white Gaussian noise with intensity ) = N~!. This proves the
following result.

Theorem 3.2 If z(k) is a minimal stationary Gaussian reciprocal process over Z it
18 neccessarily Markov.
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4 Algebraic Riccati Equations

As one might expect, the spectral factorization (3.34) for M(s,t) is closely related
to the solution of algebraic Riccati equations (AREs) for A and N. Specifically,
identifying coefficients of s?, st and ¢* on both sides of (3.34) gives

My=N+ATNA , M, =A"N , M_=NA. (4.1)

Depending on whether N or A are eliminated from the above identities, we obtain
two different AREs.
Eliminating NV gives
M A* + MyA—M_=0 (4.2)

which is a quadratic matriz equation for A. The problem is to find a strictly stable
solution of this equation. Given A, N is then obtained from

N = My — M, A. (4.3)
Eliminating A yields the ARE
My=N+M,N'M_| (4.4)
for which we seek to find a solution such that
A= N"1M_ (4.5)

is strictly stable.
We first focus on the quadratic equation (4.2).

Theorem 4.1 Let M(z) be a second-order Laurent polynomial of the form (3.10)
which is Hermitian positive definite on the unit circle. Then the ARE (4.2) admits a
unique strictly stable solution A, and the corresponding N given by (4.3) is symmetric
positive definite.

Proof: The Hermitian positive definiteness of M (z) on the unit circle guarantees it
has no zero there. The existence of a strictly stable solution to (4.2) is then proved
by construction, by computing the stable eigenspace of the pencil {€, A} given by
(3.17b), and setting A = X JX 1.

Conversely, if A is a strictly stable solution of (4.2), and N is given by (4.3),
M(s,t) admits the factorization (3.34). From

M(e*) = (e7I* — AT)N (e — A) (4.6)

we see that N must be positive definite, since it is related to M (e’*) > 0 through an

invertible congruence transformation. If A; and A, are two strictly stable solutions
of (4.2) we have

(tT — sAT)Ny(sI — tA)) = (tI — sAS)No(sI — tAy) (4.7)
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so that

G(e) = N(Z] — A)(eP ] — Ay) ! (4.8a)

(AT — AT (e AT — ADN, . (4.8b)

According to (4.8a), G(e?*) is the discrete-time Fourier transform of a causal matrix

sequence, and according to (4.8b) it is the transform of an anticausal sequence. This
implies

G =G, (4.9)

where (G is a constant matrix, so that
G — Ay) = Ny (e — A)) . (4.10)

Identifying coefficients and observing that N; > 0, we obtain G = N; and A; = A,.
The strictly stable solution of (4.2) is therefore unique. O

Next, we consider the ARE (4.4). Somewhat surprisingly, except for the results
of [2], little seems to be known about this equation. An interesting observation, due
to Anderson et al. [2] is that if we consider the matrix

[ My —-My
Z(N) = l Y ] (4.11a)
and if
S(N)=My— M, N~'"M_ (4.11b)

denotes the Schur complement of N inside Z(N) (see [11], p. 656 for a definition of
the Schur complement of a matrix), the ARE (4.4) can be rewritten as

N =S5(N). (4.12)
Employing standard matrix inversion identities, we find also
Nt=[T1 0]z7\(N) l é ] (4.13)

As a starting point, note that all the solutions of (4.4) must be positive definite,
since for each solution N, we obtain a factorization of the form (4.6) for M(e’*),
which indicates that N must be positive definite since it is related to M(e*) > 0
through a congruence transformation.

From Theorem 4.1, we know that there exists one solution of (4.4) such that
A = N71M_ is stable. We now prove that it is the largest among all the solutions of
(4.4).

Theorem 4.2 The set of solutions of (4.4) admits a largest element N, with respect

to the partial ordering N < N' of square symmetric matrices, and the associated
matriz A, = (N;) ™' M _ is stable.
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Proof: Let N be the solution of (4.4) for which A, = M;*M _ is stable, and let N
be another solution with associated matrix A. Let N}/2 and N'/2 be two arbitrary
matrix square roots of N; and N, respectively, and denote

Wi(z) = NY2(2I — A,) , W(z) = NY2(2I — A). (4.14)
For z = e/ on the unit circle, we have
M(z) = WE(2")W,(2) = WE(z)W(2) . (4.15)

Thus, if we define
V(z) = W)W (2), (4.16)

S

V(z) is analytic outside the unit circle, and V7' (2*)V(z) = I on the unit circle. By
the maximum modulus theorem, this implies

VI()V(z) < T (4.17)

outside the unit circle. In particular for z = oo, we have N;7/2NN;/2 < I, so that
N < Nj. Since N is an arbitrary solution of (4.4), this implies that N, is a maximum
element for the set of solutions of (4.4). O

The following procedure, which is adapted from Anderson et al. [2] can be em-
ployed for computing V.

Theorem 4.3 The matriz sequence
N1 =S(Ng) , No= M. (4.18)
1s monotone decreasing and converges to Ng as k — oo.
Proof: By induction, we show that
Ns < Ngy1 < Ni, (4.19)

for all k. According to (4.4), Ny, < My, so that (4.19) is satisfied for £ = 0. Also,
the matrix Z(Nj) is positive definite since both Ny and S(Ns;) = N, are positive
definite. Now if (4.19 holds for index k, we have Z(N;) < Z(Ny41) < Z(Ni) where
Z(N5) is positive definite, so that both Z(Nyy1) and Z(Ny) are positive definite. Thus
Z-(Ny) < Z-Y(Niy1) < Z7Y(N,), and

N =1 O]Zl(Nk)lé] < Neh=1 O]ZI(N’““)H]

< Nt=|[T O]Z‘l(Ns)[é], (4.20)

S
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which implies Ny < Niio < Nii1, so that (4.19) is satisfied for all &.
Since the sequence Ny is monotone decreasing and bounded from below by Ny, it
tends to a limit NV, > N, which satisfies

N, = S(N*), (4.21)

i.e. it is a solution of the ARE (4.4). But N; is the largest solution of (4.4), so that
N, = N;,. O

From the results of [2], it is easy to check that the recursions (4.18) perform the
Cholesky factorization of the semi-infinite block tridiagonal Toeplitz matrix generated
by M(z).

5 Regular Reciprocal Processes
We are now ready to prove the main result of the paper.

Theorem 5.1 If x(k) is a reqular stationary Gaussian reciprocal process, it is nec-
essarily Markov.

Proof: Since the reciprocal process z(k) is regular, it must be minimal of order p for
some p. In this case, the subsampled process z?) (1) = z(Ip) is reciprocal and minimal
of order 1. But, according to Theorem 3.2, (P)(I) is Markov and admits a state-space
model of the form

z®) (1 +1) = A(p)z® (1) + w® (1) (5.1)

where A(p) has its eigenvalues inside the unit circle and w®(l) is a white Gaussian
noise sequence with intensity Q(p) > 0. The positive definiteness of Q(p) is due to
the fact that 2()(I) is minimal of order 1.

We are left with the problem of going from the Markov model (5.1) for the sub-
sequence zP)(I) = x(Ip) to a model for the complete sequence z(k). To do so, let us
define the process

A
w(k;p) = z(k +p) — Ap)z(k) . (5.2)
From the Markov property of (5.1) we can deduce that
w(k;p) L xz(k —Ip) for I € N. (5.3)

Now, consider the interval I = [k, k+ p] and the problem of estimating x(k + 1) given
z(s) in the exterior and the end points of I. Since z(k) is reciprocal, the estimate
Z(k + 1;I) depends only on the values of z(s) at the end points of I, so that there
exists matrices Fl(p) such that

i(k +1;1) = F_(p)x(k) + F'.(p)z(k + p) (5.4)
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and the corresponding residual

dk;I) = z(k+1)—z(k+1;1)
= z(k+1) - F.(p)z(k) — Fi(p)z(k + p) (5.5)

is uncorrelated with z(s) for s outside or on the boundary of I. Eliminating z(k + p)
from (5.2) and (5.5) we find

z(k+1) = Az(k) + w(k) (5.6)
with N
A=F_(p)+ Fi(p)Alp), (5.7a)
where
w(k) = d(k; I) + Fy (p)w(k +p) (5.7b)

is uncorrelated with x(k — Ip) for I € N. The relation (5.6) is in state-space form.
However, to ensure it is a valid first-order Gauss-Markov model, we must show that
the driving noise w(k) is uncorrelated with z(s) for all s < k. For a fixed s , let
I = |(k — s)/p| be the integer part of (k — s)/p, i.e. the largest integer smaller or
equal to (k — s)/p. Then s is in the interior of J = [k — (I 4+ 1)p, k — Ip]. Let H; and
Hpg be the Hilbert spaces spanned by the z(l)s such that [ is in the interior, or the
exterior of J, respectively. Let also Hg be the Hilbert space spanned by the values
of z at the boundary points of J. Clearly w(k) € Hg, since it is a linear combination
of z(k) and z(k + 1). Since z(s) € H;, and the process z(k) is reciprocal, we have

Elw(k)z" (s)|Hp] = E[w(k)|Hp]E[z" (s)| HB], (5.8)
where E[w(k)|Hg] = 0 because w(k) is uncorrelated with z(k — Ip) for [ € N. Thus
E[w(k)z" (s)] = E[E[w(k)z" (s)| Hp]] = 0 (5.9)

so that w(k) is uncorrelated with z(s) for s < k.

One final point that needs to be checked in order to ensure that (5.6) is a valid
Markov model is whether A is a strictly stable matrix. To do so, note that if w(k)
has variance @, the p-step Markov model (5.1) is related to (5.6) through

A= 4 Q) = T AQUAYT. (5.10)

Then, since A(p) has all its eigenvalues strictly inside the unit circle, A has also its
eigenvalues strictly inside the unit circle. O

When z(k) is a stationary Gaussian reciprocal process which is minimal of order
p, it would be desirable to obtain a characterization of its spectral density similar to
that of Theorem 3.1 for minimal processes. This task is simplified by the fact that we
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know that z(k) is Markov, i.e. it admits a state-space model of the form (5.6). If the
noise variance @ has rank m, @ can be factored as Q = BB” with B of dimension
n x m. The spectral density matrix of z(k) can therefore be expressed as

S(A\) = (eI — A)'BBT (e ' - AT) !, (5.11)
and since z(k) is minimal of order p, Q(p) given by (5.10) is positive definite, so that
the truncated reachability matrix

R(p)=[B AB .. 4B | (5.12)

has full rank. This implies that the reachability indices p; < ps... < p,, of the pair
(A, B) are smaller than p (see [11] p. 431 for a definition of the reachability indices
of a linear system). We can use a similarity transformation

(k) = TE(k) (5.13)

with 7T invertible to bring (A, B) to its controller canonical form (A., B.). This
canonical form has the feature that if we consider the right coprime factorization

(21 —A,)'B.=V(2)D7(2) (5.14)
we have
B zplfl T B me*]- T
U(z) = block diag{ ’ Y e ’ } (5.15)
z z
1] !

where D(z) has column degrees p; < ps... < p,,. Since A, has all its eigenvalues inside
the unit circle (it is similar to A), and det(zI — A.) = cdet D(2) with ¢ constant,
D(z) has all its zeros inside the unit circle. Then the spectral density of £(k) is given
by
Se(\) = U(e) M~ () TH (), (5.16a)
with R
M(z) = DT(2 ")D(2) . (5.16b)
M (z) is a matrix Laurent polynomial with the parasymmetry property M(z) =
M7T(z1). It has no zero on the unit circle since D(z) has no zero there, so that M (z)
is Hermitian positive definite on the unit circle. Finally, since the column degrees of
D(z) are all less or equal to p, the entries of M(z) have at most degree 2p.
The representation (5.16a) provides the desired characterization of the spectral
density matrix of a reciprocal process which is minimal of order p. This representation
admits the following stochastic interpretation. Let

M(z) = i Mz . (5.17)

s=—p
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Then consider the stochastic process p(k) € R™ specified by the higher-order self-
adjoint stochastic model

p
> Mp(k+ s) = e(k) (5.18)
s=—p
where the covariance E(k,l) = E[e(k)e” (1)] of the zero-mean Gaussian driving noise
e(k) satisfies
(i) E(k,k+s)=0 for |s|>p, (5.19a)

(i) E(k,k+s) =M, for |s| <p, (5.19b)

and where we impose the asymptotic condition that the variance of p(k) must be
bounded as k£ — oo. This condition plays the same role as boundary conditions over
a finite interval. It is introduced to ensure that the solution of (5.18)-(5.19b) is a
stationary process with spectral density M~!(e/*). Then from (5.15)-(5.16b), we see
that if

pr(k)=1p(k) .. pi(k) . pm(E)], (5.20)
i.e. p;i(k) denotes the ith entry of p(k), the process £(k) can be expressed as
Ek)y=[&"(k) .. &(k) .. &' (k)] (5.21a)
with
&'(k)=[pk+pi—1) . pi(k+1) pi(k)], (5.21b)

which indicates that £(k) is obtained by taking successive lagged values of the entries

of p(k). Furthermore the lengths p; < ps... < pp, of the lagged chains of all entries
of p(k) are less than p. In summary, a reciprocal (and thus Markov) process that is
minimal of order p can be obtained by first constructing a process p(k) satisfying a
self-adjoint stochastic model (5.18) of order less or equal to 2p, then taking successive
lagged values of the entries of p(k) where the lag chains have at most length p, and
applying a similarity transform 7" to the resulting process £(k).

In the above discussion, the stochastic model (5.18)-(5.21b) was used to character-
ize the spectral density of reciprocal (and thus Markov) processes over Z. However,
as shown by Frezza [7], models of this type can also be employed to describe all
higher-order and mixed-order reciprocal processes defined over a finite interval, pro-
vided that the asymptotic boundedness condition for the variance of p(k) is replaced
by Dirichlet boundary conditions at both ends of the interval.

6 Conclusions

In this paper, following a conjecture of Carmichael, Masse and Theodorescu [5], it has
been shown that all regular and reciprocal multivariate stationary Gaussian processes
over Z are necessarily Markov. The proof of this result was broken into two steps,
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where in the first step it was shown that minimal reciprocal processes are Markov, and
in the second step, this result was extended to regular reciprocal processes. The proof
of the fact that minimal and reciprocal stationary Gaussian processes are Markov was
constructive and relied on the construction of a state-space model for the process of
interest through the computation of the stable eigenspace of a matrix pencil. This
computation was shown to be equivalent to performing a spectral factorization of a
parasymmetric second-order Laurent polynomial which is Hermitian positive definite
on the unit circle. This factorization was also related to the solution of two types of
algebraic Riccati equations which were studied in detail.

A consequence of the result proved here is that the reciprocal and Markov stochas-
tic realization problems [16], [22] over Z are roughly equivalent. For the reciprocal
case, this problem can be stated as follows: given a stationary (Gaussian process
y(k) € RP defined over Z, find a reciprocal stationary Gaussian process z(k) € R"
such that

y(k) = Cz(k) . (6.1)

Provided that x(k) is regular, it will also be Markov, so that the reciprocal realization
problem reduces to the Markov case. The only difference is that, when constructing
an internal model for z(k), we are not forced to use a first-order state-space model,
but can employ a higher-order noncausal model of the form (5.18)-(5.21b), which is
in fact easier to construct. Also, when y(k) is defined only over a finite-interval, it is
expected that the reciprocal and Markov realization problems will differ significantly.
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