Lecture 16 Data Level Parallelism (3) EEC 171 Parallel Architectures John Owens UC Davis

Credits

- © John Owens / UC Davis 2007–9.
- Thanks to many sources for slide material: Computer Organization and Design (Patterson & Hennessy) © 2005, Computer Architecture (Hennessy & Patterson) © 2007, Inside the Machine (Jon Stokes) © 2007, © Dan Connors / University of Colorado 2007, © Kathy Yelick / UCB 2007, © Wen-Mei Hwu/David Kirk, University of Illinois 2007, © David Patterson / UCB 2003–7, © John Lazzaro / UCB 2006, © Mary Jane Irwin / Penn State 2005, © John Kubiatowicz / UCB 2002, © Krste Asinovic/Arvind / MIT 2002, © Morgan Kaufmann Publishers 1998, Bill Dally / SPI © 2007.

Where Do Your Cycles Go?

Computing Today: Media Applications

- Media applications are increasingly important
 - Signal processing
 - Video/image processing
 - Graphics
- Media applications are fundamentally different
- Traditionally a tradeoff:
 - Programmable processors perform poorly
 - Custom processors perform well, but are not flexible
- Goal: performance of a special purpose processor, programmability of a general purpose processor

Stereo Depth Extraction

Left Camera Image

Right Camera Image

- 640x480 @ 30 fps
- Requirements
 - 11 GOPS
- Imagine stream processor
 - 11.92 GOPS

Characteristics of Media Applications

- High computation rate
 - Depth requires 11 GOPS
- High computation to memory ratio
 - Depth: 60 : 1
- Producer-consumer locality & little data reuse
 - Pixels never revisited
- Parallelism
 - All pixels could be computed in parallel
- Simple control structures

Kernels and Streams

- A stream is a set of elements of an arbitrary datatype.
 - Allowed operations: push, pop

- A computational kernel operates on streams.
 - Typically: loops over all input elements

Stereo Depth Extraction Algorithm

- For each input image,
 - For each pixel,

Convolve with Gaussian (blur)

Convolve with Laplacian (enhance edges)

• Compare two images

• For each pixel,

Iterate over multiple disparities between images to find best match
 streams kernels

Depth Extractor Implementation

Stream level specifies program structure Kernel level describes function of each kernel

Stream Processing Advantages

Microprocessor vs. Imagine: Programming Model

- Microprocessors
 - Scalar execution model little parallelism
 - Lots of control hardware
 - No restrictions on programming
- Imagine
 - Simpler control allows more functional units
 - Leads to restrictions in programming model:
 - No arbitrary memory references from kernels allow fast kernels
 - Simple control structures (loops) allow SIMD

Implementation Goals

- Supply ample computation
 - Must exploit parallelism
 - Instruction level (for a single element)
 - Data level (across multiple elements)
- Deliver high data bandwidth
 - Little traditional locality
 - Instead, producer-consumer locality
 - Need to efficiently utilize our bandwidth

The Imagine Stream Processor

[Khailany et al., IEEE Micro Mar/Apr '01]

Bandwidth Hierarchy Makes It Work

Media apps match what VLSI can provide.

[Rixner et al., Micro '98]

Bandwidth Hierarchy: Depth Extractor

Data Level Parallelism in Clusters

 SIMD (single-instruction, multiple data) control of 8 clusters by 1 microcontroller

Cluster Organization

Bacile Steries exceptions: Arithmetic operations: **Comparing Point of 32**, 18 & Stata between clusters have 3 to the state of latency

Most units fully pipelined (throughput is more important than latency)

Depth: High Computation Rate

- Each pixel requires hundreds of operations to process
- Each kernel call performs a complex operation on every element in the stream
- Imagine sustains 11.92 GOPS [cycle accurate simulation @ 400 MHz]
- 198 frames/second on 8-bit-grayscale 320x240 stereo pair
- 30 disparities tested per pixel

Depth: High Computation to Memory Ratio

- 60 arithmetic operations per required memory reference
- Matches delivered bandwidths of data bandwidth hierarchy
- For depth, Memory::SRF::Local RFs = 1::23::317

DRAM: 2.1 GB/s SRF: 25.6 GB/s Clusters: 435 GB/s

Depth: Producer-Consumer Locality

- Intermediate data is produced by one kernel and immediately consumed by the next kernel
- For efficiency, minimize global memory traffic

Depth: Ample Parallelism

- Instruction level: Kernel ops on single element of stream
- Data level: Stream elements processed in parallel
- Task level: Partitioning tasks among stream processors
- In theory, ALL pixels in output image could be processed in parallel!

Video Processing: MPEG2 Encode

- Sustains 15.35
 16-bit GOPS
- 287 frames/second
 on 320x288
 24-bit color image
- Little locality
- 1.47 accesses per word of global data
- Computationally intense
- 155 operations per global data reference

Signal Processing: QR Decomposition

- QR Matrix Decomposition
 - Key component of Space-Time Adaptive Processing (STAP)
- Sustains 10.46 GFLOPS (32-bit floating-point)
- 1.44 ms per 192x96 single-precision floating-pt QRD

Graphics: Polygon Rendering

Bandwidth Demand of Applications

- Applications match memory bandwidth hierarchy
 - Locality is captured: apps achieve 77-96% of performance of Imagine with infinite SRF/memory bandwidth

Imagine Implementation Overview

- Chip Details
 - 21M transistors
 - TI 5-layer-Aluminum
 0.15 µm standard cell
 technology
 - 16mm X 16mm
 - 792-pin BGA
- Experimental Measurements
 - 288 MHz
 - 11.9 GFLOPS, 38.4 GOPS
 - 13.8 W

Datapath Blocks

Summary

- Goal: Programmability of a general purpose processor, performance of a special purpose processor
- Stream programming model
 - All data expressed as streams
 - Computation done by kernels
 - Model exposes parallelism, locality
- Stream architecture
 - Fundamental primitive: stream
 - Data bandwidth hierarchy
 - Media apps match what VLSI provides
 - Ample computation resources
 - VLSI implementation validates architectural concepts

Arithmetic is cheap, Communication is expensive

Arithmetic

- Can put TeraOPs on a chip
- Typical ALU characteristics; \$0.02/GOPS, 10mW/GOPS
- Exploit with parallelism

Communication

- Typical off-chip characteristics; \$2/GB/s, 0.5W/GB/s
- Bandwidth decreases with distance
- Power and latency increases with distance
 - But can be hidden with parallelism
- Need <u>locality</u> to conserve global bandwidth

So we should build chips that look like this

Logical view

Physical view

Data Parallel Unit (DPU)

Memory Controller

- One kernel at a time is executed across € all lanes
- DPU Dispatcher manages load/stores in Ð bulk
 - Hardware scheduler for DMA transfers • and kernel calls

12-way VLIW instruction Ð

- 1 scalar, 1 branch •
- 5 arithmetic
- 4 ld/st, 1 comms •

5 x 32-bit ALUs per lane €

- Integer / fixed-point •
- Subword SIMD; 4x8b, 2x16b •
- 304 32-bit registers per lane Ð
- 256 KBytes Lane Register File € for streams
- InterLane full crossbar €
- Shared execution unit for scalars Ð

ORF COM

ORF ALU0

ORF ALU4

LdSt

LdSt

LdSt

File 15

DPU: 16 parallel lanes, 5 ALUs per lane

- 384b instruction
 12-way VLIW
- Five 32-bit ALUs per lane
 - Integer / Fixed-point
 - Subword SIMD support on 8b, 16b
 - Multiply-add
 - Add/Sub
 - Shift
- Distributed operand RFs
 - 304 32-bit words per lane

Hierarchy matches application bandwidth

1. Load balancing: Time-multiplexing perfectly balances load

Assume a pipeline of DSP kernels processing data

Space Multiplexed

- A common multi-core approach
- Each <u>tile</u> executes a different DSP kernel, forwarding results to the next tile
- Hard to load balance

Time Multiplexed

- All <u>lanes</u> execute the same DSP kernel, each operating on a different stream element
- Implicitly load-balanced

Dependencies simplified; Interlane comms can be made explicit and scheduled by compiler

2. Synchronization: SIMD/VLIW parallelism simplifies synchronization

- Tight synchronization allows exploitation of finer levels of granularity
 - E.g. neighboring pixel processing in each lane

3. Locality: Explicit stream scheduling exploits locality

Explicit hierarchy conserves bandwidth

- On-chip memory allocation based on compiler data-flow analysis
- Data reuse and (only) load of needed data
- Overlapping load/store and execution improves memory latency tolerance

3. Locality: H.264 motion search example

4. Predictability: Caches lack predictability and squander bandwidth ("wet noodle" control)

Conventional Processor

99% hitrate; 1 miss costs 100s of cycles, 10,000s of ops!

Manually choreographing caches is hard...

Stream Processor

Needed data and instructions dynamically moved on-chip, managed by compiler

Data and instruction movement in bulk hide latency – 20:1 in compute to access ratio typical for DSP kernels

4. Predictability: Explicit data movement enables predictable execution unit scheduling

8x8 FDCT kernel example

- Over 80% ALU utilization of peak
- C code + intrinsics
- Each lane calculates one 8x8 block per loop
- 73 cycles/loop, ~ 4.5 cycles/block

Explicit communication makes delays predictable

- Enhances compiler strategies to enable high-level languages
- Assembly not needed to achieve performance
- Kernel cycle count is guaranteed

Storm-1 SP16HP – top level block diagram

System MIPS core

• Manages I/O, runs OS (e.g. Linux)

DSP MIPS core

- Runs main DSP application threads, runs RTOS (e.g. Nucleus)
- Makes kernel function calls to the DPU

Data-Parallel Unit (DPU)

- Processes kernels
- Stream Processor execution model
- Scales with number of lanes

Memory and I/O Subsystem

Storm-1 SP16HP design

- 130nm TSMC LV 8LM Cu
- 34M transistors
- 700MHz core
- 82 pJ per 16b multiply-accumulate
- Less than 10W typical

Hardware pipeline; 11-15 stages

F1	F2	F3	F4	D1	D2	D3	RR	X1	CL	WB				
F1	F2	F3	F4	D1	D2	D3	RR	X1	X2	X3	X4	X5	CL	WB
	Instruc Fetch	ction		De Dis	code/ stribute		Reg Read			Execute	9		Cross Lane	Write- back

Data-Parallel Algorithms

- Efficient algorithms require efficient building blocks
- Six data-parallel building blocks
 - Map
 - Gather & Scatter
 - Reduce
 - Scan
 - Sort
 - Search

- How bumpy is a surface that we represent as a grid of samples?
- Algorithm:
 - Loop over all elements

- At each element, compare the value of that element to the average of its neighbors ("difference"). Square that difference.
- Now sum up all those differences.
 - But we don't want to sum all the diffs that are o.
 - So only sum up the non-zero differences.
- This is a fake application—don't take it too seriously.

```
for all samples:
   neighbors[x,y] =
         0.25 * (value[x-1,y]+
                   value[x+1,y]+
                   value[x,y+1]+
                   value[x,y-1] ) )
   diff = (value[x,y] - neighbors[x,y])^2
result = 0
for all samples where diff != 0:
   result += diff
return result
```



```
for all samples:
   neighbors[x,y] =
         0.25 * (value[x-1,y]+
                   value[x+1,y]+
                   value[x,y+1]+
                   value[x,y-1] ) )
   diff = (value[x,y] - neighbors[x,y])^2
result = 0
for all samples where diff != 0:
   result += diff
return result
```


The Map Operation

- Given:
 - Array or stream of data elements A
 - Function *f*(*x*)
- map(A, f) = applies f(x) to all $a_i \in A$
- How does this map to a data-parallel processor?

```
for all samples:
   neighbors[x,y] =
         0.25 * (value[x-1,y]+
                   value[x+1,y]+
                   value[x,y+1]+
                   value[x,y-1] ) )
   diff = (value[x,y] - neighbors[x,y])^2
result = 0
for all samples where diff != 0:
   result += diff
return result
```


Scatter vs. Gather

- Gather:p = a[i]
- Scatter:a[i] = p
- How does this map to a data-parallel processor?

Scatter

Gather

```
for all samples:
   neighbors[x,y] =
         0.25 * (value[x-1,y]+
                   value[x+1,y]+
                   value[x,y+1]+
                   value[x,y-1] ) )
   diff = (value[x,y] - neighbors[x,y])^2
result = 0
for all samples where diff != 0:
   result += diff
return result
```


Parallel Reductions

• Given:

- Binary associative operator \oplus with identity I
- Ordered set $s = [a_0, a_1, ..., a_{n-1}]$ of n elements
- reduce(\oplus , s) returns $a_0 \oplus a_1 \oplus ... \oplus a_{n-1}$
- Example: reduce(+, [3 1 7 0 4 1 6 3]) = 25
- Reductions common in parallel algorithms
 - Common reduction operators are +, ×, min and max
 - Note floating point is only pseudo-associative

Efficiency

- Work efficiency:
 - Total amount of work done over all processors
- Step efficiency:
 - Number of steps it takes to do that work
- With parallel processors, sometimes you're willing to do more work to reduce the number of steps
- Even better if you can reduce the amount of steps and still do the same amount of work

Parallel Reductions

- 1D parallel reduction:
 - add two halves of domain together repeatedly...
 - ... until we're left with a single row

Multiple 1D Parallel Reductions

- Can run many reductions in parallel
- Use 2D grid and reduce one dimension

2D reductions

• Like 1D reduction, only reduce in both directions simultaneously

- Note: can add more than 2x2 elements per step
 - Trade per-pixel work for step complexity
 - Best perf depends on specific hardware (cache, etc.)

Parallel Reduction Complexity

- log(n) parallel steps, each step S does n/2S independent ops
 - Step Complexity is O(log n)
- Performs n/2 + n/4 + ... = n-1 operations
 - Work Complexity is O(n)—it is work-efficient
 - i.e. does not perform more operations than a sequential algorithm
- With p threads physically in parallel (p processors), time complexity is O(n/p + log n)
 - Compare to O(n) for sequential reduction

```
for all samples:
   neighbors[x,y] =
         0.25 * (value[x-1,y]+
                   value[x+1,y]+
                   value[x,y+1]+
                   value[x,y-1] ) )
   diff = (value[x,y] - neighbors[x,y])^2
result = 0
for all samples where diff != 0:
   result += diff
return result
```


Stream Compaction

- Input: stream of 1s and os
 [1 0 1 1 0 0 1 0]
- Operation: "sum up all elements before you"
- Output: scatter addresses for "1" elements
 [0 1 1 2 3 3 3 4]
- Note scatter addresses for red elements are packed!

Parallel Scan (aka prefix sum)

- Given:
 - Binary associative operator \oplus with identity I
 - Ordered set s = [a₀, a₁, ..., a_{n-1}] of n elements
- (exclusive) scan(\oplus , s) returns $[a_0, (a_0 \oplus a_1), ..., (a_0 \oplus a_1 \oplus ... \oplus a_{n-1})]$
- Example: scan(+, [3 1 7 0 4 1 6 3]) = [3 4 11 11 15 16 22 25]

Common Situations in Parallel Computation

- Many parallel threads that need to partition data
 - Split

- Many parallel threads and variable output per thread
 - Compact / Expand / Allocate

Split Operation

Given an array of true and false elements (and payloads)
 Flag T F F F F F F

- Return an array with all true elements at the beginning
- Examples: sorting, building trees

Variable Output Per Thread: Compact

• Remove null elements

• Example: collision detection

Variable Output Per Thread

• Allocate Variable Storage Per Thread

• Examples: marching cubes, geometry generation

"Where do I write my output?"

- In all of these situations, each thread needs to answer that simple question
- The answer is:
- "That depends on how much the other threads need to write!"
 - In a serial processor, this is simple
- "Scan" is an efficient way to answer this question in parallel

Parallel Prefix Sum (Scan)

 Given an array A = [a₀, a₁, ..., aₙ₋₁] and a binary associative operator ⊕ with identity I,

• $\operatorname{scan}(A) = [I, a_0, (a_0 \oplus a_1), ..., (a_0 \oplus a_1 \oplus ... \oplus a_{n-2})]$

- Example: if \oplus is addition, then scan on the set
- [31704163]
- returns the set
- [0 3 4 11 11 15 16 22]

Application: Stream Compaction

Α	В	С	D	Е	F	G	Н
1	0	1	1	0	0	1	0

Input: we want to preserve the gray elements Set a "1" in each gray input

0	1	1	2	3	3	3	4
Α	В	С	D	Е	F	G	н
	F						
Α	С	D	G				

Scan

Scatter input to output, using scan result as scatter address

- 1M elements:
 ~0.6-1.3 ms
- 16M elements: ~8-20 ms
- Perf depends on # elements retained

Application: Radix Sort

100	111	010	110	011	101	001	000	
0	1	0	0	1	1	1	0	
1	0	1	1	0	0	0	1	
0	1	1	2	3	3	3	3	

Input

Split based on least significant bit b

- e = Set a "1" in each "0" input
- f = Scan the 1s
- → totalFalses = e[max] + f[max]

0-0+4	1-1+4	2-1+4	3-2+4	4-3+4	5-3+4	6-3+4	7-3+4
=4	=4	=5	=5	=5	=6	=7	=8
0	4	1	2	5	6	7	3

- t = i f + totalFalses
- d = b ? t : f

Scatter input using d as scatter address

- Sort 16M 32-bit key-value pairs: ~120 ms
- Perform split operation on each bit using scan
- Can also sort each block and merge
 - Efficient merge on GPU an active area of research