University of California, Davis College of Engineering Department of Electrical and Computer Engineering ## EXPERIMENT No. 3 THE AMPLIFIER ## I. OBJECTIVE In this experiment you will build a transistor amplifier, bias it in the linear region, and measure several properties such as voltage gain, input resistance, and output resistance. ## II. COMMON EMITTER AMPLIFIER WITH DEGENERATION - (1) Use the transistor curve-tracer to measure the A.C. and D.C. current gains β_0 and β_F of an NPN transistor at an operating point of $I_c = 4mA$ and $V_{CE} = 4V$. Since these parameters fall off at both high and low collector currents, it is important to measure their value at the actual operating point. - (2) The amplifier circuit is shown in Figure 1. Use the value of β_F obtained in Part (1) to compute values for R_{B1} , R_{B2} , and R_C such that the operating point for the transistor is $I_C = 4\text{mA}$ and $V_{CE} = 4\text{V}$. With $R_{B1} || R_{B2} = \beta_F R_E / 10$, the operating point will be relatively insensitive to variations in β_F . Why is this so? Figure 1. - (3) Measure the voltage gain A_v , input resistance R_{in} , and output resistance R_{out} as follow (with open circuit at point E for the CE stage): - a) A_v measure the amplitudes of voltage at points B and C $$A_{v} = \frac{v_{c}}{v_{b}}$$ - b) R_{out} measure amplitude at point C. Connect a variable resistor to point D and adjust the resistance until the amplitude at C is reduced by 1/2. The value of the variable resistor is equal to the output resistance. Why does this procedure measure output resistance? - c) R_{in} measure amplitude at B, then connect the variable resistor at point A and use the same procedure as for R_{out} . You can find R_{in} from this measurement. - (4) Observe the clipping at the output on the oscilloscope. At what output voltages (maximum and minimum) does the clipping occur? [It may be necessary to short the Glar resistor to observe clipping.] - (5) Calculate the theoretical values of A_v, R_{in}, R_{out}, and clipping levels, and compare with your experimental results. #### III. COMMON EMITTER AMPLIFIER (1) Repeat Steps (3) through (5) from Part II with an emitter bypass capacitor connected across R_E. This capacitor is effectively an AC short at 10 kHz. What effect does this capacitor have on A_V, R_{in}, and R_{out}? ### IV. EMITTER FOLLOWER AMPLIFIER (1) Now disconnect C_E, short-circuit R_C, and repeat Parts (3) through (5), taking the output (through a 10μF coupling capacitor) from the emitter. This configuration is called an *emitter follower or common collector*. ## Lab Results: Experiment 3 - THE AMPLIFIER # II. COMMON EMITTER AMPLIFIER WITH DEGENERATION | (1) | Curve trace | r data: | β _F = | | $\beta_0 = $ | | |---------|-------------------------------------|---|-------------------|----------|------------------|--| | (2) | $R_{B1} = \underline{\hspace{1cm}}$ | | R _{B2} = | | R _C = | | | (3,4,5) | | Calculated | | Measured | | | | | $A_v=$ | *************************************** | _ | | | | | | R _{in} = | | - | | | | | | R _{out} = | | _ | | | | | | $V_{out(max)}=$ | | - | | | | | | V _{out(min)} = | | - | | | | | III. | COMMON | EMITTER | AMF | PLIER | | | | | $A_v=$ | | - | | | | | | $R_{in}=$ | | - | | | | | | R _{out} = | | - | | | | | | $V_{out(max)}=$ | | - | | | | | | $V_{out(min)}$ = | | | | | | | IV. | EMITTER | FOLLOWE | ER AI | MPLIFIER | | | | | $A_v=$ | | | | | | | | R _{in} = | | | | | | | | R _{out} = | | | | | | | | $V_{out(max)}=$ | | | | | | | | $V_{out(min)}=$ | | | | | |