1. a) Find the small-signal output resistance R_{Out} for the amplifier shown below. Assume all the transistors are forward-active with $I_{C1} = I_{C2} = 1$ mA.

$$R_{\text{out}} = \frac{\Gamma_{\text{m2}} + R_{\text{ol}}}{B+1} = \frac{5.2k+124}{201} = 26 \Omega$$

$$R_{01} = \frac{Y_{F1} + R_{5}}{B+1} = \frac{5.2k+20k}{201} = 124 \Lambda$$

$$Y_{\Pi_1} = Y_{\Pi_2} = \frac{BV_T}{I_C} = 5.2kn$$

- b) How does the small-signal output resistance Rout change in each case:
- i) if R_s decreases: (circle one) $\Rightarrow R_s \downarrow \Rightarrow R_s \downarrow \downarrow$

Rout decreases

Rout increases

Rout doesn't change

ii) if IC1 and IC2 both increase to 2 mA: (circle one) - Tout > Rout

(Rout decreases)

Rout increases

Rout doesn't change

2. In the circuit below, R_{in} and R_{out} have been measured in the lab: $R_{in} = 4k$ ohms and $R_{out} = 112k$ ohms. Assuming the transistors is forward active and the DC collector current is 1 mA:

What is β for this transistor? $\beta = 154$

What is V_A for this transistor? $V_A = 1/2$

$$R_{in} = F = \frac{\beta V_T}{I_c} = \frac{\beta (26mV)}{ImA}$$

$$4k\Omega \Rightarrow \beta = 154$$

$$R_{out} = V_o = \frac{V_A}{I_c} = \frac{V_A}{ImA}$$

$$112k\Omega \Rightarrow V_A = 112V$$

3. a) A current source is shown below. All transistors are identical. Assume Q2 is forward active (its collector connects to other circuitry that is not shown). Find the value of I_0 in the model shown.

b) What is the minimum value of the voltage at the collector of Q2 (V_O) for which Q2 remains forward active?

$$V_O(min) = 6.8V$$

b)
$$V_{E}(Q2) = V_{BE_{1}} + V_{BE_{2}} - V_{BE_{1}} \simeq 0.7V$$

 $V_{o}(m.i.) \equiv 0.7V + V_{CESAT}(Q2) = 0.8V$

- 4. Find the DM and CM gains for the differential amplifier below. Assume all transistors are forward active; Q1 and Q2 are identical; and $I_{C1}(\mathrm{D.C.}) = I_{C2}(\mathrm{D.C.}) = 1~\mathrm{mA}$. FOR THIS PROBLEM ONLY, ignore the transistor's output resistance (that is, take V_A = infinity).
- a) What is the Differential Mode (DM) gain?

$$v_{od}/v_{id} = \underline{-7.5}$$

b) What is the Common Mode (CM) gain?

$$v_{oc}/v_{ic} = \underline{-5}.$$

$$V_{cc}$$

$$V_{cl}$$

$$V$$

Extra work space for Problem 4.

cm tekt

$$a_{cm} = \frac{N_{cc}}{N_{ic}} = -G_{m_i}(50k) = \frac{-g_{m_i}}{1+g_{m_i}(10k)}(50k)$$

- 5. A class A output stage is shown below.
- a) What is the positive output swing limit? $V_{out}(max) = \frac{9.9 \text{ V}}{}$
- b) What is the negative output swing limit? Vout(min) = -2.0 V

$$\frac{10V}{\sqrt{2mA}} = \frac{10V}{\sqrt{2mA}} = \frac{10$$

b)
$$V_0(min) = max(-10V + V_{CESAT}(Q3), -I_{C3}R_L)$$

$$-9.9V$$

$$\rightarrow V_o(min) = -2V$$

