University of California, Davis College of Engineering Department of Electrical and Computer Engineering

EXPERIMENT No. 3 THE AMPLIFIER

I. OBJECTIVE

In this experiment you will build a transistor amplifier, bias it in the linear region, and measure several properties such as voltage gain, input resistance, and output resistance.

II. COMMON EMITTER AMPLIFIER WITH DEGENERATION

- (1) Use the transistor curve-tracer to measure the A.C. and D.C. current gains β_0 and β_F of an NPN transistor at an operating point of $I_c = 4mA$ and $V_{CE} = 4V$. Since these parameters fall off at both high and low collector currents, it is important to measure their value at the actual operating point.
- (2) The amplifier circuit is shown in Figure 1. Use the value of β_F obtained in Part (1) to compute values for R_{B1} , R_{B2} , and R_C such that the operating point for the transistor is $I_C = 4\text{mA}$ and $V_{CE} = 4\text{V}$. With $R_{B1} || R_{B2} = \beta_F R_E / 10$, the operating point will be relatively insensitive to variations in β_F . Why is this so?

Figure 1.

- (3) Measure the voltage gain A_v , input resistance R_{in} , and output resistance R_{out} as follow (with open circuit at point E for the CE stage):
 - a) A_v measure the amplitudes of voltage at points B and C

$$A_{v} = \frac{v_{c}}{v_{b}}$$

- b) R_{out} measure amplitude at point C. Connect a variable resistor to point D and adjust the resistance until the amplitude at C is reduced by 1/2. The value of the variable resistor is equal to the output resistance. Why does this procedure measure output resistance?
- c) R_{in} measure amplitude at B, then connect the variable resistor at point A and use the same procedure as for R_{out} . You can find R_{in} from this measurement.
- (4) Observe the clipping at the output on the oscilloscope. At what output voltages (maximum and minimum) does the clipping occur? [It may be necessary to short the Glar resistor to observe clipping.]
- (5) Calculate the theoretical values of A_v, R_{in}, R_{out}, and clipping levels, and compare with your experimental results.

III. COMMON EMITTER AMPLIFIER

(1) Repeat Steps (3) through (5) from Part II with an emitter bypass capacitor connected across R_E. This capacitor is effectively an AC short at 10 kHz. What effect does this capacitor have on A_V, R_{in}, and R_{out}?

IV. EMITTER FOLLOWER AMPLIFIER

(1) Now disconnect C_E, short-circuit R_C, and repeat Parts (3) through (5), taking the output (through a 10μF coupling capacitor) from the emitter. This configuration is called an *emitter follower or common collector*.

Lab Results: Experiment 3 - THE AMPLIFIER

II. COMMON EMITTER AMPLIFIER WITH DEGENERATION

(1)	Curve trace	r data:	β _F =		$\beta_0 = $	
(2)	$R_{B1} = \underline{\hspace{1cm}}$		R _{B2} =		R _C =	
(3,4,5)		Calculated		Measured		
	$A_v=$	***************************************	_			
	R _{in} =		-			
	R _{out} =		_			
	$V_{out(max)}=$		-			
	V _{out(min)} =		-			
III.	COMMON	EMITTER	AMF	PLIER		
	$A_v=$		-			
	$R_{in}=$		-			
	R _{out} =		-			
	$V_{out(max)}=$		-			
	$V_{out(min)}$ =					
IV.	EMITTER	FOLLOWE	ER AI	MPLIFIER		
	$A_v=$					
	R _{in} =					
	R _{out} =					
	$V_{out(max)}=$					
	$V_{out(min)}=$					