

MT 1 Soln E100 F 15

1. a) A filter has a transfer function $H_1(j\omega) = \frac{-j2\omega}{(2+j\omega)}$. What is the phase of this transfer function [or the angle(H_1)] at $\omega = 2$ rad/s?

Phase or angle = _____

angle
$$H_1 = \text{ongle } (-j 2 \times 2) - \text{ongle } (2+j2)$$

$$= -90^{\circ} - \tan^{-1} \frac{2}{2} = -90^{\circ} - 45^{\circ}$$

$$= -135^{\circ}$$

b) At what frequency ω does the amplitude (or magnitude) of H₁ equal -6 dB?

$$-6 dB = 201 - 9 |H_1| = 1 |H_1| = \frac{1}{2}$$

$$\frac{1}{2} = \left| \frac{-i_1 2w}{2 + i_2 w} \right| = \frac{1}{2}$$

 $=\frac{2\omega}{\sqrt{2^2+\omega^2}}$ (1) = 4w2

4(4+w2)=1+ = 4w2 = w=0.525

1 (con't):

- c) What type of filter is $H_1(j\omega) = \frac{-j2\omega}{(2+j\omega)}$? Check one box:
 - ☐ a low-pass filter.
 - a high-pass filter.
 - \square a bandpass filter.
 - □ none of the above.

2) What are the magnitude and phase of the complex number -1 + j4?

a) magnitude or amplitude = _____

(**not** in dB)

 $|-1+j4| = \sqrt{1^2+4^2} = \sqrt{17} = 4.1$

 $\phi = \tan^{-1} \frac{1}{7} = 76^{\circ}$ $0 = 180^{\circ} - 76^{\circ} = 104^{\circ}$

3: For the signal
$$v(t) = (0.8 \text{ V})\cos(1000t)$$
:

a) What is the peak-to-peak voltage of this waveform?

$$rms = \frac{0.8V}{\sqrt{2}} = 0.566V$$

4. Find the transfer function $\mathbf{H}(j\omega) = \mathbf{V}_O(j\omega)/\mathbf{V}_{in}(j\omega)$ for the circuit below. (The answer should be in the form of a ratio of two complex expressions like 'a + jb', where a and/or b may be a function of ω .)

$$H(j\omega) = \frac{R_1 = 2i}{\sqrt{2}}$$

$$V_{in} = \frac{Z_2}{Z_1 + Z_2}$$

$$= \frac{R_2 + \int_{j\omega} C}{\sqrt{2}}$$

$$= \frac{R_2 + \int_{j\omega} C}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}}$$

$$= \frac{1}{\sqrt{2}$$

5. A function generator in our lab has generated a voltage signal v(t). That signal is shown below, as it appears on an oscilloscope in our lab. This voltage can be expressed in the form:

$$v(t) = A + Bsin(2\pi ft)$$

What are A, B and f?

NOTE: Scope settings are: 1 V / division on the vertical scale and 0.5 ms / division on the horizontal scale. Ground = 0 V is marked on the left.

6. a) Draw the approximate Bode magnitude (or amplitude) plot [|H| in dB vs. ω on a log scale] for the transfer function $H(s) = \frac{s + i N}{s}$. (Set s = j ω .) (A Bode plot using only straight-line segments is acceptable here.)

$$|f(jw)| = \frac{10(1+jw)}{jw}$$

$$\Rightarrow 20\log|f| = 20\log|0| + 20\log|1+jw|$$

$$-20\log|w|$$
3

b) Draw the approximate Bode phase (or angle) plot [angle(H) vs. ω on a log scale] for the transfer function $H(s) = \frac{s+10}{s}$. (Set $s = j\omega$.) (A Bode plot using only straight-line segments is acceptable here.)

angle H = angle 1:0 + angle (1+j=) - angle (jw)
= 0° + fan 170 - 90°

A
B)

gnore

- 7. In the circuits below, assume the op amp is ideal.
 - a) For the circuit below, what is V_0 / V_0 ? [Write an expression that is a function of L, R and ω .]

b) For the circuit below, what is the output voltage, Vo? (The current source and voltage source are DC sources.)

Vo =

