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ABSTRACT 
Malware detection at the hardware level has emerged recently as a 
promising solution to improve the security of computing systems. 
Hardware-based malware detectors take advantage of Machine 
Learning (ML) classifiers to detect paern of malicious applications at 
run-time. ese ML classifiers are trained using low-level features such 
as processor Hardware Performance Counters (HPCs) data which are 
captured at run-time to appropriately represent the application 
behaviour. Recent studies show the potential of standard ML-based 
classifiers for detecting malware using analysis of large number of 
microarchitectural events, more than the very limited number of HPC 
registers available in today’s microprocessors which varies from 2 to 
8. is results in executing the application more than once to collect
the required data, which in turn makes the solution less practical for 
effective run-time malware detection. Our results show a clear trade-
off between the performance of standard ML classifiers and the number 
and diversity of HPCs available in modern microprocessors. is paper 
proposes a machine learning-based solution to break this trade-off to 
realize effective run-time detection of malware. We propose ensemble 
learning techniques to improve the performance of the hardware-
based malware detectors despite using a very small number of 
microarchitectural events that are captured at run-time by existing 
HPCs, eliminating the need to run an application several times. For this 
purpose, eight robust machine learning models and two well-known 
ensemble learning classifiers applied on all studied ML models (sixteen 
in total) are implemented for malware detection and precisely 
compared and characterized in terms of detection accuracy, 
robustness, performance (accuracy×robustness), and hardware 
overheads. e experimental results show that the proposed ensemble 
learning-based malware detection with just 2 HPCs using ensemble 
technique outperforms standard classifiers with 8 HPCs by up to 17%. 
In addition, it can match the robustness and performance of standard 
ML-based detectors with 16 HPCs while using only 4 HPCs allowing 
effective run-time detection of malware.   
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1. INTRODUCTION
Malware is a piece of code designed to perform various malicious 
activities, such as destroying the data, stealing information, running 
destructive or intrusive programs on devices to perform Denial-of-

Service (DoS) aack, and gaining root access without the consent of 
user. According to a 2017 McAfee threats report [12], 57.6 million new 
malware samples have been recorded in the third quarter of 2017, an 
all-time highest number with an increase of 10% from the second 
quarter. Furthermore, the overall counts of new malware samples grew 
by 27% in 2017 to 781 million samples. e recent proliferation of 
computing devices in mobile and Internet-of-ings domains further 
exacerbates the malware aacks and calls for effective malware 
detection techniques. 

Malware detection can be simplified as a binary classification 
problem regardless of what detection method is being used. It is 
basically envisioned as distinguishing whether the running application 
has malicious intent or not. Traditional malware detection approaches 
such as signature-based detection and semantics-based anomaly 
detections are considered as soware-based solutions and incur 
significant computational overheads [10]. Recent studies have 
demonstrated that malware behavior can be differentiated from benign 
applications by classifying anomalies in the low-level feature spaces 
such as microarchitectural events collected by Hardware Performance 
Counter (HPC) registers [3,4,5,11,13,15,16,24]. HPCs are CPU hardware 
registers that count hardware events such as instructions executed, 
cache-misses suffered, or branches mispredicted. Performance 
counters data have been extensively used to predict the power, 
performance, and energy efficiency of computing systems [14,20,22], 
and recently drew aentions to be used for detecting the malicious 
paern of running applications to improve the security of systems. 
us, malware detection using HPCs microarchitectural events has 
emerged as a promising alternative to traditional malware detection 
methods [3,4,11,13,24]. As learning the underlying paerns of these 
microarchitectural events can aid in detecting malware, machine 
learning (ML) techniques are widely deployed for malware detection. 
e HPC microarchitectural features are used to train ML-based 
classifiers. In addition, such ML-based malware detection methods can 
be implemented in microprocessor hardware with significantly low 
overhead as compared to the soware-based methods, as detection 
inside the hardware is very fast (few clock cycles) [4].  

Recently, there has been a number of work on hardware-based 
malware detection using HPCs information [3,4,11,13,14,24]. However, 
these works performed a limited study on malware classification 
accounting for the availability of a large number (e.g. 16 or 32) and 
diverse type of HPCs. While, modern processors in the high-
performance domain have a small number of HPCs (2 to 8), due to 
several reasons including the design complexity and cost of concurrent 
monitoring of microarchitectural events [17,21,23]. Due to deep 
pipelines, complex prefetchers, branch predictors, modern cache 
design etc., HPCs implementation becomes a great challenge in terms 
of counting multiple events and maintaining counter accuracy at the 
same time under speculative execution [17]. Beer accuracy requires 
beer and more complex hardware design hence increasing the 
number of counters with limited accuracy doesn't appear to be a good 
trade-off. Even modern Intel Xeon architectures houses only 4-6 
performance counters, compare to 2 in Pentium 4 and server class Intel 
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Atom processor, for the very same reason.  For embedded mobile and 
IoT domains, the number of HPCs that can be accessed simultaneously 
is even smaller.  

erefore, collecting a variety of microarchitectural events, more 
than the number of available HPCs, to achieve high accuracy using the 
general ML models presented in prior work, requires running the 
application multiple times, since the hardware can only count a small 
subset of events concurrently. is approach is not practical for run-
time detection of malware. In addition, previous studies, mostly focus 
on specific learning classifiers and limited types of malware [3,11,13]. 
A quantitative comparison of these studies indicates that there is no 
unique classifier that delivers the best results across various metrics 
including performance (accuracy and robustness) and area overhead as 
well as detection delay and various classes of malware.  

As the performance of malware detection depends on the type of 
ML classifier applied and the number and type of HPC events used, in 
this work, we first illustrate the impact of ML classifier type on 
malware detection accuracy and performance and the effect of number 
of HPC events for malware detection. To achieve a high accuracy 
across all studied general ML classifiers, of more than 80%, at least 16 
hardware performance counters are required, which as discussed is not 
available in modern processors, even in the high-performance domain, 
making run-time detection of malware impractical using these 
methods. erefore, a key challenge in making the hardware-based 
malware detection a practical run-time solution is how to use a limited 
number of HPCs available in a microprocessor (for instance 2 or 4) and 
match the accuracy and performance of malware detection with the 
ones that can be achieved by a larger number of HPC events (for 
instance 16 or 32). In this work, we address this challenge by proposing 
ensemble learning techniques to improve the accuracy and 
performance of the hardware-based malware detectors and break the 
trade-off between accuracy/performance with respect to the number of 
HPCs. We explore the effectiveness of ensemble learning models in 1) 
reducing the number of required performance counters for 
implementing effective ML classifiers for run-time malware detection 
and 2) improving the performance of weak but low-cost classifiers in 
malware detection with a small number of HPCs.  

e remainder of this paper is organized as follows. e 
background of ensemble learning is briefly described in section 2. e 
proposed hardware-based malware detection framework and 
experimental setup details are discussed in Section 3. Section 4 
presents the experimental results and provides a comprehensive 
analysis of different malware detectors across various metrics. en, 
we present the state-of-the-art works on HMD in section 5.  Finally, 
Section 6 presents the conclusion of this study.  

2. ENSEMBLE LEARNING  
Ensemble learning is a branch of machine learning which is used to 
improve the accuracy and performance of general ML classifiers by 

generating a set of base learners and combining their outputs for final 
decision. It fully exploits complementary information of different 
classifiers to improve the decision accuracy and performance. e 
ensemble learning, and joint decision procedure are widely used to 
devise learning methods to achieve more accurate predictions and 
stronger generalization performance. In this work, we deploy and 
analyze the effectiveness of two ensemble learning methods for 
efficient malware detection even with less number of HPCs. ese 
ensemble methods are briefly described in below:  

Boosting is one of the most commonly used ensemble learning 
methods for enhancing the performance of ML algorithms. Adaptive 
Boosting, or in short AdaBoost [18], is the first proposed 
implementation of this type of ensemble learners. Figure 1-a illustrates 
the AdaBoost methodology. As shown, each base classifier is trained 
on a weighted form of the training dataset in which the weights depend 
on the performance of the previous base ML classifier. Once all the 
base classifiers are trained, they will be combined to produce the final 
classifier. Each training instance in the dataset is weighted and the 
weights are updated based on the overall accuracy of the model and 
whether an instance was classified correctly or not. Subsequent models 
are trained and added until a minimum accuracy is achieved or no 
further improvement is possible. In this work, we applied AdaBoost as 
a boosting learning technique on all studied general ML classifiers to 
analyze its impact on the accuracy and performance improvement of 
hardware-based malware detection.  

Bagging, or Bootstrap Aggregation [19] is an ensemble learning model 
that is used for classification and regression problems. It is a statistical 
prediction technique where a statistical value like a mean is estimated 
from multiple random samples of training data which are drawn with 
replacement and used to train different ML models. Each model is then 
exploited to make a prediction and the results are averaged to give a 
more robust and generalized prediction. Figure 1-b illustrates the 
overview of bagging model. Bagging is a technique that is best used 
with models with low bias and high variance, in which the predictions 
of base learners are highly dependent on the data from which they 
were trained. erefore, it is most suited for our purpose, given the 
wide variation in ML classifier performance as we will show later in 
this work. e most used algorithm for bagging that fits the 
requirement of high variance are decision trees [19].  

 
Figure 2: e overview of proposed hardware-based malware detection approach 
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Figure 1: Ensemble learning block diagrams a) AdaBoost, b) Bagging  
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3. MALWARE DETECTION FRAMEWORK 
In this section, we present the details of our proposed run-time 
hardware-based malware detection approach.  

3.1 Experimental Setup and Data Collection 
is section provides the details of the experimental setup and data 
collection procedure. We run all applications on an Intel Xeon X5550 
machine running Ubuntu 14.04 with Linux 4.4 Kernel and collect 
various HPCs data. is processor is based on Intel’s Nehalem design, 
providing four performance counter registers. In order to extract the 
HPC information, we use Perf tool available under Linux. Perf provides 
rich generalized abstractions over hardware specific capabilities. It 
exploits perf_event_open function call in the background which can 
measure multiple events simultaneously. We have executed more than 
100 benign and malware applications for HPC data collection. Benign 
applications include MiBench benchmark suite [6], Linux system 
programs, browsers, text editors, and word processor. For malware 
applications, Linux malware is collected from virustotal.com [1]. 
Malware applications include Linux ELFs, python scripts, perl scripts, 
and bash scripts, which are created to perform malicious activities. 
Aer collecting microarchitectural events using Perf, we use WEKA 
tool [7] for evaluating the accuracy and performance of various 
machine learning classifiers.  

Figure 2 depicts the overview of the proposed hardware-based 
malware detection approach and training the ML classifiers for 
predicting the malicious behavior of applications. It is primarily 
composed of various stages including feature extraction, feature 
reduction, and ML classifiers (general and ensemble) implementation 
for malware detection which will be discussed in more details in 
sections 3.2 and 3.3. HPC information is collected by executing all 
applications in Linux Containers (LXC) which is an isolated 
environment [8]. LXC is an operating system level virtualization 
method that shares the same kernel with the host operating system. In 
this work, LXC is chosen over other commonly available virtual 
platforms such as VMWare or VirtualBox since it provides access to 
actual performance counters data instead of emulating HPCs. We 
extracted 44 CPU events available under Perf tool. Since Intel Xeon has 
only 4 counter registers available [9], we can only measure 4 events at 
a time. As a result, multiple runs are required to fully capture all events. 
We divide 44 events into 11 batches of 4 events and run each 
application 11 times at sampling time of 10ms to gather all 
microarchitectural events. Running malware inside the container can 
contaminate the environment which may affect subsequent data 
collection. To ensure that there is no contamination in collected data 
due to the previous run, the container is destroyed aer each run.  

3.2 Feature Selection 
As mentioned earlier, detecting malware using machine learning 
models requires representing programs at low microarchitectural level. 
is process produces very high dimensional dataset. Running ML 
algorithms with large HPCs would be complex and slow. Besides, 
incorporating irrelevant features would result in lower accuracy for 
the classifier [24]. erefore, instead of accounting for all captured 

features, irrelevant data is identified and removed using a feature 
reduction algorithm and a subset of HPCs is selected that includes the 
most important features for classification. e features are supplied to 
each learning algorithm and the learning algorithm aempts to find a 
correlation between the feature values and the application behavior to 
predict the malware or benign type.  

As discussed, the key aspect of building an accurate detector is 
finding the right features to characterize the input data. We started 
from 44 performance counters. As shown in Figure 2, aer feature 
extraction, the feature reduction process reduces the number of low-
level features. We first use Correlation Aribute Evaluation on our 
training set under WEKA to monitor the most vital microarchitectural 
parameters to capture application characteristics. Next, the features 
are scored based on their importance and relevance to the target 
variable through the feature scoring process. By applying the feature 
reduction method, the sixteen most related hardware performance 
counters are determined and numbered in order of importance for 
malware detection. ese HPCs are listed in Table 1. ey are included 
in our prediction model as input parameters. e selected features 
include HPCs representing pipeline front-end, pipeline back-end, 
cache subsystem, and main memory behaviors influential in the 
performance of standard applications.  

3.3 Training & Testing the Malware Detectors   
In this section, we describe the details of training and testing the ML 
classifiers for malware detection. Training involves profiling the 
incoming application with Perf tool under Linux and extracting low-
level feature values for each training program, reducing the extracted 
features to the most vital performance counters, and developing a 
learning model from the training data. It is important to note that the 
input variables in our classifiers are the HPCs extracted every 10ms 
interval from the running applications, and the output variable is the 
class (malware vs. benign) of an application. For each ML classifier, we 
construct the general and ensemble models (AdaBoost and Bagging) to 
detect the malware. In order to validate each of the utilized ML 
classifiers, a standard 70%-30% dataset split for training and testing is 
followed. To ensure a non-biased spliing, 70% benign- 70% malware 
application for training (known applications) and 30% benign-30% 
malware applications for testing (unknown applications) are used.  

4. EXPERIMENTAL RESULTS 
In this section, we present the evaluation results for different machine 
learning classifiers. We thoroughly compare these learning techniques 

 
Figure 3: Accuracy results for various ML classifiers with varying number of HPCs 

 

Table 1: Hardware performance counters in order of importance 

Hardware Performance Counters 
1- branch_instructions 2- branch_loads 3- iTLB_load_misses 
4- dTLB_load_misses 5- dTLB_store_misses 6- L1_dcache_stores 

7- cache_misses  8- node_loads  9- dTLB_stores  
10- iTLB_loads 11-L1_icache_load_misses 12- branch_load_misses 
13- branch_misses 14- LLC_store_misses 15- node_stores 

16-L1_dcache_load-misses 

Ac
cu

ra
cy

 (%
) 

MLP 



in terms of the prediction accuracy, robustness, performance, and the 
hardware implementation costs.  

4.1 Detection Accuracy  
To evaluate the detection accuracy of our malware classifiers, we 
calculate the percentage value of samples that are correctly classified. 
Figure 3 shows a comprehensive accuracy comparison of various ML 
classifiers (general and ensemble) used for malware detection. We have 
implemented 8 general ML classifiers and two ensemble learning 
techniques and calculated their accuracy in classifying malware and 
benign applications. e accuracy of malware detection with different 
number of hardware performance counters (16, 8, 4 and 2) are reported. 
Before feature reduction (16 HPCs), most ML classifiers perform well, 
mostly providing above 80% accuracy. Feature reduction has noticeable 
impact on the accuracy of several classifiers. However, OneR classifiers 
perform well even aer feature reduction.  e reason that OneR 
classifier is not affected by feature reduction and shows almost 
constant accuracy results is that it only selects one performance 
counter (branch_instructions) to predict the malware behavior.  

As can be seen in Figure 3, in some classifiers like BayesNet, JRip, 
OneR, REPTree, and SMO by reducing the number of hardware 
performance counters to 2 or 4 and applying ensemble learning 
techniques, a higher or similar accuracy level to 8/16 HPC models is 
achieved. is interesting observation confirms the effectiveness of 
using ensemble learning to boost the accuracy of classifiers. For 
instance, as shown, REPTree achieves close to 88% accuracy with 16 
HPCs. However, we observe that reducing the number of vital 
performance counters to 2 and applying AdaBoost ensemble technique 
result in achieving almost the same 88% accuracy, as with 16 HPCs.  

4.2 Classification Robustness  
To evaluate the accuracy and robustness of ML classifiers in detecting 
malware, Receiver Operating Characteristics (ROC) graphs are used. 
e ROC curve is produced by ploing the fraction of true positives 
versus the fraction of false positives for a binary classifier as the 
threshold changes. e best possible classifier would thus yield a point 
in the upper le corner or coordinate (0,1) of the ROC space, 
representing 0% false positives and 100% true positives.  

We use the Area Under the Curve (AUC) measure for ROC curve 
in the evaluation process to examine the robustness of each ML 
classifier. e area under the ROC curve corresponds to the probability 
of correctly identifying which application is “malware” and which is 
“benign”. In other words, the AUC measure is more related to the 
robustness of the classifier. In this work, robustness term is referred to 
how well the classifier distinguishes between binary malware and 
benign classes, for all possible threshold values. e AUC value of the 
best possible classifier is equal to 1, which means that we can find a 
discrimination threshold under which the classifier obtains 0% false 
positives and 100% true positives. Table 2 presents the list of the area 
under the ROC graphs values for each ML general and ensemble 
classifier with varying number of HPCs. It primarily presents the 
values for the ROC curves resulted from all comparisons between the 

general and ensemble-based detectors. A higher AUC value means that 
the ROC graph is closer to the optimal threshold and the classifier is 
performing beer in terms of classification of malware and benign 
applications. Area under the curve analysis provides valuable insights 
to select possibly optimal ML classifiers suitable for malware detection 
and to discard the suboptimal detectors.  

Figure 4 depicts the ROC curves for two different ensemble 
learning models and different number of performance counters. Due to 
space limitation, here we present the ROC graphs for selected ML 
classifiers and show the impact of ensemble learning techniques on 
AUC robustness. In Figure 4-a, the ROC graphs for 4 ML classifiers 
improved by Bagging ensemble learner are shown which were 
developed with 4 performance counters. As can be seen in this figure 
as well as Table 2, the BayesNet and JRip classifiers have maximum 
AUC of 0.937 and 0.932, respectively, delivering best robustness with 
only 4 performance counters. Figure 4-b represents the AdaBoost 
technique effectiveness on two different detectors when reducing the 
number of HPCs from 8 to 2. As shown, for each classifier boosting 
model significantly improve the AUC of ROC curve making the ML 
classifier more effective in terms of classification robustness.  

4.3 Performance of Malware Detection  
In order to evaluate and compare the performance of malware 
detectors, we consider the product of accuracy and area under the ROC 
graph (ACC*AUC) as a performance metric. is metric combines the 
impact of accuracy and robustness in malware classification and 
concurrently accounts for both measures. We accounted for 
performance as a final comparison metric across various ML classifiers 
since it is a more comprehensive measure by considering both impacts 
of the detection accuracy and AUC values. Figure 5 illustrates the 
ACC*AUC results of various ML classifiers under a varying number of 
hardware performance counters.   

As can be seen in the results, most of the classifiers such as JRip, 
J48, Multi-Layer Perceptron (MLP), and SMO deliver higher 
performance when they are supplied with 16 and 8 performance 
counters and by decreasing the number of performance counters, the 
performance of general ML classifiers decreases showing the potential 
for applying ensemble learning techniques to boost the accuracy and 
performance with fewer performance counters. For instance, in SMO 
classifier by reducing the number of performance counters to 4 and 2 
and applying AdaBoost ensemble technique, we achieve 16% and 17% 
performance improvement, respectively. In REPtree classifier, 2HPC-

Table 2: AUC values for various general and ensemble detectors 

Classifier 16HPC 8HPC 4HPC 
4HPC-
Boosted 

4HPC-
Bagging 

2HPC 
2HPC-
Boosted 

2HPC-
Bagging 

BayesNet 0.92 0.92 0.92 0.92 0.94 0.92 0.87 0.93 
J48 0.88 0.88 0.81 0.94 0.85 0.81 0.92 0.82 
Jrip 0.86 0.86 0.81 0.88 0.93 0.81 0.93 0.88 
MLP 0.9 0.9 0.89 0.92 0.86 0.9 0.93 0.87 
OneR 0.81 0.81 0.81 0.9 0.87 0.81 0.9 0.87 
REPTree 0.85 0.85 0.81 0.85 0.88 0.81 0.92 0.91 
SGD 0.74 0.74 0.72 0.89 0.74 0.71 0.71 0.71 
SMO 0.65 0.65 0.65 0.88 0.85 0.68 0.89 0.83 

 

 

 

 
Figure 4: ROC graphs for a) 4HPC-Bagging, b) 8HPC vs. 2HPC-Boosted  
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Boosted detector is achieving 11% improvement in ACC*AUC measure 
as compared to the general ML classifier with 8 performance counters. 
JRip classifier achieves 10% performance improvement by applying 
boosting method and 7% improvement with Bagging technique with 
the use of only 4 performance counters compared to using 8 HPCs.  

e results clearly confirm the effectiveness of using ensemble 
techniques for performance improvement of ML classifiers with a 
lower number of HPCs for malware detection. e key point here is 
that rather than extracting 16 or 8 hardware performance counter 
which definitely impose significant implementation cost overhead to 
the systems in terms of resource utilization and power consumption, it 
is more effective to alternatively collect lower number of HPCs (four 
or two), depending on the classifier type, and boost the performance of 
the ML classifier with one of the ensemble learning approaches to 
improve the accuracy as well as the robustness of malware detectors.  

4.4 Hardware Implementation  
e soware implementation of ML classifiers for malware detection 
is slow in the range of tens of milliseconds which is an order of 
magnitude higher than the latency needed to capture the malware at 
run-time [4]. erefore, in this paper, we develop a hardware 
implementation of the general and ensemble learning detectors. We 
use Vivado HLS compiler to develop the HDL implementation of the 
classifiers and deploy on Xilinx Virtex 7 FPGA. FPGA is a target in our 
study, as few modern microprocessors have on-chip FPGAs available 
for programmable logic implementation. Such arrangement makes it 
feasible to implement reprogrammable low-level malware detection 
logic (ML model) which can detect malware by reading the CPU 
hardware performance counters through shared memory bus. When it 
comes to choosing the ML classifiers for hardware implementation, the 
accuracy of an algorithm is not the only parameter in decision-making. 
Design area and response time (latency) overhead of ML classifiers also 
plays a key role in selecting the cost-efficient hardware solution.  
While complex algorithms such as Neural Networks can deliver high 
accuracy, they will also add significant overhead in terms of hardware 
implementation cost. Also given their complexity, they can be slow in 
detecting malware.  

In order to compare hardware implementation costs, in Table 3, we 
report the results for general classifiers using 8 HPCs and boosting 

ensemble method (AdaBoost) applied on each classifier using 4 and 2 
most important HPCs. Latency unit is represented in terms of the 
number of clock cycles (cycles @10 ns) required to classify input 
vector. In order to compare the area overhead of the implemented 
hardware-based ML classifiers, we consider the OpenSPARC (FPGA) 
implementation as reference and calculate the area overhead relative 
the core size. e area is the total number of utilized LUTs, FFs, and 
DSP units inside Virtex 7 FPGA. As can be seen from Table 3, the Multi-
Layer Perceptron algorithm, as expected, results in a significant area 
and latency overhead, as compared to other learning methods.  

e ensemble learning introduces area overhead for some 
classifiers. However, the introduced overhead is less than 3% compared 
to the general ML classifiers using 8 HPCs for malware detection. In 
addition, in some other classifiers we observe that by using ensemble 
learning with a lower number of performance counters, the area 
overhead is significantly reduced, compared to the general classifiers 
using 8 HPCs. For instance, as reported in the previous section, the 
Boosted-MLP with 2 HPCs gains 5% performance improvement, while 
as shown in Table 3, it interestingly shows close to 19% area reduction 
in 2 HPC case and only 0.6% increase in 4 HPCs which is negligible, as 
compared to the general detectors with 8 HPCs. Ensemble learning 
algorithms generate models according to the data sets given and 
configuration of the algorithm. We observe that some algorithms do 
not see reduction in area from 4 HPCs to 2 HPCs. is is because such 
algorithms generate same number and equally complex models due to 
their nature. For instance, JRip-Boosted generates 10 models with 4 
HPCs and 10 models with 2 HPCs, hence it is not guaranteed that the 
area of the 2 HPCs will be less than 4 HPCs. Because JRIP is a rule-
based learning algorithm and the area highly depends on how many 
rules are generated for each model and the 2 HPCs case may have more 
rules per model.  

To the best of our knowledge, there has been no prior work 
available that discusses the area costs for implementing ML classifiers 
as a function of HPCs. It can be argued that the number of HPCs can 
be increased during design time. However, there are several studies 
available such as [17, 21, 23] that discuss and justify the limited number 
of HPCs due to complex microarchitecture of modern microprocessors. 
Because of deeper pipelines, modern complex cache design and etc., 
implementing the hardware performance counter registers becomes a 
challenge issue in terms of counting multiple microarchitectural low-
level features and at the same time maintaining the accuracy, while 
achieving higher accuracy requires beer and more complex hardware 
design. As a result, increasing the number of HPCs with limited 
accuracy doesn't appear to be a good trade-off. Compare to that, 
ensemble learning algorithm such as AdaBoost can be easily 
implemented on the programmable logic present in modern 
heterogeneous microprocessors. Clearly, the results show some trade-
offs between the accuracy, latency, and area overhead. erefore, it is 

 
Figure 5: Performance results (ACC*AUC) for various ML classifiers with varying number of HPCs 
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important to compare classifiers by taking all of these parameters into 
consideration.  

5. RELATED WORK 
In this section, we discuss the latest efforts on hardware-based 
malware detection. e work in [3] was the first study that proposed 
to use hardware performance counters data for malware detection and 
demonstrated the effectiveness of offline machine learning algorithms 
in malware classification. ey showed high detection accuracy results 
for Android malware by applying complex ML algorithms, namely 
Artificial Neural Network (ANN) and K-Nearest Neighbor (KNN). 
Although they have discussed implementing classifiers on hardware, 
they did not present any hardware overhead analysis results. e 
hardware implementation overhead, particularly area and latency are 
important as they decide which ML classifier responds in real-time and 
performs most cost-efficient.  

e researchers in [5] and [15] discussed the feasibility of 
unsupervised learning method on low-level features to detect Return-
oriented programming (ROP) and buffer overflow aacks by finding an 
anomaly in hardware performance counters information. Although 
unsupervised algorithms can be more effective in detecting new 
malware and aacker evolution, they are complex in nature requiring 
more sophisticated analysis, resulting in complex hardware 
implementations. Also, their soware implementation is not an 
effective solution to detect malware at run-time, due to large latency 
to compute the complex algorithms. In a different study in [13], the 
authors used sub-semantic features rather than performance counters 
to detect malware. Moreover, they suggested changes in 
microprocessor pipeline to detect malware in truly real-time nature. 
ey discussed estimated latency and area utilization of Logistic and 
ANN algorithm implementation for their architecture. However, our 
work is different as it does not require any change in the processor 
pipeline. e work in [2] collected hardware performance counters to 
construct support vector machine (SVM) detectors to identify 
malicious programs in real-time. However, they haven’t discussed HW 
implementation and analysis of those classifiers.  

e work in [11] used logistic regression to classify malware into 
different types and trained a specialized classifier for detecting each 
type. In their ensemble learning implementation, they limited their 
experiments on just combining classifiers. In addition, they have 
ignored to account for the impact of reducing the number of HPCs on 
the performance of detectors. Our work is different, as we thoroughly 
study various ML classifiers from different type to investigate the 
effectiveness of each model in malware detection. Moreover, we 
explore the effectiveness of different ensemble learning techniques to 
boost the accuracy and performance of the malware detectors. e 
prior works, mostly focus on a particular learning classifier and limited 
type of malware. A quantitative comparison of these works shows that 
there is no unique classifier that delivers the best results across various 
metrics including performance (accuracy and robustness), area 
overhead as well as detection delay and various type of malware. Given 
that, in this work we thoroughly examined various general and 
ensemble learning techniques in terms of accuracy, robustness, 
performance, and hardware implementation costs such as area and 
latency.  

6. CONCLUSION 
Hardware-based detectors rely on machine learning classifiers and use 
HPCs information at run-time. A comparison of recent works on ML-
based malware detectors shows that there is no unique general 
classifier that delivers the best results in terms of performance 
(accuracy and robustness), area overhead as well as detection delay 
across various types of malwares. In addition, prior studies mostly 
relied on a large number of HPCs to gain high accuracy making them 

less practical for run-time detection using very limited number of 
HPCs available in modern processors. In this paper, we showed a clear 
trade-off between the type and count of HPCs and malware classifier 
performance. To achieve a high accuracy and performance of more 
than 80% across all studied general ML classifiers, at least 16 HPCs are 
required, far beyond 2-8 HPCs available in modern architectures. In 
response to this challenge, this paper proposed using ensemble 
learning classifiers to boost the performance of general ML classifiers 
such that by only using 2-4 HPCs they can match the performance of 
8-16 HPCs. e proposed ensemble classifiers are applied on 8 general 
ML classifiers and the results are comprehensively evaluated in terms 
of accuracy, robustness, performance, and hardware design overhead. 
e experimental results show that in all studied cases, boosting 
techniques improves the performance of malware detection 
classification by up to 17% while using a significantly lower number of 
performance counters.  Given the implementation cost of on-chip 
HPCs and their limited availability and accuracy, the results of this 
research will help in making an architectural decision on the number 
and types of HPCs needed to implement in future architectures, to 
most effectively improve the performance of ML classifiers for 
detecting the malicious soware. 
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