

Fig. 4. Simplified Tuning Loop.

The reference tuning loop uses a Gm cell in feedback as shown in simplified form in Fig. 4 [4]. A constant current I_R is pushed into the Gm cell, producing a voltage $V_{ol} = I_R/g_m$. ϕ_1 and ϕ_2 are two non-overlapping clocks with frequency f_{clock} . During ϕ_1 , the capacitor C_1 is charged to V_{ol} . During ϕ_2 , the charge on C_1 is transferred to capacitor C_H . Also, a constant current NI_R is drawn from C_H . The average value of the opamp output, V_{I2} , is used to tune the

transconductance of the Gm cell.

When the loop reaches steady state, the charge injected onto C_H by C_1 during ϕ_2 equals the charge removed from C_H by NI_R in one clock period. Therefore V_{02} is periodic and V_{J2} is constant. In steady state,

$$= C_1 V_{o1} = N I_R T , = \mathbf{Q} \mathbf{I} \mathbf{R}$$
 (2)

where $T = 1/f_{clock}$ is the clock period. Substituting $V_{ol} = I_R/g_m$ into (2) and simplifying gives

$$\frac{C_1}{g_m} = NT = \frac{N}{f_{clock}} , \qquad (3)$$

where g_m is the transconductance of the Gm cell. Hence, C_1/g_m depends on the clock frequency f_{clock} , which is derived from a crystal oscillator, and N, the ratio of DC currents that can be accurately defined in a CMOS process.

A more detailed block diagram of the tuning loop is shown in Fig. 5. The clock frequency is 6.25MHz and the DC current ratio N is 0.2. Using these values in (3), $C_1/g_m = 32$ ns. If C_1 has the same nominal value as $C_f (=0.6 \text{pF})$ in the AC coupler, then $g_m = 18.8 \mu\text{A/V}$. With $I_R \le 5 \mu\text{A}$ in Fig. 5, the nominal differential output voltage of the Gm cell is $\le 0.53 \text{V}$. To have a large g_m tuning range, the Gm cell should allow an output swing of >1.0V.

$$V_{oi} = \frac{IR}{Gm}$$
 (1)

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 27, NO. 12, DECEMBER 1992