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Graphs



The Ninja Problem

“I believe that in the datacenter, one question is critical: If you 
can’t get to peak performance on GPUs, they basically lose all 
their value proposition. So how can you get close to peak 
without becoming an architecture expert and programming/
performance wizard?” 
 
                   —Anonymous, Large Internet Company, 27 May 2014



Gunrock Genesis

• Summer 2013, DARPA XDATA summer camp 

• Focus: to-the-metal GPU graph implementations 

• 8 weeks to write (port) betweenness centrality 

• Not a sustainable model!



Gunrock: Goals

• Bottom-up: To leverage the highest-performing GPU 
computing primitives for efficiency. 

• Top-down: To be expressive enough to represent a 
wide variety of graph computations for usability.



Gunrock Status

• Open-source release (Apache 2.0), currently version 0.3 

• http://gunrock.github.io/ 

• Fastest programmable GPU library for graph analytics 

• Superior load-balancing/work distribution 

• More powerful abstraction
Yangzihao Wang, Andrew Davidson, Yuechao Pan, 

Yuduo Wu, Andy Riffel, and John D. Owens. Gunrock: 
A High-Performance Graph Processing Library on 
the GPU. ACM PPoPP 2016. Distinguished Paper. 

http://escholarship.org/uc/item/6xz7z9k0



Other programmable GPU frameworks …

• … leverage a bulk-synchronous model 

• … use CPU abstractions: 

• Pregel (Medusa) 

• GAS (VertexAPI2, CuSha, MapGraph) 

• … organize steps of computation, with two significant 
disadvantages: 

• Programming models are not very general 

• Kernels are small and miss opportunities for producer-
consumer locality



• Graph represented as CSR (~ sparse matrix) 

• Bulk-synchronous: series of parallel steps (operations) 
separated by global barriers 

• Data-centric: All operations are on one or more frontiers 
of active vertices/edges 

• Advance: generates a new frontier through visiting the 
neighbor vertices/edges of elements in the current 
frontier. Key: Work distribution/load balancing 

• Filter: removes elements from frontier via validation test 

• Compute: user-defined vertex-centric or edge-centric 
computations that run in parallel

Gunrock: Programming Model



• Graph represented as CSR (~ sparse matrix) 

• Bulk-synchronous: series of parallel steps (operations) 
separated by global barriers 

• Data-centric: All operations are on one or more frontiers 
of active vertices/edges 

• Advance: generates a new frontier through visiting the 
neighbor vertices/edges of elements in the current 
frontier. Key: Work distribution/load balancing 

• Filter: removes elements from frontier via validation test 

• Compute: user-defined vertex-centric or edge-centric 
computations that run in parallel

Considering new operators: 

• Global 

• Neighborhood 

• Sampling 

• Frontier-frontier intersection

Gunrock: Programming Model



Gunrock’s Data-Centric Abstraction & Bulk-
Synchronous Programming

• Data-centric abstraction 
– Operations are defined on a group 

of vertices or edges = a frontier 
– Operations = manipulations of 

one or more frontiers 

• Bulk-synchronous programming 
– Operations are done one by one, 

in order 
– Within a single operation,  

computing on multiple elements can 

be done in parallel, without order

Loop until 
convergence

A group of V or E

Do something

Resulting group of 
V or E

Do something

Another resulting 
group of V or E

A generic graph algorithm:



Using Gunrock

• As a programmer … 

• Write your own 
Gunrock primitives 
(using advance, 
compute, filter) 

• Write your own 
Gunrock operators!

• As an end-user … 

• Write an executable 
that runs Gunrock 
primitives 

• Link against a Gunrock 
library that provides 
Gunrock primitives 
(C linkage) 

• python 

• Julia



Graph challenges on GPUs

• Efficient parallel algorithms 

• Different balance between brute-force and elegant than on 
CPUs (next slide) 

• Load-balancing due to irregularity 

• Moving beyond simple algorithms 

• Graph representations 

• Scalability (memory constraints)



Algorithm example: SSSP

Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. Work-Efficient Parallel GPU Methods for Single Source 
Shortest Paths. In Proceedings of the 28th IEEE International Parallel and Distributed Processing Symposium, May 2014.



Currently Supported Primitives

• Currently have over 10 
graph primitives 
including: 

• Traversal-based (e.g., 
BFS, DOBFS, SSSP) 

• Node-ranking (e.g., 
HITS, SALSA, 
PageRank) 

• Global (e.g., connected 
component, MST, 
triangle-counting) 

• LOC under 300 for each 
primitive, under 10 to 
use a primitive 

• In progress: 

• Graph coloring, 
Maximal Independent 
Set 

• Community Detection 

• Subgraph Matching



Industry interest examples
• Twitter: “Who To Follow” service 

• Historically: SALSA (“Stochastic Approach for Link-
Structure Analysis”) 

• Personalized PageRank generates circle of trust 

• Hubs & authorities, random walks 

• Facebook 

• PageRank & Personalized PageRank 

• Label propagation 

• Graph embeddings into Rn so similar nodes are close



Industry interest examples
• Twitter: “Who To Follow” service 

• Historically: SALSA (“Stochastic Approach for Link-
Structure Analysis”) 

• Personalized PageRank generates circle of trust 

• Hubs & authorities, random walks 

• Facebook 

• PageRank & Personalized PageRank 

• Label propagation 

• Graph embeddings into Rn so similar nodes are close

Afton Geil, Yangzihao Wang, and John 
D. Owens. WTF, GPU! Computing 

Twitter's Who-To-Follow on the GPU. In 
Proceedings of the Second ACM 

Conference on Online Social Networks, 
COSN '14, pages 63–68, October 2014. 



Load-Balanced Traversal
• Problem: Lots of parallelism 

across vertices, but each vertex 
has a different number of 
neighbors 

• Merrill: Depending on size of 
worklist, vertex work mapped to 
one {thread, warp, block} 

• Davidson: Instead of allocating 
vertices to threads, allocate 
edges to threads 

• Requires sorted search to find 
start and endpts of edges 

• Gunrock advantage: Best load-
balancing (2–20x over Medusa)

tn

tn

Block 0 t0 t1 tn t0 t1 tn t0 t1

t0 t1 tn t0 t1 tn t0 t1

t0 t1 tn t0 t1

Block 1

Block 255

t0 t1 tn t0 t1 tn t0 t1 tn t0 t1

Block cooperative Advance of large neighbor lists;

t0 t31 t0 t0 t31 t0 t31t1 t0 t31

Warp cooperative Advance of medium neighbor lists;

t0 t1 t2 tn

Warp 31Warp 1Warp 0

Per-thread Advance of small neighbor lists.

Merrill’s per-{thread,warp,CTA} load balance

Davidson’s load-balanced partitioning



Push vs. Pull (Direction-Optimized Breadth-First Search)

• Normal operation (“push”): vertex frontier visits every outbound 
edge, generates list of connected unvisited vertices 

• Works great when you’re expanding: more new vertices than old 

• Works poorly with few unvisited vertices

Input queue: v1,v2,v3

0

1 2 3

4 5

label=0

label=1

label=?

0 4 4 3 4 5

from v1 from v2 from v3

4 5

Explored edges (gray ones are failures)

Final output queue 

Push-based
Edge Mapping

6 7



Push vs. Pull
• We also support pull: Start with unvisited vertices, check which have 

inbound edges from frontier 

• Difficult to express in compute-focused APIs 

• Gunrock: Frontier is unvisited vertices; pull from that frontier

0

1 2 3

4 5

label=0

label=1

label=?

Pull-based
Edge Mapping

6 7

Input queue: v4 v5 v6 v7

1 3 4 5

from v4 from v5 from v6

4 5

Explored edges (blue ones are valid in bitmap)

Final output queue 

5

from v7

0 1 1 1 0 0 0 0
working queue bitmap



Supporting Priority Queues
• Our SSSP (standalone) implementation compares three data 

structures for work queues: 

• Workfront: All active vertices only (big improvement over Bellman-Ford) 

• Bucketing: Closest to delta-stepping: vertices sorted by distance from 
source, placed into buckets 

• Near-far: 2 buckets, “near” and “far” 

• Near-far is best: cost of multisplit was too high on GPU 
(reorganizational overhead: 82% of runtime). (We published a paper 
on multisplit at PPoPP 2016.) 

• Difficult on compute-focused APIs, but in Gunrock we can just have 
multiple active frontiers, one per bucket



• Bipartite graphs (SALSA, matching, link prediction, 
personalized PageRank) 

• Streaming graphs 

• Mutable graphs 

• Graphs that change as a result of the computation (Borůvka 
minimum-spanning-tree, Delaunay triangulation) 

• Graphs that require modifying the graph to compute 
(Karger’s mincut) 

• In general, significant data structure challenges. 

• Is CSR the right format?

Research Directions: Broader Graph Types



Gunrock vs. nvGRAPH
• Native graph 

representation 

• Custom (but good!) load-
balancing 
 

• Open-source 

• Write your own primitives 

• Which primitives fit into 
the Gunrock model?

• Matrix-based 
representation 

• Leverages extensive 
sparse-matrix 
infrastructure (sparse 
vector: a challenge!) 

• API access only 

• Limited set of primitives 

• Which primitives fit into 
the Graph BLAS?

https://developer.nvidia.com/nvgraph



1-GPU Performance Comparison

• Each row: single engine on certain dataset, vs. Gunrock 

• Black dots/right: Gunrock faster. White dots/left: Gunrock slower



1-GPU Performance Comparison

• 10+x faster than single-core CPU (Boost), or 
PowerGraph



1-GPU Performance Comparison

• On par with fastest 2-socket CPU (Ligra) 
(Gunrock 16 wins, Ligra 8 wins)



1-GPU Performance Comparison

• Fastest of all GPU programmable frameworks 
(CuSha, MapGraph, Medusa)



1-GPU Performance Comparison

• Competitive with hardwired GPU implementations



Research Directions: Scalability

• Largest memory on a CPU: 5 TB 

• On an NVIDIA GPU: 12 GB (gp100: 16 GB) 

• Today: Multi-GPU, single node (next!) 

• Tomorrow: 

• Out of core? 

• Multi-node? 

• Long term?: heterogeneous single-chip processors



Multi-GPU Framework (for programmers)

Iterate until 
convergence

Input frontier

Output frontier

Single GPU

Associated 
data (label, 
parent, etc.)

Recap: Gunrock on single GPU



Multi-GPU Framework (for programmers)

Iterate until 
convergence

Input frontier

Output frontier

GPU 0

Associated 
data (label, 
parent, etc.)

Input frontier

Output frontier

GPU 1

Associated 
data (label, 
parent, etc.)

Dream: just duplicate the single GPU implementation  
Reality: it won’t work, but good try!

unchanged single-
GPU Gunrock

unchanged single-
GPU Gunrock



Specify (1) how to combine frontiers, (2) what data to 
communicate, (3) global convergence condition

Multi-GPU Framework (for programmers)

Local  
input frontier

Local  
output frontier

GPU 0

Associated 
data (label, 
parent, etc.)

GPU 1

Associated 
data (label, 
parent, etc.)

Remote  
output frontier

Remote  
input frontier

Remote 
input frontier

Local  
input frontier

Remote  
output frontier

Local  
output frontier

Partition

Iterate until all 
GPUs converge

Yuechao Pan, Yangzihao Wang, Yuduo 
Wu, Carl Yang, and John D. Owens. Multi-

GPU Graph Analytics. arxiv, abs/
1504.04804(1504.04804v2), April 2016.

unchanged single-
GPU Gunrock

unchanged single-
GPU Gunrock



Results: Multi-GPU Scaling

• Primitives (except DOBFS) get good speedups (averaged over 16 datasets of 
various types) 
BFS: 2.74x, SSSP: 2.92x, CC: 2.39x,  BC: 2.22x, PR: 4.03x using 6 GPUs 

• Peak DOBFS performance: 514 GTEPS with rmat_n20_512 

• Gunrock can process a graph with 3.6B edges (full-friendster graph, undirected, 
DOBFS in 339ms,  10.7 GTEPS using 4 K40s); 50 PR iterations on the directed 
version (2.6B edges) took ~51 seconds



BFS: Multi-GPU Gunrock vs. Others

• Gunrock generally outperforms other implementations 
on GPU clusters with 4–64 GPUs on both the real and 
generated graphs cited in their publications 

• Gunrock’s “just-enough” memory allocation: critical! 

• 2–5 times faster than Enterprise (Liu and Huang, 
SC15), a dedicated multi-GPU DOBFS implementation 

group name |V | |E| D group name |V | |E| D group name |V | |E| D

soc soc-LiveJournal1 4.85M 85.7M 13 web indochina-2004 7.41M 302M 24 rmat rmat n20 512 1.05M 728M 6.26⇤
soc hollywood-2009 1.14M 113M 8 web uk-2002 18.5M 524M 25 rmat rmat n21 256 2.10M 839M 7.22⇤
soc soc-orkut 3.00M 213M 7 web arabic-2005 22.7M 1.11B 28 rmat rmat n22 128 4.19M 925M 7.56⇤
soc soc-sinaweibo 58.7M 523M 5 web uk-2005 39.5M 1.57B 23 rmat rmat n23 64 8.39M 985M 8.32⇤
soc soc-twitter-2010 21.3M 530M 15 web webbase-2001 118M 1.71B 379 rmat rmat n24 32 16.8M 1.02B 8.61⇤

rmat rmat n25 16 33.6M 1.05B 9.06⇤

TABLE II: Datasets we used to evaluate our work. |V | and |E| are vertex and edge counts; d is the graph diameter, ⇤ indicates
an approximated diameter computed by multiple run of random-sourced BFS.

graph algo ref. ref. hw. ref. perf. our hw. our perf. comp.

com-orkut (3M, 117M, UD) BFS Bisson [5] 1⇥K20X⇥4 2.67 GTEPS 4⇥K40 14.22 GTEPS 5.33X
com-Friendster (66M, 1.81B, UD) BFS Bisson [5] 1⇥K20X⇥64 15.68 GTEPS 4⇥K40 14.1 GTEPS 0.90X
kron n23 16 (8M, 256M, UD) BFS Bernaschi [4] 1⇥K20X⇥4 ⇠1.3 GTEPS 4⇥K40 30.8 GTEPS 23.7X
kron n25 16 (32M, 1.07G, UD) BFS Bernaschi [4] 1⇥K20X⇥16 ⇠3.2 GTEPS 6⇥K40 31.0 GTEPS 9.69X
kron n25 32 (32M, 1.07G, D) BFS Fu [15] 2⇥K20⇥32 22.7 GTEPS 4⇥K40 32.0 GTEPS 1.41X
kron n23 32 (8M, 256M, D) BFS Fu [15] 2⇥K20⇥2 6.3 GTEPS 4⇥K40 27.9 GTEPS 4.43X
kron n24 32 (16.8M, 1.07G, UD) BFS Liu [24] 2⇥K40⇥1 15 GTEPS 2⇥K40 77.7 GTEPS 5.18X
kron n24 32 (16.8M, 1.07G, UD) BFS Liu [24] 4⇥K40⇥1 18 GTEPS 4⇥K40 67.7 GTEPS 3.76X
kron n24 32 (16.8M, 1.07G, UD) BFS Liu [24] 8⇥K40⇥1 18.4 GTEPS 4⇥K80 40.2 GTEPS 2.18X
twitter-mpi (52.6M, 1.96G, D) BFS Bebee [3] 1⇥K40⇥16 0.2242 sec 3⇥K40 94.31 ms 2.38X
rmat n21 64 (2M, 128M, D) BFS Merrill [29] 4⇥C2050⇥1 8.3 GTEPS 4⇥K40 23.7 GTEPS 2.86X

TABLE III: Comparison with previous in-core GPU graph processing work. Ref. hardware is denoted by intra-node GPU
count⇥GPU model⇥node count. We use the same number of GPUs whenever possible within the constraints of a single node.

graph algo ref. ref. perf. our hw. our perf.

uk-2002 {BFS, SSSP, PR, CC} Sengupta [33], 1⇥K40 {49, 80, 153, 162} sec 1⇥K40 {59, 762, 1991, 1848} ms
twitter-rv {SSSP, CC, PR} Lee [23], 4 cores⇥21 nodes {126, 304, 149} sec {2, 3, 2}⇥K40 {2203, 304, 149} ms
twitter-rv {BFS, SSSP, CC, PR} Shi [35], 1⇥K20m {58.8, 153, 35, 145} sec {1, 2, 3, 1}⇥K40 {98, 2203, 1712, 49700} ms
LiveJournal1 BFS Shi [34], 1⇥K20m 7.48 ms 1⇥K40 12.17 ms

TABLE IV: Comparison with previous out-of-core GPU or CPU graph processing work. Our framework can process the largest
datasets that were reported by any of this previous work, on all reported primitives, using much less processing time. {uk-2002,
twitter-rv, LiveJournal1} are directed graphs with {18.5M, 42M, 5M} vertices and {298.1M, 1.5B, 68M} edges.
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(c) PR scalability

Fig. 6: Scalability of DOBFS, BFS, and PR. {Strong, weak edge, weak vertex} scaling use rmat graphs with {224, 219,
219 ⇥ |GPUs|} vertices and edge factor {32, 256⇥|GPUs|, 256} accordingly.

we feel is the fairest comparison—systems with the same
number of GPUs—we also note that our system features
all of those GPUs on the same node, whereas some of the
comparison systems instead allocate one GPU per node. Inter-
GPU bandwidth on a single node is larger than inter-node
bandwidth, so our comparisons must be considered in this
light; however, as we noted in the introduction, we believe
that our results motivate a future focus on scaling up (fewer
but more powerful nodes, with more GPUs) in preference to
scaling out (more nodes). The datasets we choose for com-

parison against each system are those specifically highlighted
by the authors of the comparison systems in their results,
presumably the datasets where their systems show the best
results. Finally, most of the systems that we compare against
are designed to run only a single graph primitive, and are
optimized specifically for that primitive, whereas our system
runs a wide range of graph primitives in a programmable
framework without a primitive-specific focus.

Enterprise [24] is a hardwired DOBFS implementation with
various optimizations, and our DOBFS outperforms it by 2 to



NVIDIA “Pascal” (2016)
• How to scale beyond one node? 

• Scale-out: multiple nodes? 

• Scale-up: out-of-core? 

• gp100 has: 

• Stacked memory (720 GB/s) 

• NVLink high-speed 
CPU-GPU connection 
(160 GB/s bidirectional) 

• CUDA 8’s unified virtual memory 

• On current hardware, we contend 
mGPU on 1 node is the right 
building block



Graph Matching

© All Rights Reserved 2014 | Neo Technology, Inc.

Cypher: Basic Example

• Declarative query langue with SQL-like clause syntax


• Visual graph patterns


• Tabular results

// get node 
MATCH (a:Person {id: 0}) RETURN a

// return friends of friends 
MATCH (a:Person {id: 0})--()--(c) RETURN c

// return friends 
MATCH (a:Person {id: 0})-->(b) RETURN b

© All Rights Reserved 2014 | Neo Technology, Inc.
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Research Directions: Long Term
• Efficiency 

• Raw peak performance  

• Achieving peak 
performance with smaller 
graphs 

• More and higher-level 
algorithms 

• More customers! 

• Asynchronous execution 

• Graph coloring 

• Rich data on vertices and 
edges 

• What goes above Gunrock? 
GraphX, TinkerPop, etc. 

• What goes below Gunrock? 

• Beyond CSR 

• Graph BLAS 

• Dynamic graphs 
 

Frog: Asynchronous Graph Processing …  
http://grid.hust.edu.cn/xhshi/projects/frog.html
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Next steps!

• Feel free to send us questions!  
jowens@ece.ucdavis.edu 

• Even better, file Gunrock issues! 
https://github.com/gunrock/gunrock/issues 

• Slides from this talk at 
http://preview.tinyurl.com/owens-nv-webinar-160426


