For the circuit below, what are the opamp output voltages, V_{01} and V_{02} ? (note: the voltage sources are generating DC voltages.) Assume the op amp is ideal.

$$\frac{4-0}{R} + \frac{2-0}{R} = \frac{0-V_{01}}{R}$$

$$\frac{V_{0,-1}}{R} = I_{4} = I_{5} = \frac{1 - V_{02}}{R}$$

2. What is the s-domain transfer function $H(s) = V_O/V_{ln}$ for the circuit below? Assume the op amps are ideal. (Your answer should be in the form N(s)/D(s), where N(s) and D(s) are polynomials in s.)

$$H(s) =$$

3. The circuit below uses an opamp that is NOT ideal. Assume that the op amp has a finite gain-bandwidth product (or unity-gain frequency) but is otherwise ideal. The opamp has a gain-bandwidth product of 100 MHz.

In the feedback circuit shown below, what value of R2 will give a circuit with a bandwidth of 1 MHz?

R2 = ____

gain ×
$$bw = 100 \text{ mHz}$$

 $\Rightarrow gain \times 1 \text{ mHz} = 100 \text{ mHz}$
 $\Rightarrow gain = 100$
 $\Rightarrow gain = 1 + \frac{R2}{1 \text{ kg}} = 100$
 $\Rightarrow R2 = 99 \text{ kg}$

4. a) Convert the decimal number 29 (or 29₁₀) to a 6-bit 2's complement binary number.

b) Convert the 2's complement binary number 01110.01 to a base 10 number.

Base 10 number = ____

$$3 + 2^{2} + 2' + 2^{-2}$$

$$8 + 4 + 2 + 4$$

$$14.25$$

c) Convert the decimal number -37 (or -37_{10}) to a 2's complement binary number with 7 bits.

Binary number = _____

,		 }		
) oce 10	+ 2	Quot	Remaind.	•
37	37/2	18	1	
18	1812	9	0	
9	9/2	4	1	
ý	4/2	2	6	
2	212	1	0	
1	1/2	0	1	
F				

-37 6 2's comp of 0100101

$$1'5 cmp = 1011010$$
 $= -37_{10}$

5. a) What is the sum of the 2's complement binary numbers i=01001 and k=11101? Give the sum in binary form (base 2).

b) Compute the difference (n-m) of the 2's-complement binary numbers n=00111 and m=01001

 6. What is the standard Sum of Products (that is, a sum of minterms) expression for the logic function described by the truth table below?

F=_____

				٨	9		1
Α	В	F	minterm	where	row	ras	F=]
0	0	1	TB				
0	1	0	and the second s				
1	0	1	AB				
1	11	1	AB				

7. For the logic circuits below, fill in the values for the output F in the truth table.

a)

Α	В	F
0	0	0
0	1	
1	0	0
1	1	

A B A B

B+C

A B C F AB
0 0 0 0 0 1

8. Draw a circuit consisting of AND, OR and INVERT logic gates that implements the function below. The inputs to the circuit are A, B and C.

$$F = \overline{AB} + AC$$

