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Figure 1: Collection profile of Twitter Dataset 1
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# Tweets: 1 Billion+

# Unique Users: 94 Million+

# Geolocated Tweets: 31 Million+
Total Size: 146 GB

Figure 2: Twitter in Europe
Image obtained from https://blog.twitter.com/2013/geography-tweets-3
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Figure 1: IPv4 Census Map (http://www.caida.org/research/id-consumption/census-map/images/20061108.png)

# of Records (Size)
180 billion (5.5 TB)

Quick Description
Results of probes with different formats sent to various service ports
of IPv4 addresses.

Reverse DNS

10.5 billion (366 GB) Results of DNS name requests (reverse lookups) for addresses within

the IPv4 space using 16 large DNS Servers.

TCP/IP Fingerprints

80 million (50 GB) Results of remote OS detection fingerprinting from NMap tool.

Country Posting Job

Table 1: Net Data Volume

Figure 1: Map of Jobs (Colored by Country)
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The Ninja Problem

“l believe that in the datacenter, one question is critical: If you
can’t get to peak performance on GPUs, they basically lose all
their value proposition. So how can you get close to peak
without becoming an architecture expert and programming/
performance wizard?”

—Anonymous, Large Internet Company, 27 May 2014



Gunrock Genesis

e Summer 2013, DARPA XDATA summer camp
e Focus: to-the-metal GPU graph implementations
e 8 weeks to write (port) betweenness centrality

e Not a sustainable model!



Gunrock: Goals

e Bottom-up: To leverage the highest-performing GPU
computing primitives for efficiency.

e Top-down: To be expressive enough to represent a
wide variety of graph computations for usability.



Gunrock Status

e Open-source release (Apache 2.0), currently version 0.3
e http://gunrock.github.io/

e Fastest programmable GPU library for graph analytics

e Superior load-balancing/work distribution

e More powerful abstraction

Yangzihao Wang, Andrew Davidson, Yuechao Pan,
Yuduo Wu, Andy Riffel, and John D. Owens. Gunrock:
A High-Performance Graph Processing Library on
the GPU. ACM PPoPP 2016. Distinguished Paper.
http://escholarship.org/uc/item/6xz7z9ko




Other programmable GPU frameworks ...

e .. leverage a bulk-synchronous model
e ...use CPU abstractions:

e Pregel (Medusa)

e GAS (VertexAPI2, CuSha, MapGraph)

e .. organize steps of computation, with two significant
disadvantages:

e Programming models are not very general

e Kernels are small and miss opportunities for producer-
consumer locality



Gunrock: Programming Model

e Graph represented as CSR (~ sparse matrix)

e Bulk-synchronous: series of parallel steps (operations)
separated by global barriers

e Data-centric: All operations are on one or more frontiers
of active vertices/edges

e Advance: generates a new frontier through visiting the
neighbor vertices/edges of elements in the current
frontier. Key: Work distribution/load balancing

e Filter: removes elements from frontier via validation test

e Compute: user-defined vertex-centric or edge-centric
computations that run in parallel



Gunrock: Programming Model

e Graph represented as CSR (~ sparse matrix
Considering new operators:
Global S)
Neighborhood
e Data-centric: All ope Sampling ers
of active vertices/ed . Frontier-frontier intersection

e Bulk-synchronous: s
separated by global

e Advance: generates a new frontier through visiting the
neighbor vertices/edges of elements in the current
frontier. Key: Work distribution/load balancing

e Filter: removes elements from frontier via validation test

e Compute: user-defined vertex-centric or edge-centric
computations that run in parallel



Gunrock’s Data-Centric Abstraction & Bulk-

Synchronous Programming

A generic graph algorithm:

A group of VorE
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Do something

‘ ‘Resulting group of
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Loop until
convergence

. . . Another resulting
D group of VorE

Data-centric abstraction

— Operations are defined on a group
of vertices or edges = a frontier

— Operations = manipulations of

one or more frontiers

Bulk-synchronous programming

— Operations are done one by one,
in order

— Within a single operation,
computing on multiple elements can

be done in parallel, without order



Using Gunrock

e As an end-user ...

e Write an executable

that runs Gunrock
e Write your own orimitives

Gunrock primitives
(using advance,
compute, filter)

e Asaprogrammer ...

e Linkagainst a Gunrock
ibrary that provides

Gunrock primitives
e Write your own (Clinkage)

Gunrock operators!

e python

e Julia



Graph challenges on GPUs

e Efficient parallel algorithms

e Different balance between brute-force and elegant than on
CPUs (next slide)

e Load-balancing due to irregularity

e Moving beyond simple algorithms
e Graph representations

e Scalability (memory constraints)



Algorithm example: SSSP
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Parallelism (Vertices Considered)

Andrew Davidson, Sean Baxter, Michael Garland, and John D. Owens. Work-Efficient Parallel GPU Methods for Single Source
Shortest Paths. In Proceedings of the 28th IEEE International Parallel and Distributed Processing Symposium, May 2014.



Currently Supported Primitives

e Currently have over 10
graph primitives
including:

e Traversal-based (e.g.,
BFS, DOBFS, SSSP)

e Node-ranking (e.g.,
HITS, SALSA,
PageRank)

e Global (e.g., connected
component, MST,
triangle-counting)

e LOCunder 300 for each
primitive, under 10 to
use a primitive

e |n progress:

e Graph coloring,
Maximal Independent
Set

e Community Detection

e Subgraph Matching



Industry interest examples

e Twitter: “Who To Follow” service

e Historically: SALSA (“Stochastic Approach for Link-
Structure Analysis”)

e Personalized PageRank generates circle of trust

e Hubs & authorities, random walks

e Facebook
e PageRank & Personalized PageRank

e Label propagation

e Graph embeddings into R" so similar nodes are close



Industry interest examples

e Twitter: “Who To Follow” service

e Historically: SALSA (“Stochastic Approach for Link-
Structure Analysis”)

e Personalized PageRank generates circle of trust

Afton Geil, Yangzihao Wang, and John

e Hubs & authorities, random walks D. Owens. WTF, GPU! Computing

Twitter's Who-To-Follow on the GPU. In
Proceedings of the Second ACM

® Fa Ce D 0 O k Conference on Online Social Networks,

COSN '14, pages 63—68, October 2014.

e PageRank & Personalized PageRank

e Labe

e Grap

| propagation

n embeddings into R" so similar nodes are close



Load-Balanced Traversal

e Problem: Lots of parallelism

across vertices, but each vertex
has a different number of
neighbors

Merrill: Depending on size of
worklist, vertex work mapped to
one {thread, warp, block}

Davidson: Instead of allocating
vertices to threads, allocate
edges to threads

e Requires sorted search to find
start and endpts of edges

Gunrock advantage: Best load-
balancing (2—20x over Medusa)

Block cooperative Advance of large neighbor lists;

Warp O Warp 1 Warp 31

Warp cooperative Advance of medium neighbor lists;

Per-thread Advance of small neighbor lists.

Merrill’s per-{thread,warp,CTA} load balance

Block O

Block 1

Block 255

Davidson’s load-balanced partitioning



Push vs. Pull (Direction-Optimized Breadth-First Search)

e Normal operation (“push”): vertex frontier visits every outbound
edge, generates list of connected unvisited vertices

e Works great when you’re expanding: more new vertices than old

e Works poorly with few unvisited vertices

i from v1! from v2! from va!
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Push vs. Pull

e We also support pull: Start with unvisited vertices, check which have
inbound edges from frontier

/ V\‘\ label="?
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e |

(0)  label=0

e Explored edges (blue ones are valid in bitmap)
Edge Mapping

01110000 Final output queue

working queue bitmap

Input queue: V.VsVsV-

e Difficult to express in compute-focused APls

e Gunrock: Frontier is unvisited vertices; pull from that frontier



Supporting Priority Queues

e Our SSSP (standalone) implementation compares three data
structures for work queues:

e Workfront: All active vertices only (big improvement over Bellman-Ford)

e Bucketing: Closest to delta-stepping: vertices sorted by distance from
source, placed into buckets

e Near-far: 2 buckets, “near” and “far”

e Near-faris best: cost of multisplit was too high on GPU
(reorganizational overhead: 82% of runtime). (We published a paper
on multisplit at PPoPP 2016.)

e Difficult on compute-focused APIs, but in Gunrock we can just have
multiple active frontiers, one per bucket



Research Directions: Broader Graph Types

e Bipartite graphs (SALSA, matching, link prediction,
personalized PageRank)

e Streaming graphs
e Mutable graphs

e Graphs that change as a result of the computation (Bortivka
minimum-spanning-tree, Delaunay triangulation)

e Graphs that require modifying the graph to compute
(Karger’s mincut)

e In general, significant data structure challenges.

e |[s CSR the right format?



Gunrock vs. nvGRAPH

e Native graph
representation

e Custom (but good!) load-
balancing

e Open-source
e Write your own primitives

e Which primitives fit into
the Gunrock model?

Matrix-based
representation

Leverages extensive
sparse-matrix
infrastructure (sparse
vector: a challenge!)

APl access only
Limited set of primitives

Which primitives fit into
the Graph BLAS?

https://developer.nvidia.com/nvgraph



1-GPU Performance Comparison

CCCCC

Hardwired h09

MapGraph h09

e Each row: single engine on certain dataset, vs. Gunrock

e Black dots/right: Gunrock faster. White dots/left: Gunrock slower



1-GPU Performance Comparison

e 10+x faster than single-core CPU (Boost), or
PowerGraph



1-GPU Performance Comparison

e On par with fastest 2-socket CPU (Ligra)
(Gunrock 16 wins, Ligra 8 wins)



1-GPU Performance Comparison

e Fastest of all GPU programmable frameworks
(CuSha, MapGraph, Medusa)



1-GPU Performance Comparison

BC BFS cC PR SSSP Speedup
: : Q=1
[ I

e Competitive with hardwired GPU implementations



Research Directions: Scalability

e Largest memoryona CPU:5TB
e On an NVIDIA GPU: 12 GB (GP100: 16 GB)
e Today: Multi-GPU, single node (next!)
e fomorrow:
e Out of core?
e Multi-node?

e Longterm?: heterogeneous single-chip processors



Multi-GPU Framework (for programmers)

Recap: Gunrock on single GPU

Input frontier

As@ed : Iterate until

data (label, : convergence

parent, etc.),,
00000

Output frontier

Single GPU



Multi-GPU Framework (for programmers)

Dream: just duplicate the single GPU implementation
Reality: it won’t work, but good try!

Input frontier Input frontier

0000000 r QQQCCCC

I  {
Ass@ed unchange ; single- lterate 'untll unchangedsingle- Assﬁed

GPU Gunrock

data (label, convergence GPU G@k data (label,
parent, etc.). Y _parent, etc.)
00000 || 00000
Output frontier : Output frontier
|
GPU o : GPU 1



Multi-GPU Framework (for programmers)

Yuechao Pan, Yangzihao Wang, Yuduo
Wu, Carl Yang, and John D. Owens. Multi-
GPU Graph Analytics. arxiv, abs/
1504.04804(1504.04804Vv2), April 2016.

Partition
|

Local " Remote

mput frontler ‘ulgnt/er
Ass@ea - -Uﬁfﬁaﬂged single-

data (label,
parent, etc.).

Remote Local

I
I | |
I inm“rontier in uarontier
I
| O00® 0000
AR £
unchanged-single- As ed

—GPU Gunrock data (label,

— o - —

__parent, etc.)

I
I
|
|

Local Remote I
I
I
I
|

00

output frontler Qutput frontier

Local

 output front/er_,, output frontier

GPUo GPU 1

Specify (1) how to combine frontiers, (2) what data to
communicate, (3) global convergence condition



Results: Multi-GPU Scaling

Speedup vs.
Single GPU

mGPUx2 mGPUx3 mGPUx4 mGPUxS "GPUx6

e Primitives (except DOBFS) get good speedups (averaged over 16 datasets of

various types)
BFS: 2.74x, SSSP: 2.92x, CC: 2.39x, BC: 2.22x, PR: 4.03x using 6 GPUs

e Peak DOBFS performance: 514 GTEPS with rmat_n20_512

e Gunrock can process a graph with 3.6B edges (full-friendster graph, undirected,
DOBFS in 339ms, 10.7 GTEPS using 4 K40s); 50 PR iterations on the directed
version (2.6B edges) took ~51 seconds



BFS: Multi-GPU Gunrock vs. Others

graph algo ref. ref. hw. ref. perf. our hw. our perf. comp.
com-orkut (3M, 117M, UD) BFS Bisson [5] 1 xK20X x4 2.67 GTEPS  4xK40 14.22 GTEPS 5.33X
com-Friendster (66M, 1.81B, UD)  BFS Bisson [5] IxK20Xx64 15.68 GTEPS  4xK40 14.1 GTEPS  0.90X
kron_n23_16 (8M, 256M, UD) BFS  Bernaschi [4] 1 xK20X x4 ~13 GTEPS 4xK40  30.8 GTEPS 23.7X
kron_n25_16 (32M, 1.07G, UD) BFS  Bernaschi [4] 1xK20Xx16 ~3.2 GTEPS 6xK40  31.0 GTEPS 9.69X
kron_n25_32 (32M, 1.07G, D) BFS Fu [15] 2xK20x32 22.7 GTEPS  4xK40  32.0 GTEPS 1.41X
kron_n23_32 (8M, 256M, D) BFS Fu [15] 2xK20x2 6.3 GTEPS 4xK40 279 GTEPS 443X
kron_n24_32 (16.8M, 1.07G, UD) BFS Liu [24] 2xK40x1 15 GTEPS 2xK40 777 GTEPS  5.18X
kron_n24_32 (16.8M, 1.07G, UD) BFS Liu [24] 4xK40x 1 18 GTEPS 4xK40  67.7 GTEPS  3.76X
kron_n24_32 (16.8M, 1.07G, UD) BFS Liu [24] 8xK40x 1 18.4 GTEPS  4xK80  40.2 GTEPS  2.18X
twitter-mpi (52.6M, 1.96G, D) BFS Bebee [3] 1xK40x16 0.2242 sec 3x K40 94.31 ms 2.38X
rmat_n21_64 (2M, 128M, D) BFS Merrill [29] 4xC2050x 1 8.3 GTEPS 4xK40  23.7 GTEPS  2.86X

e Gunrock generally outperforms other implementations

on GPU clusters with 4—64 GPUs on both the real and
generated graphs cited in their publications

e Gunrock’s “just-enough” memory allocation: critical!

e 2-5times faster than Enterprise (Liu and Huang,

SCis), a dedicated multi-GPU DOBFS implementation



NVIDIA “Pascal” (2016)

e How to scale beyond one node?
e Scale-out: multiple nodes?
e Scale-up: out-of-core?

® GP100 has:
e Stacked memory (720 GB/s)

e NVLink high-speed
CPU-GPU connection
(160 GB/s bidirectional)

e (CUDA 8’s unified virtual memory

e On current hardware, we contend
mGPU on 1 node is the right
building block




Graph Matching

Cypher: Basic Example

Neo4;j

Select Commercial Customers

Declarative query langue with SQL-like clause syntax

+ Visual graph patterns

« Tabular results

// get node

MATCH (a:Person {id: 0}) RETURN a

// retum friends

MATCH (a:Person {id:

// return friends of friends

MATCH (a:Person {id:
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Fraud Detection

MATCH (CaccountHolder:AccountHolder)-[]->(contactInformation)
WITH contactInformation,
count(accountHolder) AS RingSize
MATCH (contactInformation)<-[]-(accountHolder),
CaccountHolder)-[r:HAS_CREDITCARD |HAS_UNSECUREDLOAN]->(unsecuredAccount)
0 } ) - - > ( b ) R ETU RN b WITH collect(DISTINCT accountHolder.UniqueId) AS AccountHolders,
contactInformation, RingSize,
SUM(CASE type(r)
WHEN "HAS_CREDITCARD' THEN unsecuredAccount.Limit
WHEN "HAS_UNSECUREDLOAN' THEN unsecuredAccount.Balance
0})--()--(c) RETURN c ELSE 0
END) as FinancialRisk
WHERE RingSize > 1
S RETURN AccountHolders AS FraudRing,
labels(contactInformation) AS ContactType,
RingSize,
round(FinancialRisk) as FinancialRisk
ORDER BY FinancialRisk DESC
— R



Research Directions: Long Term

e Efficiency e Rich data on vertices and

e Raw peak performance edges

e What goes above Gunrock?

® Achieving peak
GraphX, TinkerPop, etc.

performance with smaller

graphs e What goes below Gunrock?
e More and higher-level e Beyond CSR
algorithms

e Graph BLAS

e More customers!
e Dynamic graphs
e Asynchronous execution

|

® Graph coloring RS
WSS Frog: Asynchronous Graph Processing ...
http://grid.hust.edu.cn/xhshi/projects/frog.html
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Next steps!

e Feelfreeto send us questions!
jowens@ece.ucdavis.edu

e Even better, file Gunrock issues!
https://github.com/gunrock/gunrock/issues

e Slides from this talk at
http://preview.tinyurl.com/owens-nv-webinar-160426



