
Lecture 16
Data Level Parallelism (3)

EEC 171 Parallel Architectures
John Owens

UC Davis

Credits
• © John Owens / UC Davis 2007–9.

• Thanks to many sources for slide material: Computer
Organization and Design (Patterson & Hennessy) ©
2005, Computer Architecture (Hennessy & Patterson)
© 2007, Inside the Machine (Jon Stokes) © 2007, ©
Dan Connors / University of Colorado 2007, © Kathy
Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk,
University of Illinois 2007, © David Patterson / UCB
2003–7, © John Lazzaro / UCB 2006, © Mary Jane
Irwin / Penn State 2005, © John Kubiatowicz / UCB
2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan
Kaufmann Publishers 1998, Bill Dally / SPI © 2007.

Where Do Your Cycles Go?

http://images.google.com/imgres?imgurl=www2.tntech.edu/financialaid/images/cell%2520phone.gif&imgrefurl=http://www2.tntech.edu/financialaid/TTU%2520Fin%2520aid%2520phone%2520email.htm&h=188&w=164&prev=/images%253Fq%253Dcell%252Bphone%2526svnum%253D10%2526hl%253Den%2526imgsafe%253Doff%2526sa%253DN
http://images.google.com/imgres?imgurl=www2.tntech.edu/financialaid/images/cell%2520phone.gif&imgrefurl=http://www2.tntech.edu/financialaid/TTU%2520Fin%2520aid%2520phone%2520email.htm&h=188&w=164&prev=/images%253Fq%253Dcell%252Bphone%2526svnum%253D10%2526hl%253Den%2526imgsafe%253Doff%2526sa%253DN
http://www.howstuffworks.com/gif/xbox-new.jpg
http://www.howstuffworks.com/gif/xbox-new.jpg
http://www.eol.ca/services/images/dsl.jpg
http://www.eol.ca/services/images/dsl.jpg

Computing Today: Media Applications

• Media applications are increasingly important

• Signal processing

• Video/image processing

• Graphics

• Media applications are fundamentally different

• Traditionally a tradeoff:

• Programmable processors perform poorly

• Custom processors perform well, but are not flexible

• Goal: performance of a special purpose processor, programmability
of a general purpose processor

Stereo Depth Extraction

Left Camera Image Right Camera Image

Depth Map

• 640x480 @ 30 fps

• Requirements

• 11 GOPS

• Imagine stream processor

• 11.92 GOPS

Characteristics of Media Applications

• High computation rate

• Depth requires 11 GOPS

• High computation to memory ratio

• Depth: 60 : 1

• Producer-consumer locality & little data reuse

• Pixels never revisited

• Parallelism

• All pixels could be computed in parallel

• Simple control structures

Kernels and Streams

• A stream is a set of
elements of an
arbitrary datatype.

• Allowed operations:
push, pop

• A computational kernel
operates on streams.

• Typically: loops over
all input elements

Kernel

convolve

Streams

• For each input image,

• For each pixel,

• Convolve with Gaussian (blur)

• Convolve with Laplacian (enhance edges)

• Compare two images

• For each pixel,

• Iterate over multiple disparities between images to find best match

Stereo Depth Extraction Algorithm

streams kernels

Depth Extractor Implementation

Stream level specifies program structure
Kernel level describes function of each kernel

SAD

Kernel Stream
Input Data

Output Data

Image 1 convolve convolve

Image 0 convolve convolve

Depth Map

Stream Processing Advantages

SAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth Map

Kernels exploit both instruction
(ILP) and data (SIMD) level
parallelism.

Streams expose producer-
consumer locality.

Kernels can be partitioned
across chips to exploit task
parallelism.

The stream model exploits
parallelism without the
complexity of traditional parallel
programming.

Microprocessor vs. Imagine: Programming Model

• Microprocessors

• Scalar execution model – little parallelism

• Lots of control hardware

• No restrictions on programming

• Imagine

• Simpler control allows more functional units

• Leads to restrictions in programming model:

• No arbitrary memory references from kernels allow fast kernels

• Simple control structures (loops) allow SIMD

Implementation Goals
• Supply ample computation

• Must exploit parallelism

• Instruction level (for a single element)

• Data level (across multiple elements)

• Deliver high data bandwidth

• Little traditional locality

• Instead, producer-consumer locality

• Need to efficiently utilize our bandwidth

The Imagine Stream Processor

[Khailany et al., IEEE Micro Mar/Apr ‘01]

Bandwidth Hierarchy Makes It Work

• Media apps match what VLSI can provide.

2.1GB/s 25.6 GB/s 435 GB/sPeak BW:

[Rixner et al., Micro ’98]

SDRAM

SDRAM

SDRAM

SDRAM

St
re

am

Re
gi

st
er

 F
ile

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

ALU Cluster

SIMD/VLIW
Control

Bandwidth Hierarchy: Depth Extractor
Memory/Global Data SRF/Streams Clusters/Kernels

row of pixels
previous partial sums

new partial sums
blurred row

previous partial sums
new partial sums

sharpened row

filtered row segment
filtered row segment
previous partial sums

new partial sums
depth map row segment

Convolution
(Gaussian)

Convolution
(Laplacian)

SAD

1 : 23 : 317

Data Level Parallelism in Clusters

• SIMD (single-instruction, multiple data) control of 8
clusters by 1 microcontroller

CU

In
te

rc
lu

st
er

 N
et

w
or

k

+

From SRF

To SRF

+ + * * /

Cross Point

Local Register File

Arithmetic operations:
• 32-bit floating point or 32-, 16- & 8-bit integer
• Most ops have 3-5 cycles of latency

• Most units fully pipelined (throughput is more important than
latency)

Software controlled switch connects ALU outputs to
LRF inputs

Local register files (LRFs)
• 1 per ALU input
• 16-32 entries each

External data access only via streams
• no direct memory operations

Indexable scratch-pad memory
• Lookups and simple conditionals

8 Clusters execute in SIMD fashion
Communication unit transfers data between

clusters

Cluster Organization

Depth: High Computation Rate

• Each pixel requires hundreds of operations to process

• Each kernel call performs a complex operation on every element in the stream

• Imagine sustains 11.92 GOPS [cycle accurate simulation @ 400 MHz]

• 198 frames/second on 8-bit-grayscale 320x240 stereo pair

• 30 disparities tested per pixel

SAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth Map

Depth: High Computation to Memory Ratio

• 60 arithmetic operations per required
memory reference

• Matches delivered bandwidths of data
bandwidth hierarchy

• For depth, Memory::SRF::Local RFs =
1::23::317

SAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth Map

DR
AM

SR
F

Cl
us

te
rs

DRAM: 2.1 GB/s
SRF: 25.6 GB/s
Clusters: 435 GB/s

Imagine

Depth: Producer-Consumer Locality

• Intermediate data is produced by one kernel and
immediately consumed by the next kernel

• For efficiency, minimize global memory traffic

SAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth Map

Depth: Ample Parallelism

• Instruction level: Kernel ops on single element of stream

• Data level: Stream elements processed in parallel

• Task level: Partitioning tasks among stream processors

• In theory, ALL pixels in output image could be processed in parallel!

SAD

Image 1 convolve convolve

Image 0 convolve convolve

Depth Map

Video Processing: MPEG2 Encode

• Sustains 15.35
16-bit GOPS

• 287 frames/second
on 320x288
24-bit color image

• Little locality

• 1.47 accesses per word of global data

• Computationally intense

• 155 operations per global data reference

Signal Processing: QR Decomposition

• QR Matrix Decomposition

• Key component of Space-Time Adaptive Processing (STAP)

• Sustains 10.46 GFLOPS (32-bit floating-point)

• 1.44 ms per 192x96 single-precision floating-pt QRD

Current block

Col-col
product

Householder

Update1 Update2

“Zeroed” block

Blocks to be
updated Updated

blocks

Graphics: Polygon Rendering
vertex

program

assemble/
clip

viewport/
cull

hash

zcompare

sort/merge

compact
fragment
program

xyprep

xyrast baryprep

irast
Geometry

Rasterization

Composition

The Stanford Real-Time
Shading Language

compiles shaders to
stream and kernel code.

Sustains 4–6 GOPS

16.3M pixels/second

11.1M vertices/second

Bandwidth Demand of Applications

• Applications match memory bandwidth hierarchy

• Locality is captured: apps achieve 77-96% of performance of Imagine
with infinite SRF/memory bandwidth

DR
AM

SR
F

Cl
us

te
rs

DRAM: 2.1 GB/s
SRF: 25.6 GB/s
Clusters: 435 GB/s

Imagine

Imagine Implementation Overview

• Chip Details

• 21M transistors

• TI 5-layer-Aluminum
0.15 µm standard cell
technology

• 16mm X 16mm

• 792-pin BGA

• Experimental Measurements

• 288 MHz

• 11.9 GFLOPS, 38.4 GOPS

• 13.8 W

Datapath Blocks

SRF

UC
HI NISC

M
B
A
N
K

0
M
B
A
N
K

1
M
B
A
N
K

2
M
B
A
N
K

3
CLUST1
CLUST0

CLUST3
CLUST2

CLUST5
CLUST4

CLUST7
CLUST6

Summary
• Goal: Programmability of a general purpose processor, performance of a special

purpose processor

• Stream programming model

• All data expressed as streams

• Computation done by kernels

• Model exposes parallelism, locality

• Stream architecture

• Fundamental primitive: stream

• Data bandwidth hierarchy

• Media apps match what VLSI provides

• Ample computation resources

• VLSI implementation validates architectural concepts

parallel processing made simple

Arithmetic is cheap, Communication is expensive

Arithmetic
• Can put TeraOPs on a chip

• Typical ALU characteristics;
$0.02/GOPS, 10mW/GOPS

• Exploit with parallelism

Communication
• Typical off-chip characteristics;

$2/GB/s, 0.5W/GB/s

• Bandwidth decreases with distance

• Power and latency increases with
distance

• But can be hidden with parallelism

• Need locality to conserve global
bandwidth

90nm
$20
1GHz

32-bit ALU (to scale)

6mm

0.3mm

1 clock

Increasing
power

 Decreasing
 bandwidth

parallel processing made simple

So we should build chips that look like this

Logical view Physical view

parallel processing made simple

Data Parallel Unit (DPU)
One kernel at a time is executed across
all lanes

DPU Dispatcher manages load/stores in
bulk

• Hardware scheduler for DMA transfers
and kernel calls

12-way VLIW instruction
• 1 scalar, 1 branch
• 5 arithmetic
• 4 ld/st, 1 comms

5 x 32-bit ALUs per lane
• Integer / fixed-point
• Subword SIMD; 4x8b, 2x16b

304 32-bit registers per lane

256 KBytes Lane Register File
for streams

InterLane full crossbar

Shared execution unit for scalars

DPU …

Scalar
Execution

Unit

D
PU

 D
is

pa
tc

he
r

Lane 0 Lane 15

SORF ALU

Stream Load/Store Unit

Lane Register
File 15

16 KBytes

Local Sw
itch

ORF

ORF

ORF

COM

ALU4

ALU0

Lane Register
File 0

16 KBytes

Local Sw
itch

ORF

ORF

ORF

COM

ALU4

ALU0

InterLane Switch

Instruction
Fetch Unit

Instruction
Memory

96 KBytes

VLIW
Sequencer

K
er

ne
l c

al
ls

 fr
om

 m
ai

n
pr

oc
es

so
r

Memory Controller

Ld
St

Ld
St

Ld
St

Ld
St

Ld
St

Ld
St

Ld
St

Ld
St

Feb 13, 2007 32

DPU: 16 parallel lanes, 5 ALUs per lane

• 384b instruction
– 12-way VLIW

• Five 32-bit ALUs
per lane
– Integer / Fixed-point
– Subword SIMD

support on 8b, 16b
– Multiply-add
– Add/Sub
– Shift

• Distributed
operand RFs
– 304 32-bit words per

lane

parallel processing made simple

Hierarchy matches application bandwidth

>95% of accesses is typically from
operand RFs in DSP applications

Static kernel VLIW schedule
• Including InterLane switch

1:10:150 mem bandwidth ratio typical
across a large variety of DSP kernels

0

75

150

225

300

Peak DEPTH MPEG QRD RTSL

LRF
SRF
DRAM

ORF
LRF
DRAM

10.4 GBytes/s
666 Mbps DDR2

2x64b

90 GBytes/s
2 words/cycle/lane

45 GBytes/s
1 word/cycle/lane

External DRAM

1.4 TBytes/s
19 reads & 13 writes

words/cycle/lane

Measured results on Imagine Stream Processor
(Stanford University)

…Lane 0 Lane 15

Stream Load/Store Unit

Lane Register
File 15

16 KBytes

Local Sw
itch

ORF

ORF

ORF

COM

ALU4

ALU0

Lane Register
File 0

16 KBytes

Local Sw
itch

ORF

ORF

ORF

COM

ALU4

ALU0

InterLane

Ld
St

Ld
St

Ld
St

Ld
St

Ld
St

Ld
St

Ld
St

Ld
St

parallel processing made simple

1. Load balancing:
Time-multiplexing perfectly balances load

Space Multiplexed
• A common multi-core approach
• Each tile executes a different DSP

kernel, forwarding results to the
next tile

• Hard to load balance

Time Multiplexed
• All lanes execute the same DSP

kernel, each operating on a different
stream element

• Implicitly load-balanced

Assume a pipeline of DSP kernels processing data

Dependencies
simplified;
Interlane comms
can be made
explicit and
scheduled by
compiler

Time

1

2

3

4

1
2

3

16

Ti
le

s
La

ne
s

parallel processing made simple

2. Synchronization:
SIMD/VLIW parallelism simplifies synchronization

vs.

Seq

FU

OR

10-way VLIW

…Seq F

10 cores

CPU0

R

…
Lane 0

Lane 15

…

Seq F

CPU9

R

FU

OR

FU

OR

… FU

OR

+ SIMD

Seq F

CPU159

R

Seq F

CPU158

R

…

…

16 x 10 cores 16 SIMD x 10-way VLIW

Tight synchronization allows exploitation of finer
levels of granularity

• E.g. neighboring pixel processing in each lane

parallel processing made simple

3. Locality:
Explicit stream scheduling exploits locality

Assume a simple pipeline of DSP kernels processing data

Load/store Execution

Ti
m

e
Explicit hierarchy conserves bandwidth

• On-chip memory allocation based on compiler data-flow analysis
• Data reuse and (only) load of needed data
• Overlapping load/store and execution improves memory latency tolerance

parallel processing made simple

3. Locality:
H.264 motion search example

parallel processing made simple

4. Predictability: Caches lack predictability and
squander bandwidth (“wet noodle” control)

Stream ProcessorConventional Processor

99% hitrate; 1 miss costs 100s of cycles,
10,000s of ops!

Manually choreographing caches is hard…

Needed data and instructions dynamically
moved on-chip, managed by compiler

Data and instruction movement in bulk hide
latency – 20:1 in compute to access ratio
typical for DSP kernels

Ti
m

e

parallel processing made simple

4. Predictability: Explicit data movement enables
predictable execution unit scheduling

8x8 FDCT kernel example
• Over 80% ALU utilization of peak
• C code + intrinsics
• Each lane calculates one 8x8 block per

loop
• 73 cycles/loop, ~ 4.5 cycles/block

Explicit communication makes
delays predictable

• Enhances compiler strategies to enable
high-level languages

• Assembly not needed to achieve
performance

• Kernel cycle count is guaranteed

cy
cl

es

ALU 1 2 3 4 5 ORF - to - ORF Ld St InterLane Branch

VLIW Function Unit Opcode Slots

 K
ernel instructions, clock

parallel processing made simple

Storm-1 SP16HP – top level block diagram

System MIPS core
• Manages I/O, runs OS (e.g. Linux)

DSP MIPS core
• Runs main DSP application threads, runs

RTOS (e.g. Nucleus)
• Makes kernel function calls to the DPU

Data-Parallel Unit (DPU)
• Processes kernels
• Stream Processor execution model
• Scales with number of lanes

Memory and I/O Subsystem

DSP Subsystem

Multi-Layer System Bus / DMA Control

DDR2 ControllerPCI
PIO

GBit
Ethernet

Video
StreamIO Audio GPIO

System
MIPS

DSP
MIPS

Data-Parallel Unit
(DPU)

Storm-1 SP16HP

parallel processing made simple

Storm-1 SP16HP design

MIPS

VLIW Control

Lane
Lane
Lane
Lane

Lane
Lane
Lane
Lane

VLIW Control

Lane
Lane
Lane
Lane

Lane
Lane
Lane
Lane

S
tream

 Load/S
tore

S
tream

 Load/S
tore

Interlane S
w

itch

DDR
Ctrl

D
ispatcMIPS

I/O

130nm TSMC LV 8LM Cu

34M transistors

700MHz core

82 pJ per 16b multiply-accumulate

Less than 10W typical

LR

F1 F2 F3 F4 D1 D2 D3 RR X1 CL WB

F1 F2 F3 F4 D1 D2 D3 RR X1 X2 X3 X4 X5 CL WB

Instruction
Fetch

Decode/
Distribute

Reg
Read

Cross
Lane

Write-
back

Execute

Hardware pipeline; 11-15 stages

Data-Parallel Algorithms
• Efficient algorithms require efficient building blocks

• Six data-parallel building blocks

• Map

• Gather & Scatter

• Reduce

• Scan

• Sort

• Search

Sample Motivating Application
• How bumpy is a surface that we

represent as a grid of samples?

• Algorithm:

• Loop over all elements

• At each element, compare the value of that element to the average of its
neighbors (“difference”). Square that difference.

• Now sum up all those differences.

• But we don’t want to sum all the diffs that are 0.

• So only sum up the non-zero differences.

• This is a fake application—don’t take it too seriously.

Picture courtesy http://www.artifice.com

Sample Motivating Application

for all samples:

neighbors[x,y] =
 0.25 * (value[x-1,y]+
 value[x+1,y]+
 value[x,y+1]+
 value[x,y-1]))

diff = (value[x,y] - neighbors[x,y])^2

result = 0

for all samples where diff != 0:

result += diff

return result

Sample Motivating Application

for all samples:

neighbors[x,y] =
 0.25 * (value[x-1,y]+
 value[x+1,y]+
 value[x,y+1]+
 value[x,y-1]))

diff = (value[x,y] - neighbors[x,y])^2

result = 0

for all samples where diff != 0:

result += diff

return result

The Map Operation

• Given:

• Array or stream of data elements A

• Function f(x)

• map(A, f) = applies f(x) to all ai∈ A

• How does this map to a data-parallel processor?

Sample Motivating Application

for all samples:

neighbors[x,y] =
 0.25 * (value[x-1,y]+
 value[x+1,y]+
 value[x,y+1]+
 value[x,y-1]))

diff = (value[x,y] - neighbors[x,y])^2

result = 0

for all samples where diff != 0:

result += diff

return result

Scatter vs. Gather
• Gather: p = a[i]

• Scatter: a[i] = p

• How does this map to a data-parallel processor?

Sample Motivating Application

for all samples:

neighbors[x,y] =
 0.25 * (value[x-1,y]+
 value[x+1,y]+
 value[x,y+1]+
 value[x,y-1]))

diff = (value[x,y] - neighbors[x,y])^2

result = 0

for all samples where diff != 0:

result += diff

return result

Parallel Reductions

• Given:

• Binary associative operator ⊕ with identity I

• Ordered set s = [a₀, a₁, …, an-1] of n elements

• reduce(⊕, s) returns a₀ ⊕ a₁ ⊕ … ⊕ an-1

• Example:
 reduce(+, [3 1 7 0 4 1 6 3]) = 25

• Reductions common in parallel algorithms

• Common reduction operators are +, ×, min and max

• Note floating point is only pseudo-associative

Efficiency

• Work efficiency:

• Total amount of work done over all processors

• Step efficiency:

• Number of steps it takes to do that work

• With parallel processors, sometimes you’re willing to
do more work to reduce the number of steps

• Even better if you can reduce the amount of steps and
still do the same amount of work

Parallel Reductions
• 1D parallel reduction:

• add two halves of domain together repeatedly...

• … until we’re left with a single row

+
N

N/2
N/4… 1

+ +

Multiple 1D Parallel Reductions
• Can run many reductions in parallel

• Use 2D grid and reduce one dimension

+

MxN

MxN/2
MxN/4… Mx1

+ +

2D reductions
• Like 1D reduction, only reduce in both directions simultaneously

• Note: can add more than 2x2 elements per step

• Trade per-pixel work for step complexity

• Best perf depends on specific hardware (cache, etc.)

Parallel Reduction Complexity

• log(n) parallel steps, each step S does n/2S independent ops

• Step Complexity is O(log n)

• Performs n/2 + n/4 + … 1 = n-1 operations

• Work Complexity is O(n)—it is work-efficient

• i.e. does not perform more operations than a sequential algorithm

• With p threads physically in parallel (p processors),
time complexity is O(n/p + log n)

• Compare to O(n) for sequential reduction

Sample Motivating Application

for all samples:

neighbors[x,y] =
 0.25 * (value[x-1,y]+
 value[x+1,y]+
 value[x,y+1]+
 value[x,y-1]))

diff = (value[x,y] - neighbors[x,y])^2

result = 0

for all samples where diff != 0:

result += diff

return result

Stream Compaction

• Input: stream of 1s and 0s
[1 0 1 1 0 0 1 0]

• Operation:“sum up all elements before you”

• Output: scatter addresses for “1” elements
[0 1 1 2 3 3 3 4]

• Note scatter addresses for red elements are packed!

A B C D E F G H

A C D G

Input

Output

Parallel Scan (aka prefix sum)

• Given:

• Binary associative operator ⊕ with identity I

• Ordered set s = [a0, a1, …, an-1] of n elements

• (exclusive) scan(⊕, s) returns
 [a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-1)]

• Example:
scan(+, [3 1 7 0 4 1 6 3]) =
 [3 4 11 11 15 16 22 25]

Common Situations in Parallel Computation

• Many parallel threads that need to partition data

• Split

• Many parallel threads and variable output per thread

• Compact / Expand / Allocate

Split Operation
• Given an array of true and false elements (and

payloads)

• Return an array with all true elements at the beginning

• Examples: sorting, building trees

FTFFTFFT

FFFFFTTT

36140713

31471603

Flag

Payload

Variable Output Per Thread: Compact

• Remove null elements

• Example: collision detection

3 7 4 1 3

3 0 7 0 4 1 0 3

Variable Output Per Thread
• Allocate Variable Storage Per Thread

• Examples: marching cubes, geometry generation

A

B

C D

E

F

G

2 1 0 3 2

H

“Where do I write my output?”

• In all of these situations, each thread needs to answer
that simple question

• The answer is:

• “That depends on how much
the other threads need to write!”

• In a serial processor, this is simple

• “Scan” is an efficient way to answer this question in
parallel

Parallel Prefix Sum (Scan)
• Given an array A = [a0, a1, …, an-1]

and a binary associative operator ⊕ with identity I,

• scan(A) = [I, a0, (a0 ⊕ a1), …, (a0 ⊕ a1 ⊕ … ⊕ an-2)]

• Example: if ⊕ is addition, then scan on the set

• [3 1 7 0 4 1 6 3]

• returns the set

• [0 3 4 11 11 15 16 22]

Application: Stream Compaction

• 1M elements:
~0.6-1.3 ms

• 16M elements:
~8-20 ms

• Perf depends on #
elements retained

65

Informally, stream compaction is a filtering operation: from an input vector, it selects a
subset of this vector and packs that subset into a dense output vector. Figure 39-9
shows an example. More formally, stream compaction takes an input vector vi and a
predicate p, and outputs only those elements in vi for which p(vi) is true, preserving the
ordering of the input elements. Horn (2005) describes this operation in detail.

Stream compaction requires two steps, a scan and a scatter.

1. The first step generates a temporary vector where the elements that pass the predi-
cate are set to 1 and the other elements are set to 0. We then scan this temporary
vector. For each element that passes the predicate, the result of the scan now con-
tains the destination address for that element in the output vector.

2. The second step scatters the input elements to the output vector using the addresses
generated by the scan.

Figure 39-10 shows this process in detail.

39.3 Applications of Scan 867

Input

OutputA C D G

A B C D E F G H

Figure 39-9. Stream Compaction Example
Given an input vector, stream compaction outputs a packed subset of that vector, choosing only
the input elements of interest (marked in gray).

A C D G

A B C D E F G H

Scan

Scatter input to output,
using scan result as scatter
address

Set a “1” in each
gray input

0 1 1 2 3 3 3 4

1 0 1 1 0 0 1 0

Input: we want to preserve
the gray elements A B C D E F G H

Figure 39-10. Scan and Scatter
Stream compaction requires one scan to determine destination addresses and one vector scatter
operation to place the input elements into the output vector.

639_gems3_ch39 6/28/2007 2:28 PM Page 867
FIRST PROOFS

Application: Radix Sort

66

• Sort 16M 32-bit key-value
pairs: ~120 ms

• Perform split operation on
each bit using scan

• Can also sort each block and
merge
• Efficient merge on GPU an

active area of research

872

Thus for k-bit keys, radix sort requires k steps. Our implementation requires one scan
per step.

The fundamental primitive we use to implement each step of radix sort is the split
primitive. The input to split is a list of sort keys and their bit value b of interest on
this step, either a true or false. The output is a new list of sort keys, with all false sort
keys packed before all true sort keys.

We implement split on the GPU in the following way, as shown in Figure 39-14.

1. In a temporary buffer in shared memory, we set a 1 for all false sort keys (b = 0)
and a 0 for all true sort keys.

2. We then scan this buffer. This is the enumerate operation; each false sort key now
contains its destination address in the scan output, which we will call f. These first
two steps are equivalent to a stream compaction operation on all false sort keys.

Chapter 39 Parallel Prefix Sum Scan with CUDA

Scatter input using d as
scatter address

Split based on least
significant bit b

e = Set a “1” in each “0” input

f = Scan the 1s

totalFalses = e[max] + f[max]

0 1 0 0 1 1 1 0

1 0 1 1 0 0 0 1

0 1 1 2 3 3 3 0

t = i – f + totalFalses

d = b ? t : f

0-0+4
=4

1-1+4
=4

2-1+4
=5

3-2+4
=5

4-3+4
=5

5-3+4
=6

6-3+4
=7

7-3+4
=8

0 4 1 2 5 6 7 3

Input100 111 010 110 011 101 001 000

100 010 110 000 111 011 101 001

100 111 010 110 011 101 001 000

Figure 39-14. The split Operation Requires a Single Scan and Runs in Linear Time with the
Number of Input Elements

639_gems3_ch39 6/28/2007 2:28 PM Page 872
FIRST PROOFS

3

