
Knowledge and Information Systems (2021) 63:1305–1337
https://doi.org/10.1007/s10115-021-01553-9

REGULAR PAPER

Deep graph transformation for attributed, directed, and
signed networks

Xiaojie Guo1 · Liang Zhao2 · Houman Homayoun3 ·
Sai Manoj Pudukotai Dinakarrao4

Received: 29 January 2020 / Revised: 18 February 2021 / Accepted: 23 February 2021 /
Published online: 3 April 2021
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Generalized from image and language translation, the goal of graph translation or transfor-
mation is to generate a graph of the target domain on the condition of an input graph of the
source domain. Existing works are limited to either merely generating the node attributes
of graphs with fixed topology or only generating the graph topology without allowing the
node attributes to change. They are prevented from simultaneously generating both node and
edge attributes due to: (1) difficulty in modeling the iterative, interactive, and asynchronous
process of both node and edge translation and (2) difficulty in learning and preserving the
inherent consistency between the nodes and edges in generated graphs. A general, end-to-end
framework for jointly generating node and edge attributes is needed for real-world problems.
In this paper, this generic problem of multi-attributed graph translation is named and a novel
framework coherently accommodating both node and edge translations is proposed. The pro-
posed generic edge translation path is also proven to be a generalization of existing topology
translation models. Then, in order to discover and preserve the consistency of the generated
nodes and edges, a spectral graph regularization based on our nonparametric graph Lapla-
cian is designed. In addition, two extensions of the proposed model are developed for signed
and directed graph translation. Lastly, comprehensive experiments on both synthetic and
real-world practical datasets demonstrate the power and efficiency of the proposed method.

Keywords Multi-attributed graphs · Deep graph transformation · Graph Laplacian · Graph
neural network

1 Introduction

Many structured predictions problems are encountered in the process of “translating” input
data (e.g., image or text) into corresponding output data, namely modeling a translation map-
ping from the source domain to the target domain. Taking the problems in image processing
and computer vision as examples, they involve a ”translation” from an input image into the
target output image. Similarly, language translation [60–62] also involves “translation” prob-
lems where sentences (sequences of words) in one language are translated into corresponding
sentences in another language. In recent years, rapidly growing attention has been given to

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10115-021-01553-9&domain=pdf
http://orcid.org/0000-0002-2648-9989

1306 X. Guo et al.

this general translation problem, which is critical yet has been inherently intensely difficult.
The classic data translation problem typically deals with data under a special topology. As
in the examples mentioned above, both grids and sequences are special types of graphs. An
image is a type of grid where each pixel is a node and each node has connections to its eight
spatial neighbors. Texts are typically considered sequences where each word is a node and
an edge exists between two contextual words. However, many real-world problems require
working on data with more adjustable structures than girds and sequences. Thus, more pow-
erful translation techniques are needed to handle more general graph-structured data, and
such techniques have been proposed and widely applied to many applications, e.g., predict-
ing objects’ future state in a system in the physical domain based on the fixed relations (e.g.,
gravitational forces) among objects [4] and forecasting the average traffic speed of traffic
networks [39,64,65]. Though generic graph-structured data is considered in these works, the
topology of the graphs from the input domain and target domain are assumed to be the same.
Thus, they cannot model or predict the change of the graph topology.

To predict the topology change of the graphs during transformation, a few deep-learning-
based graph translation problems have appeared very recently. This problem is important
and promising to the domains where the variety of the graph topology is possible and com-
monplace, such as social networks and cyber-networks. For example, in social networks
where nodes represent people and edges represent their contacts, their contacting graphs
vary dramatically across different circumstances. For instance, when people are organizing
a riot, their contact graph is expected to become denser and have several special “hubs”
(e.g., key players). Therefore, it is of highly beneficial to accurately predict contact graph
in target circumstances regarding situational awareness and resource allocation. There exist
some topology translation models [21,55] that generate the graph topology (i.e., edges) in a
target domain based on that in source domain. However, they focus on predicting the graph
topology without considering the change of the node attributes.

Consequently, existingworks can only generate node attributeswith fixed topology or gen-
erate edge attributes with unchanged node attributes. However, both node and edge attributes
need change and to be generated in many real-world problems. In this paper, we address this
general problemmulti-attributed graph transformation, the goal of which is to learn the map-
ping from the input multi-attributed graph to the target multi-attributed graph via observing
a large amount of observed input-target graph pairs. This novel problem has many important
real-world applications, such as exploring the mapping from biological structural to func-
tional brain network in the domain of neural science [2], network intervention research [50]
in the domain of network security, and circuit simplification where a logical expression is
reduced to a logically equivalent expression with fewer operations [31]. For instance, the
malware confinement1 process of the Internet of Things (IoT) is a typical multi-attributed
graph translation problem as shown in Fig. 1. The initial status of the IoT is regarded as
input, and the goal is to predict the target network, which is ideally the optimal status of the
network with modified connections (i.e., edges) and changed devices (i.e., nodes) state that
help prevent malware propagation and maintain network throughput. Epidemic controlling
is also an example of a multi-attributed graph translation problem. Its goal is to model the
joint change process of the initial disease contact network (i.e., multi-attributed edges) and
the human health stage (i.e., multi-attributed nodes) after particular interventions.

The multi-attributed graph translation problem is highly complicated, and there is no
general framework but only ad hocmethods for a few specific domains. Thesemethods extend

1 A device infected in an IoT network can propagate to other nodes connected to it, leading to contamination
of the whole network, such as in the MiraiBot attack. As such, it is non-trivial to confine the malware to limit
the infection and also equally important to maintain overall network connectivity and performance.

123

Deep graph transformation for attributed, directed, and… 1307

Fig. 1 Given the network at time t (shown in the left graph), malware confinement is conducted to predict the
most optimal status at time t + γ shown in the right, where Devices 2 and 3 are protected by cutting the links
(edges) to the compromised Device 1, while the Device 4 is propagated by malware without cutting link

graph theory into attributed networks transformation [13], such as the graph-based reasoning
on the knowledge graph [24], where the mechanistic models and transformation rules are
intensively hand-crafted based on the pre-knowledge of the semantic or logic relationship of
entities (i.e., nodes) and relations (i.e., edges). The other example is graph morphism, where
the relationship between the input and target graphs is already known in advance [5,14]. They
typically rely on the network generation principles predefined by human heuristics and prior
knowledge, which effectively abstract the high-dimension problems down to a manageable
scale. Such methods usually fit well toward the properties that have been covered by the
predefined principles, but not on those that have not been covered [29]. However, in many
domains, the network properties and transformation principles are largely unknown yet, such
as those for explaining themechanisms of mental diseases in brain networks [1,2] and protein
structure folding [58]. As a result, there is a great need for a generic, efficient end-to-end
framework for general multi-attributed graph translation problems. By observing a large
amount of observed data, such a framework is required to be able to broadly learn translation
mapping, solve human bias, and preserve efficient prediction.

In this paper, we aim to solve the generic problem of multi-attributed graph translation,
which is difficult for the existing methods to handle due to the following challenges: (1) The
node and edge attribute translations are mutually dependent. The translation of edge
attributes should not only rely on edges, but also the node attributes. For instance in Fig. 1, two
links are cut down since their neighboring Device 1 is infected by malware, which illustrates
the interaction between nodes and edges. Similarly, translation of node attributes also needs
to consider edges, e.g., Device 4 is infected due to its link to Device 1. No existing works can
jointly consider and solve all the above affairs. (2) Iterative and asynchronous changes of
node and edge attributes during graph translation. A series of iterative changes in both
edge and node attributes may be included in the multi-attributed graph translation process.
For instance, in Fig. 1, the translation could involve several steps due to the iterative malware
propagation from one device to the others. The connection to a device may be cut (i.e., edge
changes) right after it is infected bymalware (i.e., node attribute change). It is very critical, yet
hard, to learn these orders anddependencies of hownode and edge attributes change during the
translation. (3) Difficulty in discovering and preserving the correct consistency between
node attributes and graph spectra. Even though the generated node and edge attributes are
two different outputs from two translation paths, they should be intensively dependent on each
other instead of being unrelated. For example, in Fig. 1, the reasonwhyDevices 2 and 3 on the
right network are not infected is that they are no longer linked with the compromised Device

123

1308 X. Guo et al.

1. Since the consistent patterns of node and edge attributes are very complicated and domain-
specific, they are difficult to discover and preserve. (4) Difficulty in the transformation of
signed and directed graphs. In real-world applications, many types of graphs should be
considered, such as signed (e.g., brain net correlation network) and directed (e.g., message
network). Signed and directed graphs may incur difficulty in calculating the graph spectrum
and frequencies during transformation process. This is because the graph Laplacian may not
be symmetric and positive semi-definite anymore.

We believe that this paper is the first work that undertakes all the above challenges and
proposes a general framework for the multi-attributed graph translation problem. This paper
develops a Node-Edge Co-evolving Deep Graph Translator (NEC-DGT) with novel architec-
ture and techniques for conjoint node and edge translation. Multi-block deep neural networks
withmutual node and edge translation paths are designed to translate node and edge attributes
jointly. To allow the non-synchronicity of changes in node and edge attributes, a skip con-
nection is applied among different blocks. In addition, a novel spectral graph regularization
is proposed to discover and preserve the consistent patterns of nodes and edges in generated
graphs. Here, the consistent patterns refers to the shared property in both input and target
graphs that the generated node and edge attributes in one graph match each other, namely the
generated graph should be semantically valid. For example, in protein interaction networks,
two proteins may be connected (edge attributes) only when their gene ontology features
(node attributes) are same or correlated. It is important to explore and maintain these kinds
of patterns between nodes and edges in the generated graph. The contributions of this work
are summarized as follows:

– The design of a novel framework for multi-attributed graph translation A multi-
attributed graph translation problem is formulated for the first time, and NEC-DGT is
proposed to solve this problem. The proposed framework is general for various applica-
tions where both node and edge attributes need to be translated.

– The proposal of novel and generic edge translation layers and blocks A novel edge
translation path is proposed to translate the edge attributes from the source domain to the
target domain. Our translation path can handle broad multi-attributed edges and nodes
and is proven to be a generalization of the existing topology translation methods.

– The proposal of a spectral-based regularization that enforces consistency of the
generated nodes and edges A novel nonparametric graph Laplacian regularization and
a graph frequency regularization are proposed, with the aim of learning and preserving
the inherent relationships between the generated nodes and edges.

– The extension of the proposed model to signed graph translation A variant of the
proposed model called sign-NEC-DGT is designed by proposing a novel signed spectral-
based regularization, which is based on a specially designed definition of graph Laplacian
for signed networks.

– The extension of the proposed model to directed graph translation A variant of the
proposed model called di-NEC-DGT is designed by proposing a novel direct spectral-
based regularization, which is based on the approximation of the Perron vector.

– The conducting of comprehensive experiments to validate the effectiveness and effi-
ciency of the proposed model Comprehensive experiments on four synthetic and four
real-world datasets indicate that NEC-DGT is able to generate graphs close to ground-
truth target graphs and considerably surpasses other generative methods.

123

Deep graph transformation for attributed, directed, and… 1309

2 Related works

2.1 Traditional graph transformation

Traditional graph transformation target on handling a specified relationship between the input
and output graphs, including graph morphism, conceptual graph projecting and reasoning,
and graph matching [43,53]. Specifically, graph morphism aims to rewrite the input graph
into its isomorphic graph based on predefined transformation rules [5,14]. For many appli-
cations, one requires more than graphs labeled over a finite alphabet. Hence, attributed graph
transformation methods are proposed to deal with graphs that are attributed with elements of
given data types (e.g. integer, string, boolean) [13,35,47]. They can perform computations
(e.g., add two integers) of attributes and define guards that restrict the applicability of rules
(e.g., apply the rule only if a certain attribute is above some threshold). Conceptual graph
projection and reasoning only handles the conceptual graph which is a knowledge represen-
tation scheme in formalizing semantic networks. These kinds of graphs are also attributed
graphs with two types of nodes: concepts (which represent objects, entities or ideas) and
relation nodes, which represent relations between the concepts [10]. Reasoning based on
the conceptual graphs can be regarded as a translation problem where the output graph is
generated based on some predefined canonical formation rules, such as equivalence, special-
ization, and generalization. Concept projection in ontology is used to find out whether two
ontologies are semantically compatible or similar.

Though the above problem is about translating an input graph into a target graph, these
traditional graph transformation requires the pre-knowledge of the relationship between the
input and target graph (e.g., isomorphism or semantically compatible), based on which a set
of rules and operations (e.g., projection) are hand-crafted. However, in real-world graphs,
the relationship between two graphs can be various and complex and is hard to define and
observe. And the graphs are also not limited to semantic graph or logical graphs. Thus, to
model and learn the relationship between the input and output graphs, we resort to deep
learning methods on graphs via observing from large amounts of data. The most significance
of the proposed deep learning-based graph transformation model is that given any large
amounts of input-target graphs where the relationship and translation rules are unknown, our
proposed data-driven model could automatically learn and model this translation process via
optimizing an objective function.

2.2 Graph neural networks learning

In recent years, there has been a surge in research focusing on graph neural networks (GNN),
which are generally divided into two categories: Graph Recurrent Networks [20,37,51] and
Graph Convolutional Networks [8,12,32,33,42,44,45,59]. Graph Recurrent Networks origi-
nates from the early works of graph neural networks proposed byGori et al. [20] and Scarselli
et al. [51] based on recursive neural networks. Another line of research is to generalize con-
volutional neural networks from grids (e.g., images) to generic graphs. Bruna et al. [7] first
introduced the spectral graph convolutional neural networks, and then it was extended by
Defferrard et al. [12] using fast localized convolutions, which is further approximated for
an efficient architecture for a semi-supervised setting [33]. The above-mentioned methods
all focus on the general problem of graph representation learning, which aims to embed the
graphs into the low-dimension spaces. They provide the fundamental theories and opera-

123

1310 X. Guo et al.

tions for many downstream tasks such as node classification, graph classification, and graph
generation.

2.3 Deep generative models for graph generation

Deep generative models for graph generation aim to learn the distribution of a set of observed
graphs via a deep generative model. At present, two classes of methods in this domain are
proposed: (1) domain-specific models and (2) generic models. Domain-specific models [11,
30,36] typically take sequence inputs (such as SMILES for representing molecules) and
generate other sequences or parse trees from context-free grammars or sub-graphs by utilizing
the collection of valid components, while generic graph generation handles general graphs
that are not restricted to specific applications, which is more relevant to this paper. Most of
the existing GNN-based graph generation for general graphs have been proposed in the last
2years and are based on variational auto-encoder (VAE) [22,48,52] and generative adversarial
nets (GANs) [6], among others [38,63]. Most of these approaches generate nodes and edges
sequentially to form a whole graph, leading to the issues of being sensitive to the generation
order and very time-consuming for large graphs. Differently, graph recurrent neural network
(GraphRNN) [63] builds an autoregressive generative model on these sequences with long
short term memory (LSTM) model and has demonstrated its good scalability. However,
the above-mentioned models all deal with the unconditional graph generation instead of
generating a target graph conditioning on an input graph, as our problem requires in this
paper.

2.4 Graph-structured data translation

The existing graph-structured data translation deal with a similar problem of our method
in this paper. However, they either deal with the node attributes prediction or generate the
graph topology, without considering both. Node attributes prediction aims at predicting the
node attributes given the fixed graph topology [4,18,39,64]. Li et al. [39] propose a diffusion
convolution recurrent neural network (DCRNN) for traffic forecasting which incorporates
both spatial and temporal dependency in the traffic flow. Yu et al. [64] formulated the node
attributes prediction problem of graphs based on the complete convolution structures. Graph
topology translation considers the change of graph topology from one domain distributions
to another. Guo et al. [21] proposed and tackled graph topology translation problem by
proposing a generative model consisting of a graph translator with graph convolution and
deconvolution layers and a new conditional graph discriminator. Sun et al. [55] proposed a
graphRNN-basedmodel which generates a graph’s topology based on another graph. Beyond
the above two separate tasks, our proposed model can jointly predict the node attributes and
topology via modeling the complex interaction between them during the translation process.

3 Problem formulation

This paper focuses on predicting a target multi-attributed graph based on an input multi-
attributed graph by learning the graph translation mapping between them. The following
provides the notations and mathematical problem formulation (Table 1).

Define an input graph asG(V0, E0, E0, F0)where V0 is the set of N nodes, and E0 ⊆ V0×
V0 is the set ofM edges. ei, j ∈ E0 is an edge connecting nodes i ∈ V0 and j ∈ V0. E0 contains

123

Deep graph transformation for attributed, directed, and… 1311

Table 1 Important notations and descriptions

Notations Descriptions

G(V0,E0, E0, F0) Input graph with node set V0, edge set E0, edge attributes tensor E0 and
node attributes matrix F0

G(V ′,E ′, E ′, F ′) Target graph with node set V ′, edge set E ′, edge attributes tensor E ′ and
node attributes matrix F ′

C Contextual information vector

N Number of nodes

M Number of edges

D Dimension of node attributes

K Dimension of edge attributes

c Dimension of contextual information vector

S Number of translation blocks

all pairs of nodes while the existence of ei, j is reflected by its attributes. E0 ∈ R
N×N×K is

the edge attributes tensor, where E0,i, j ∈ R
1×K denotes the edge attributes of edge ei, j and

K is the dimension of edge attributes. F0 ∈ R
N×D refers to the node attribute matrix, where

F0,i ∈ R
1×D is the node attributes of node i and D is the dimension of the node attributes.

Similarly,we define the target graph asG(V ′, E ′, E ′, F ′). Note that the target and input graphs
are different both in their node attributes as well as edge attributes. The node set of the input
and output graph should be the same, namely, V0 = V ′. Therefore, multi-attributed graph
translation is defined as learning a mapping: T : G(V0, E0, E0, F0);C → G(V ′, E ′, E ′, F ′),
where T is a function composition which consists of L sub-functions as T = (fL ◦ fL−1 ◦
. . . f0)(E0, F0,C) = fL(fL−1(. . . f0(E0, F0,C))), indicating that the evolution process of
the graph transformation. Each composition is formalized as: fl : El , Fl ;C → El+1, Fl+1,
where El , Fl are the inputs of the composition fl and El+1, Fl+1 are the outputs. We also
have EL = E ′ and Fl = F ′. C is a contextual information vector, which is optional and can
be any additional environmental information provided to facilitate or constrain the whole
translation process. For example, when considering the transformation of IoT, the attackers
information can be utilized as a contextual information. Node and edge attributes refer to a
vector or matrix that describe each node and edge, including properties and identification. For
the initial input and final outputs in graph transformation problem, node and edge attributes
(i.e., F0, FL , E0, and EL) can have physical meaning. For the immediate input and outputs at
each round during evolution process, the node and edge attributes (i.e., Fl and El , l �= 0, L)
are latent representations.

In the problem of multi-attributed graph transformation, there are several unique inter-
actions need to be considered and modeled for each function composition. At each
step, we have fl(El , Fl ,C) = {ge(El , Fl ,C), g f (El , Fl ,C)}, where ge(·) and g f (·)
are functions that combine the output of the four mapping functions into the final out-
put. Specifically, ge(El , Fl ,C) = ge(Se→e(El),S f →e(Fl),C) and g f (El , Fl ,C) =
g f (S f → f (Fl),Se→ f (El),C), where the functionsSe→e(·),Se→ f (·),S f →e(·), andS f → f (·)
model four types of interactions as shown in Fig. 2. The four types of functions are listed as
below:

(1) Edges-to-edges interaction The edges-to-edges interaction is modeled by function
Se→e : El → El+1, meaning the mapping from the edge attributes in Round l to
the edge attributes in Round l + 1. Specifically, the edge attributes El+1,i, j of an edge
ei, j in Round l + 1 can be influenced by its incident edges’ attributes El,i,k and El,k, j in

123

1312 X. Guo et al.

Fig. 2 Five types of interactions during graph translation in the example of malware confinement. Node
attributes are indications of malware attacks of IoT devices and edges represent the connections between
devices

Round l. For example, in Fig. 2a, if Devices 1 and 3 must be prevented from infection,
then the edges between the compromised Device 1 and Device 2 need to be cut, due to
the paths among them in input domain.

(2) Nodes-to-edges interaction The nodes-to-edges interaction is modeled by function
S f →e : Fl → El+1, meaning the mapping from the edge attributes in Round l to
the edge attributes in Round l + 1. Specifically, the attributes El+1,i, j of edge ei, j in
Round l + 1 can be influenced by its incident nodes’ attributes Fl,i and Fl, j in Round l.
As shown in Fig. 2b, if Device 2 is compromised in input domain, then in target domain,
only its connections to Devices 1 and 3 need to be removed but the connection between
Devices 1 and 3 can be retained because they are not compromised.

(3) Nodes-to-nodes interaction The nodes-to-nodes interaction is modeled by function
S f → f : Fl → Fl+1, meaning the mapping from the node attributes in Round l to
the node attributes in Round l + 1. Specifically, For a given node i , its attribute Fl,i in
Round l input domain may directly influence its attribute Fl+1,i in Round l+1. As shown
in Fig. 2c, Device 3 with effective anti-virus protection (e.g., firewall) may not be easily
compromised in target domain.

(4) Edges-to-nodes interaction The edges-to-nodes interaction is modeled by function
Se→ f : El → Fl+1, meaning the mapping from the edge attributes in Round l to the
node attributes in Round l + 1. Specifically, for a given node i , its related edge attributes
El,i, j in Round l may affect its attributes Fl+1,i in in Round l + 1. As shown in Fig. 2d,
Device 1which hasmore connections with compromised devices in input domain is more
likely to be infected in target domain.

(5) Spectral Graph Property There exist relationships between nodes and edges in one
graph as reflected by the graph spectrum. These relationships are claimed to have some
persistent or consistent patterns across input and target domains, which have also been
verified in many real-world applications such as brain networks [2]. For example, as
shown in Fig. 2e, the devices that are densely connected as a sub-community tend to be
in the same node status, which is a shared pattern for relationships between nodes and
edges in different domains.

123

Deep graph transformation for attributed, directed, and… 1313

Thus, multi-attributed graph translation should define and model all the above-mentioned
functions, including ge(·), g f (·),Se→e(·),Se→ f (·),S f →e(·), andS f → f (·). Traditional graph
transformation methods which pre-define simple relationships between the input and target
graph (e.g., isomorphism or semantically compatible) and simple rules and operations (e.g.,
projection) can only cover a limited patterns of transformation, while many real-world trans-
formation patterns are complex. For example, considering the malware confinement case
where the nodes refer to IoT devices and the edges reflect the communication links between
two devices. The node attributes include the malware-infection status and the properties of
that device (i.e., specification and anti-virus software features). A single IoT device (i.e.,
node) that is compromised has the potential to spread malware infection across the network,
eventually compromising the network or even ceasing the network functionality. In contrast,
in order to avoid malware spreading as well as maintain the performance of the network,
the network connectivity (i.e., graph topology) should be modified through malware con-
finement, thus to change the device status (i.e., node attributes) accordingly. Hence, malware
confinement can be considered as predicting the optimal topology as well as the correspond-
ing node and edge attributes of the target graph, where both malware prevention and device
performance are maximized.

Thus, our goal is to build a end-to-end framework that can automatically learn and fit the
above mentioned functions from massive data by deep neural networks. This is benefited
from universal approximation theory such that when the capacity (e.g., number of neurons)
in modeling the above functions increases, the approximation errors gradually diminishes.
In addition, existing deep learning-based graph transformation also cannot comprehensively
handle the above problem due to: (1) Lack of a generic framework to simultaneously char-
acterize and automatically infer all of the above node-edge interactions during translation
process. (2) Difficulty in automatically discovering and characterizing the inherent spectral
relationship between the nodes and edges in each graph, and ensuring consistent spectral
patterns in graphs across input and target domains. (3) All the above interactions could
be imposed repeatedly, alternately, and asynchronously during the translation process. It is
difficult to discover and characterize such important yet sophisticated process.

4 The proposedmethod: NEC-DGT

In this section, we propose the Node-Edge Co-evolving Deep Graph Translator (NEC-DGT)
to model the multi-attributed graph translation process. First, an introduction of the overall
architecture and the loss functions is given. Then, the elaborations of three modules on edge
translation, node translation, and graph spectral regularization are presented.

4.1 Overall architecture

4.2 Multi-block asynchronous translation architecture

The proposed NEC-DGT learns the distribution of graphs in the target domain conditioning
on the input graphs and contextual information. However, such a translation process from
input graph to the final target graph may experience a series of interactions of different types
among edges and nodes. Also, such a sophisticated process is hidden and needs to be learned
by a sufficiently flexible and powerful model. To address this, we propose the NEC-DGT as
shown in Fig. 3. Specifically, the node and edge attributes of input graphs are inputted into the

123

1314 X. Guo et al.

Fig. 3 Proposed NEC-DGT consists of multiple blocks. Each block has edge and node translation paths which
are co-evolved and combined by a graph regularization during training process

model and the model output the generated target graphs’ node attributes and edge attributes
after several blocks. Each block consists of both node and edge translation paths, where an
immediate attributed graph will be generated and inputted into the next block. Following this,
a sequence of blocks can successfully model the gradual transformation process, as shown
in the dotted frame in Fig. 3. The skip-connection architecture (black dotted lines in Fig. 3)
implemented across different blocks aims to deal with the asynchrony property of different
blocks, which ensures that the final translated results fully utilize various combinations of
blocks’ information. To train the deep neural network to generate the target graph G(E ′, F ′)
conditioning on the input graph G(E0, F0) and contextual information C , we minimize the
loss function as follows:

LT = L(T (G(E0, F0),C),G(E ′, F ′)) (1)

where the nodes set V0 and V ′ as well as edges set E0 and E ′ can be reflected in F0 and F ′,
as well as E0 and E ′.

4.2.1 Node and edge translation paths

To jointly tackle various interactions among nodes and edges, respective translation paths
are proposed for each block. In node translation path (in upper part of detailed structure in
Fig. 3), node attributes are generated considering the ”nodes-to-nodes” and ”edges-to-nodes”
interactions. In edge translation path (in lower part of detailed structure in Fig. 3), edge
attributes are generated following the ”edges-to-edges” and ”node-to-edges” interactions.

4.2.2 Spectral graph regularization

To discover and characterize the inherent relationship between nodes and edges of each graph,
the frequency-domain properties of the graph is learned, based on which the interactions
between node and edge attributes are jointly regularized upon nonparametric graphLaplacian.

123

Deep graph transformation for attributed, directed, and… 1315

Fig. 4 Details of edge translation path for one edge (i.e., e0,3) in a single block

Moreover, to maintain consistent spectral properties throughout the translation process, we
enforce the shared patterns among the generated nodes and edges in different blocks by
regularizing their relevant parameters in the frequency domain. The regularization of the
graphs is formalized as follows:

R(G(E, F)) =
∑S

s=0
Rθ (G(Es, Fs)) + R(θ) (2)

where S refers to the number of blocks, and θ refers to the overall parameters in the spectral
graph regularization. Es and Fs refer to the generated edge attributes tensor andnode attributes
matrix in the sth block. Thus, G(ES, FS) is the generated target graph. Then, the final loss
function can be summarized as follows:

L̃ = L(T (G(E0, F0),C),G(E ′, F ′)) + βR(G(E, F)) (3)

where β is a nonnegative constant which controls the contribution of the spectral graph
regularization in the overall loss function during optimization. The model is trained by mini-
mizing the mean squared error of ES with E ′, and FS with F ′, enforced by the regularization.
Optimization methods (e.g., Stochastic gradient descent (SGD) and Adam) based on back-
propagation technique can be utilized to optimize the whole model.

Subsequently, the details of a single translation block are introduced: edge translation
path in Sect. 4.3, node translation path in Sect. 4.4 and graph spectral-based regularization
in Sect. 4.5.

4.3 Edge translation path

Edge translation path aims to model the nodes-to-edges and edges-to-edges interactions,
where edge attributes in the target domain can be influenced by both nodes and edges in the
input domain. Therefore, we propose to first jointly embed both node and edge information
into influence vectors and then decode it to generate edges attributes. Specifically, the edge
translation path of each block contains two functions, influence-on-edge function which
encodes each pair of edge and node attributes into the influence for generating edges, and
the edge updating function which aggregates all the influences related to each edge into an
integrated influence and decodes this integrated influence to generate each edge’ attributes.
Figure 4 shows the operation of the two functions in a single block by translating the current
input of graph G(Es, Fs) to output graph G(Es+1, Fs+1).

123

1316 X. Guo et al.

4.3.1 Influence-on-edge layers

As shown in Fig. 4, the input graph G(Es, Fs) is first organized in unit of several pairs of
node and edge attributes. For each pair of nodes v and u, we concatenate their edge attributes
Es,u,v and their node attributes: Fs,u and Fs,v as: Bs,u,v = [Fs,u, Es,u,v, Fs,v] (as circled
in black rectangles in Fig. 4). Then, Bs,u,v ∈ R

1×(2D+K) is inputted into the influence-on-
edge function: a constrained MLP (Multilayer Perceptron) φ which is used to calculate the
influence φ(Bs,u,v) ∈ R

1×q from the pair of the nodes u and v. q refers to the dimension of
the final influence on edges. φ for edge translation path is expressed as follows:

φ(X;WE , bE) = HM ,

where Hm = σm(Hm−1 ∗ W (m)
E + b(m)

E),m = 0, . . . , M, H0 = X

s.t. ,W (0)
E,1:D ≡ W (0)

E,(D+K):(2D+K), (4)

where M refers to the number of layers of φ, andW (m)
E and b(m)

E are weights and bias for each
layer in edge translation path. Hm is the output of the mth layer and input of (m + 1)th layer.
σm refers to the activation functions of each layer. For undirected graph, we add a weight
constraint W (0)

E,1:D ≡ W (0)
E,(D+K):(2D+K) to ensure that the influence of Bs,u,v is the same as

the influence of Bs,v,u , which means that the first D rows (related to the attributes of node
u) and the last D rows (related to the attributes of node v) of W (0)

E are shared. The influence
on edges of each pair is computed through the same function with the same weights. Thus,
the NEC-DGT can handle various size of graphs.

4.3.2 Edge updating layers

After calculating the influence of each pair of nodes and edge, the next step is to assign each
pairs’ influences to its related edge to get the integrated influence for each edge (as shown
in

⊕
operation in Fig. 4). This is because each edge is generated depending on both its two

related nodes and its incident edges (like the pairs circled in the orange rectangle and purple
rectangle related to node 0 and node 3, respectively, in Fig. 4). Here, we define the integrated
influence on one edge attribute Es+1,i, j as: ζs+1,i, j ∈ R

1×q , which is computed as follows:

ζs+1,i, j =
∑

k1∈N (i)
φ(Bs,i,k1;WE , bE) +

∑
k2∈N (j)

φ(Bs,k2, j ;WE , bE) (5)

where N (i) refers to the neighbor nodes of node i . Then, the edge attributes Es+1,i, j is
generated by ψ([E0,i, j , ζs+1,i, j ,C]), where E0,i, j refers to the input edge attributes of edge
ei, j .C refers to the contextual information for the translation. The functionψ is implemented
by an MLP.

4.3.3 Relationship with other edge convolution networks

Edge convolution network is themost typicalmethod to handle the edge embedding in graphs,
which was first introduced as BrainNetCNN [32] and later explored in many studies [21,34,
54]. Our edge translation path is a highly flexible and generic mechanism to handle multi-
attributed nodes and edges. Several existing edge convolution layers and their variants can
be considered as special cases of our method, as demonstrated in the following theorem.

123

Deep graph transformation for attributed, directed, and… 1317

Theorem 1 The influence-on-edge function φ in edge translation path of NEC-DGT is a
generalization of conventional edge convolution neural networks (ECNN).

Proof Due to Es,(i, j) ∈ [1, 0], The influence calculated from the effects function in node
translation path of NEC-DGT for block s of node i can be summarized as:

Ī Fs,i =
d∑

j=1

φIF (Es−1,(i, j)[Fs−1,i ; 1; Fs−1, j]) (6)

Then, after the updating function, the node i at stage s can be modeled as: Fs,i =
φUF (F0,i ;C; Ī Fs,i). F0,i denotes the node attributes from the input graphs.

In ECNN, the message information learned for node i is formalized as:

Î Fs,i =
s−1∑

n=0

d∑

j=1

pn,(i, j)F0, jW
s−1
n (7)

where s denotes the pre-defined number of hop information utilized in ECNN. Wn ∈ R
d×F

denotes the weights related to nth hop. and F denotes to the dimension of node effects.
The ps,(i, j) is the s-hop reachable of two nodes calculated by an iteration: ps+1,(i, j) =∑d

k=1 p0,(i,k) ps,(k, j) and p0,(i, j) = E0,(i, j). For ECNN, Fs,i = F0,i . Due to the iterative
nature of n-hop problem,we use Iterative proof to validate that Ī Fs,i = Î Fs,i when the parameters
of NEC-DGT are trained to meet some requirements.

(1) If s = 1, p0,(i, j) = E0,(i, j) and E0,(i, j) ∈ [1, 0].
For ECNN we got:

Î F1,i =
d∑

j=1

E0,(i, j)F0, jW
0
0 (8)

where W 0
0 ∈ R

d×F .
For NEC-DGT, since φEO is implemented by a two-layer MLP. After the first layer, the

output can be written as:

Ī ′F
1,i =

d∑

j=1

E0,(i, j)[F0,i ; 1; F0, j]W1 (9)

=
d∑

j=1

E0,(i, j)(F0,iw11 + w12 + F0, jw13) (10)

where W1 ∈ R
(2d+1)×d and can be divided into w11 ∈ R

d×d , w12 ∈ R
1×d and w13 ∈ R

d×d .
Considering one special situation when w11 and w12 are learnt as 0 after training, we can
get:

Ī Fs,i =
d∑

j=1

E0,(i, j)F0, jw13 (11)

After the second layer of MLP, it can be expressed as:

Ī Fs,i =
d∑

j=1

E0,(i, j)F0, jw13W2 (12)

123

1318 X. Guo et al.

where W2 ∈ R
d×F . Thus, if w13W2 = W 0

0 , it is proved that Ī F1,i = Î F1,i .

(2) Given Ī Fm,i = Î Fm,i is valid (s=m), we need prove Ī Fm+1,i = Î Fm+1,i , namely to prove:

d∑

j=1

φIF (Em,(i, j)[Fm,i ; 1; Fm, j]) =
m∑

n=0

d∑

j=1

pn,(i, j))F0, jW
m
n (13)

For the right of part of equation 13, we can write it as:

right =
m∑

n=1

d∑

j=1

pn,(i, j)F0, jW
m
n +

d∑

j=1

p0,(i, j)F0, jW
m
0 (14)

=
m∑

n=1

d∑

j=1

d∑

k=1

p0,(i,k) pn−1,(k, j)F0, jW
m
n +

d∑

j=1

p0,(i, j)F0, jW
m
0 (15)

=
m∑

n=1

d∑

j=1

d∑

k=1

E0,(i,k) pn−1,(k, j)F0, jW
m
n +

d∑

j=1

E0,(i, j)F0, jW
m
0 (16)

For the left part of Equation 13, we can write as:

le f t =
d∑

j=1

Em,(i, j)[Fm,i ; 1; Fm, j]W6 (17)

=
d∑

j=1

Em,(i, j)(Fm,iw61 + Em,(i, j)w62 + Fm, jw63) (18)

where W6 ∈ R
(2d+1)×d and can be divided as w61 ∈ R

d×d , w62 ∈ R
1×d and w63 ∈ R

d×d .
When w61 = 0 and w62 = −→

0 , we can got:

le f t =
d∑

j=1

Em,(i, j)Fm, jw63 (19)

=
d∑

j=1

Em,(i, j)φUF (F0, j ; Ī Fm, j)w63 (20)

=
d∑

j=1

Em,(i, j)(F0, jw70 + Ī Fm, jw71)w63 (21)

d∑

j=1

φIF (Em,(i, j)[Fm,i ; 1; Fm, j]) =
d∑

j=1

Em,(i, j)(F0, jw70w63 + Ī Fm, jw71w63) (22)

=
d∑

j=1

Em,(i, j)(F0, jw70w63 + Î Fm, jw71w63) (23)

=
d∑

j=1

Em,(i, j)F0, jw70w63 +
m−1∑

n=0

d∑

j=1

d∑

k=1

Em,(i, j) pn,(j,k)F0,kw71w63W
m−1
n (24)

Since Em,(i, j) = E0,(i, j), when w70w63 = Wm
0 andWm−1

n w71w63 = Wm
n+1, it is proved that

Īm+1,i = Îm+1,i .
�

123

Deep graph transformation for attributed, directed, and… 1319

Fig. 5 Details of node translation path for one node (i.e. node 0) in a single block

4.4 Node translation path

Node translation aims to learn the “nodes-to-nodes” and “edges-to-nodes” interactions,where
translation of one node’s attributes depends on the edge attributes related to this node and
its own attributes. The node translation path of each block contains two functions, influence-
on-node function which learns the influence from each pair of nodes, and node updating
functionwhich generates the new node attributes by aggregating all the influences from pairs
containing this node. Figure 5 shows how to translate a node in a single block.

4.4.1 Influence-on-node layers

As shown in Fig. 5, the input graph G(Es, Fs) is first organized in the unit of pairs of
nodes, where each pair is Bs,u,v ∈ R

1×(2D+K) which is similar to the edge translation path
(as circled in the black rectangle in Fig. 5). Then Bs,u,v is inputted into the influence-on-
node function, which is implemented by contrained MLP φ as Equation (4), to compute the
influence φ(Bs,u,v;WF , bF) ∈ R

1×h to nodes (as shown in the grey bar after φ in Fig. 5),
where h is the dimension of the influence on nodes.

4.4.2 Node updating layers

After computing the influences of each node pair, the next step is to generate node attributes.
For node i , an assignment step is required to aggregate all the influences from pairs containing
node i (as shown of

⊕
operation in Fig. 5). Thus, all the influences for node i are aggregated

and input into the updating function, which is implemented by a MLP model ψ to calculate
the attributes of node i as: Fs+1,i = ψ([F0,i ,∑ j∈N (i) φ(Bs,i, j ;WF , bF),C]).

4.5 Graph spectral-based regularization

Based on the edge and node translation path introduced above, we can generate node and
edge attributes, respectively. However, since these generated node and edge attributes are
predicted separately in different paths, their patterns may not be consistent and harmonic.
To ensure the consistency of the edge and node patterns mentioned in Sect. 3, we propose a
novel adaptive regularization based on nonparametric graphLaplacian, and a graph frequency
regularization.

4.5.1 Non-parametric graph Laplacian regularization

First, we recall the property of the multi-attributed graphs where node information can be
smoothed over the graph via some form of explicit graph-based regularization, namely by
the well-known graph Laplacian regularization term [33]:

123

1320 X. Guo et al.

F (d)
s

T
L(k)
s F (d)

s =
∑

i, j∈V
E (k)
s,i, j

∥∥∥F (d)
s,i − F (d)

s, j

∥∥∥
2
, (25)

where F (d)
s ∈ R

N×1 is the node attribute vector for the dth node attribute and E (k)
s ∈ R

N×N is
the edge attributematrix for kth attribute generated in the sth block. L(k)

s =D(k)
s −E (k)

s denotes
the graph Laplacian for the kth edge attributes matrix. The degree matrix D(k)

s ∈ R
N×N is

computed as: D(k)
s,i,i = ∑

j∈N (i) E
(k)
s,i, j .

However, the above traditional graph Laplacian can only impose an absolute smoothness
regularization over all the nodes by forcing the neighbor nodes to have similar attribute
values, which is often over-restrictive for many situations such as in signed networks and
teleconnections. In the real world, the correlation among the nodes is muchmore complicated
than purely “smoothness” but should be a mixed pattern of different types of relations. To
address this, we propose an end-to-end framework of nonparametric graph Laplacian which
can automatically learn such node correlation patterns inherent in specific types of graphs,
with rigorous foundations on spectral graph theory. In essence, we propose the nonparametric
graph Laplacian based on the parameter θ as: gθ (L̂

(k)
s). L̂(k)

s is the normalized Laplacian

computed as L̂(k)
s = D(k)

s
− 1

2 L(k)
s D(k)

s
− 1

2 and can be diagonalized by the Fourier basisU (k)
s ∈

R
N×N , such that L̂(k)

s = U (k)
s 	

(k)
s U (k)

s
T
where 	

(k)
s ∈R

N×N is a diagonal matrix storing the
graph frequencies. For example, 	(k)

s,1 is the frequency value of the first Fourier basis U (k)
s,1 .

Then, we got gθ (L̂
(k)
s) = gθ (U

(k)
s 	

(k)
s U (k)

s
T
) = U (k)

s gθ (
(k)
s)U (k)

s
T
. Therefore, we have the

regularization as follows:

Rθ (G(Es, Fs)) =
∑K

k=1

∑D

d=1
F (d)
s

T
U (k)
s gθ (

(k)
s)U (k)

s
T
F (d)
s (26)

where gθ (
(k)
s) is a nonparametric Laplacian eigenvalues that will be introduced subse-

quently.

4.5.2 Scalable approximation

gθ (
(k)
s) is a nonparametric vector whose parameters are all free; It can be defined as:

gθ (
(k)
s) = diag(θ(k)

s), where the parameter θ(k)
s ∈ R

N is a vector of Fourier coefficients for a
graph. However, optimizing the parametric eigenvalues has the learning complexity of O(N),
the dimensionality of the graphs, which is not scalable for large graphs. To reduce the learning
complexity of O(N) to O(1), we propose approximating gθ (

(k)
s) by a normalized truncated

expansion in terms of Chebyshev polynomials [25]. The Chebyshev polynomial Tp(x) of
order p may be computed by the stable recurrence relation Tp(x) = 2xTp−1(x) − Tp−2(x)
with T1 = 1 and T2 = x . The eigenvalues of the approximated Laplacian filter can thus be
parametric as the truncated expansion:

gθ (
(k)
s) =

∑P

p=1
θ(k)
s,pTp(̃

(k)
s)/

∑P

p=1
θ(k)
s,p (27)

for P orders, where Tp(̃
(k)
s) ∈ R

N×N is the Chebyshev polynomial of order p evaluated at

	̃
(k)
s = 2	(k)

s /	
(k)
s,max − I , a diagonal matrix of scaled eigenvalues that lie in [−1, 1]. The

	s,max refers to the largest element in 	
(k)
s . θ ∈ R

S×P×K denotes the parameter tensor for
all S blocks. θ(k)

s,p is the pth element of Chebyshev coefficients vector θ
(k)
s ∈ R

P for the kth

edge attribute. Each θ
(k)
s,p is normalized by dividing the sum of all the coefficients in θ

(k)
s to

123

Deep graph transformation for attributed, directed, and… 1321

avoid the situation where θ
(k)
s is trained as zero. Thus, the laplacian computation can then

be written as gθ (L̃
(k)
s) = ∑P

p=1 θ
(k)
s,pTp(L̃

(k)
s)/

∑P
p=1 θ

(k)
s,p , where Tp(L̃

(k)
s) ∈ R

N×N is the

Chebyshev polynomial of order p evaluated at the scaled Laplacian L̃(k)
s = 2L̂(k)

s /	
(k)
s,max− I .

For efficient computation, we further approximate 	
(k)
s,max ≈ 1.5, as we can expect that the

neural network parameters θ will adapt to this change in scale during training.

4.5.3 Graph frequency regularization

To ensure that the spectral graph patterns are consistent throughout the translation process
across different blocks, we utilize a graph frequency regularization to not only maintain the
similarity but also allow the exclusive properties of each block’s patterns to be reserved
to some degree. Specifically, regarding all the frequency pattern basis of form L̃ , some
are important in modeling the relationships between nodes and graphs while some are not,
resulting in the sparsity pattern of θ . Thus, inspired by the multi-task learning, we learn the
consistent sparsity pattern of θs by using the L2,1 norm as regularization:

R(θ) =
∑K

k=1

∑S

s=1

√∑P

p=1
θ

(k)
s,p

2
(28)

4.6 Extensions of graph spectral-based regularization

In this section, we extend our framework of multi-attributed graph translation into broadly
signed graph and directed graphs, which makes our model more general to various graph
types. The node and edge translation paths do not need to change since the trainable parame-
ters can be adaptive in dealing with various edge and node attributes. However, apart from the
two translation paths, the spectral-based regularization termcannot be utilizedwithout change
for signed or directed graphs. This is incurred by several technical challenges: the Laplacian
matrix for both sign and directed graph are different from the undirected graphs. The way to
calculate the Laplacian matrix which should be symmetric and positive semi-definite needs
to be customized for both signed and direct graphs. Thus, the way to approximate the Lapla-
cian needs also changes accordingly. Thus, we explore how to fit our model into the signed
and directed graph translation, respectively, by proposing the signed spectral-based graph
regularization and directed spectral-based graph regularization.

4.6.1 Extension to signed graphs

Signed graphs are defined as the weighted graphs in which negative and positive entries are
allowed, the intuition being that a negative weight indicates dissimilarity or distance. Thus,

for a signed graph, the degree matrix may contain zero or negative entries (thus D(k)−
1
2

s may
not exist), and the Laplacian L(k)

s may no longer be positive semi-definite. However, the
spectral-based graph regularization requires the Laplacian to be positive semi-definite for
representing the relations between the node and edge attributes.

Thus, we adopt a definition of the signed graph Laplacian [17]. First, the degree matrix is

computed as D̄(k)
s,i,i = ∑

j∈N (i)

∣∣∣E (k)
s,i, j

∣∣∣, and then the normalized version of the Laplacian for

the signed graph is L(k)
s = I − D̄(k)−

1
2

s E (k)
s D̄(k)−

1
2

s . In this way, the signed graph Laplacian
can be positive semi-definite and decomposed with eigenvalues and eigenvectors. Thus, we

123

1322 X. Guo et al.

can fit our proposed nonparametric regularization and scalable approximation into the signed
graph as

Rθ (G(Es, Fs)) =
∑K

k=1

∑D

d=1
F (d)
s

T ∑P

p=1
θ(k)
s,pTp(L̃

(k)
s)F (d)

s /
∑P

p=1
θ(k)
s,p, (29)

where L̃(k)
s = 2L(k)

s /	
(k)
s,max − I . Thus, the signed spectral-based graph regularization can

enjoy a constant time complexity O(1).

4.6.2 Extension to directed graphs

For directed graphs, the major problem is that the edge attribute matrix is not symmetric, and
the way to calculate the Laplacian matrix described above cannot semantically enforce the
relations between edges and nodes. Here, we calculate the Laplacian of the directed graph
as a Hermitian matrix by using the transition probability matrix [9].

First, we use Es,i, j to denote the sth edge attributes of the edge from the i th node to the
j th node. Thus, for a weighted directed graph with edge weights Es,i, j > 0, each element
of a general transition probability matrix Ps regarding the sth attribute can be defined as

Ps,i, j = Es,i, j∑
k Es,i,k

. (30)

The Perron–Frobenius theorem [27] states that an irreducible matrix with nonnegative entries
has a unique (left) eigenvector with all entries positive. Let ρs denote the eigenvalue of
the positive eigenvector of Ps . Namely, the transition probability matrix Ps of a strongly
connected directed graph has a unique left eigenvector φs with φs,i > 0 for all nodes i , and
φs Ps = ρsφs . We can normalize and choose φs to satisfy

∑
i φs,i = 1. Now, the φs is called

the Perron vector of Ps . Then, the Laplacian of a directed graph is defined by

Ls = I − �
1
2
s Ps�

−1
2
s + �

−1
2
s P∗

s �
1
2
s

2
, (31)

where �s is a diagonal matrix with entries �s,i,i = φs,i , and P∗
s denotes the conjugated

transpose of Ps . Next, we use the nonparametric approximation to define the spectral-based
regularization. As mentioned in Sect. 4.5, we need to approximate the eigenvalues gθ (s)

of the original graph Laplacian. This means the decomposition of Ps to calculate �s and the
decomposition of Ls to calculateUs (Us is the eigenvector for Ls , as mentioned in Sect. 4.5)
are both needed. However, it will lead to intensive computation, especially for large graphs.
Thus, to avoid decomposition, the nonparametric method is used to approximate gθ (Ls) for
directed graphs as

gθ (Ls) = gθ (I − �
1
2
s Ps�

−1
2
s + �

−1
2
s P∗

s �
1
2
s

2
) (32)

= (I − gθ (�s)
1
2 Psgθ (�s)

−1
2 + gθ (�s)

−1
2 P∗

s gθ (�s)
1
2

2
), (33)

It is easy to find that approximating Ls is equal to approximating �s . It should be noted that
this operation also reduces the computational effort that is spent on getting�s by decompos-
ing the transition matrix Ps , because otherwise we need to use a polynomial-time algorithm
to calculate the exact �s computationally since there is no closed form solution for �s [40].
Now, we approximate �s by learning gθ (�s) = diag(θ1, . . . , θN) with the complexity
O(N).

123

Deep graph transformation for attributed, directed, and… 1323

4.7 Complexity analysis

The proposed NEC-DGT requires O(N 2) operations in time complexity and O(N 2) space
complexity in terms of number of nodes in the graph. It is more scalable than most of the
graph generation methods. For example, GraphVAE [52] requires O(N 4) operations in the
worst case and Li et al [38] uses graph neural networks to perform a form of message passing
with O(MN 2) operations to generate a graph.

5 Experiments

In this section, we present both the quantitative and qualitative experiment results on NEC-
DGT as well as the comparison models. All experiments are conducted on a 64-bit machine
with Nvidia GPU (GTX 1070, 1683 MHz, 8 GB GDDR5). The model is trained by Adam
optimization algorithm.2

5.1 Experimental setup

5.1.1 Datasets

We performed experiments on four synthetic datasets and four real-world datasets with dif-
ferent graph sizes and characteristics. All the dataset contain input-target pairs.

Synthetic dataset Four datasets are generated based on different types of graphs and
translation rules. The input graphs of the first three datasets (named as Syn-I, Syn-II, and
Syn-III) are Erdos-Renyi (E-R) graphs generated by the Erdos Renyi model [15] with the
edge probability of 0.2 and graph size of 20, 40, and 60, respectively. The target graph
topology is the 2-hop connection of the input graph, where each edge in the target graph
refers to the 2-hop reachability in the input graph (e.g., if node i is 2-hop reachable to
node j in the input graph, then they are connected in the target graph). The input graphs
of the fourth dataset (named as Syn-IV) are Barabási-Albert (B-A) graphs generated by the
Barabási-Albert model [3] with 20 nodes, where each node is connected to 1 existing node.
In Syn-IV, topology of target graph is the 3-hop connection of the input graph. For all the
four datasets, the edge attributes Es,i, j ∈ [0, 1] denotes the existence of the edge. For both
input and target graphs, the node attributes are continuous values computed following the
polynomial function: f (x) : y = ax2 + bx + c(a = 0, b = 1, c = 5), where x is the node
degree and f (x) is the node attribute. Each dataset is divided into two subsets, each of which
has 250 pairs of graphs. Validation is conducted where one subset is used for training and
another for testing, and then exchange them for another validation. The average result of the
two validations is regarded as the final result.

Malware confinement dataset Malware dataset are used for measuring the performance
of NEC-DGT for malware confinement prediction. There are three sets of IoT nodes at
different amount (20, 40 and 60) encompassing temperature sensors connected with Intel
ATLASEDGE Board and Beagle Boards (BeagleBone Blue), communicating via Blue-
tooth protocol. Benign and malware activities are executed on these devices to generate
the initial attacked networks as the input graphs. Benign activities include MiBench [23] and
SPEC2006 [26], Linux system programs, and word processor. The nodes represent devices

2 The code of the model and additional experiment results are available at:https://github.com/xguo7/NEC-
DGT.

123

https://github.com/xguo7/NEC-DGT
https://github.com/xguo7/NEC-DGT

1324 X. Guo et al.

and node attribute is a binary value referring to whether the device is compromised or not.
Edge represents the connection of two devices and the edge attribute is a continuous value
reflecting the distance of two devices. The real target graphs are generated by the classical
malware confinementmethods: stochastic controlling withmalware detection [46,49,50].We
collected 334 pairs of input and target graphs with different contextual parameters (infection
rate, recovery rate, and decay rate) for each of the three datasets. Each dataset is divided into
two subsets: one has 200 pairs and another has 134 pairs. The validation is conducted in the
same way as the synthetic dataset.

Molecule reaction datasetWe apply our NEC-DGT to one of the fundamental problems
in organic chemistry, thus predicting the product (target graph) of chemical reaction given
the reactant (input graph). Each molecular graph consists of atoms as nodes and bond as
edges. The input molecule graph has multiple connected components since there are multiple
molecules comprising the reactants. The reactions used for training are atom-mapped so that
each atom in the product graph has a unique corresponding atom in the reactants. We used
reactions from USPTO granted patents, collected by Lowe [41]. We obtained a set of 5,000
reactions (reactant-product pair) and divided them into 2,500 and 2,500 for training and
testing. Atom (node) features include its elemental identity, degree of connectivity, number
of attached hydrogen atoms, implicit valence, and aromaticity. Bond (edge) features include
bond type (single, double, triple, or aromatic), and whether it is connected.

Real-world HCP dataset The human connectome project (HCP) dataset is used for
evaluating the signed graph translation model. Brain network prediction, such as prediction
of functional connectivity based on structural connectivity, is a very critical task in neuro-
science. The goal is to learn the mapping from the resting-state functional connectivity into
task-specific functional connectivity in the human brain. In this dataset, the source and the
target graphs respectively reflect the structural connectivity (SC) and the functional con-
nectivity (FC) of the same subject’s brain network. In particular, both types of connectivity
are processed from the magnetic resonance imaging (MRI) data obtained from the HCP
dataset [56]. By following the preprocessing procedure in [57], the SC data is constructed by
applying probabilistic tracking on the diffusion MRI data using the Probtrackx tool from the
FMRIB Software Library [28] with 68 predefined regions of interest (ROIs). Then, the edge
attributes of FC are defined as the Pearson’s correlation between two ROIs blood oxygen
level-dependent time obtained from the resting-state functionalMRI data. The node attributes
refer to the index of each node by a one-hot vector. Since the edges of FC can be either pos-
itive or negative, signed graph translation model is needed to handle this task. In total, 823
pairs of SC and FC samples are used and fivefold cross-validation is performed.

Online breast cancer community dataset We adopt the dataset from Gao [19] for
validation of the proposed di-NEC-DGT. The data is collected through the Breast Can-
cer Community,3 which is one of the largest online forums designed for patients to share
information related to breast cancer. The forum data collected for this study covers an 8-year
period from the beginning of 2010 to the end of 2017. There are 80 sub-forums, such as
“Not Diagnosed But Worried” and “Breast Reconstruction”. The user sub-forum activity
transition is defined as being when the users posted new topics or replied to existing topics
and the time window was set as one month. After removing common words and stop words,
59 top-frequency keywords from the forum content construct the feature vectors for the sub-
forums. Also, each user may come across different health stages. The health stages consists
of “Dx,” “Chemotherapy,” “Targeted,” “Hormonal,” “Radiation,” “Surgery,”. Each transition
graph of a user reflects the stage of the user, and it is obvious that the graph can change

3 https://community.breastcancer.org/.

123

https://community.breastcancer.org/

Deep graph transformation for attributed, directed, and… 1325

as the user transfers to another health stage since the things that concern them change. Our
goal is to predict how the user transitions across subforums when their health stage changes
from the current to the next, given the current transition graph. We randomly selected 70%
of users who provided their health stage history for training, another 10% for validation, and
the remaining 20% for testing. The predicted transition graphs were validated against the
real transition graphs in the target stage. We treat “Dx” as the initial input stage and treat the
others as the target stages.

5.1.2 Comparison methods

Since there is no existing method handling the multi-attributed graph translation problem,
NEC-DGT is compared with two categories of methods: (1) graph topology generation
methods, and (2) graph node attributes prediction methods.

Graph topology generation methods (1) GraphRNN [63] is a recent graph generation
method based on sequential generation with LSTM model; (2) Graph Variational Auto-
encoder (GraphVAE) [52] is a VAE-based graph generation method for small graphs; (3)
Graph Translation-GenerativeAdversarial Networks (GT-GAN) [21] is a new graph topology
translation method based on graph generative adversarial network.

Node attributes prediction methods (1) Interaction Network (IN) [4] is a node state
updating network considering the interaction of neighboring nodes; (2) DCRNN [39] is a
node attribute prediction network for tranffic flow prediction; (3) Spatio-Temporal Graph
Convolutional Networks (STGCN) [64] is a node attribute prediction model for traffic speed
forecast.

Furthermore, to validate the effectiveness of the graph spectral-based regularization, we
conduct a comparison model (named as NR-DGT) which has the same architecture of NEC-
DGT but without the graph regularization.

5.1.3 Evaluation metrics

Aset ofmetrics are used tomeasure the similarity between the generated and real target graphs
in terms of node and edge attributes. To measure the attributes which are Boolean values, the
Acc (accuracy) is utilized to evaluate the ratio of nodes or edges that are correctly predicted
among all the nodes or possible node pairs. To measure the attributes which are continuous
values, MSE (mean squared error), R2 (coefficient of determination score), Pearson and
Spearman correlation are computed between attributes of generated and real target graphs.
N− < metric > represents metrics evaluated on node attributes and E− < metric >

represents metrics evaluated on edge attributes.

5.2 Performance

5.2.1 Metric-based evaluation for synthetic graphs

For synthetic datasets, we compare the generated and real target graphs on variousmetrics and
visualize the patterns captured in the generated graphs. Table 2 summarizes the effectiveness
comparison for four synthetic datasets. The node attributes are continuous values evaluated
by N-MSE, N-R2, N-P, and N-SP. The edge attributes are binary values evaluated by the
accuracy of the correctly predicted edges. The results in Table 2 demonstrate that the proposed
NEC-DGT outperforms other methods in both node and edge attributes prediction and is the

123

1326 X. Guo et al.

Table 2 Evaluation of generated target graphs for synthetic dataset (N for node attributes, E for edge attributes,
P for Pearson correlation, SP for Spearman correlation and Acc for accuracy)

dataset Method N-MSE N-R2 N-P N-Sp Method E-Acc

Syn-I IN 5.97 0.06 0.48 0.44 GraphRNN 0.6212

DCRNN 51.36 0.12 0.44 0.45 GraphVAE 0.6591

STGCN 15.44 0.19 0.42 0.56 GT-GAN 0.7039

NR-DGT 2.13 0.87 0.90 0.89 NR-DGT 0.7017

NEC-DGT 1.98 0.76 0.93 0.91 NEC-DGT 0.7129

Syn-II IN 1.36 0.85 0.77 0.87 GraphRNN 0.5621

DCRNN 71.07 0.11 0.39 0.37 GraphVAE 0.4639

STGCN 33.11 0.21 0.15 0.15 GT-GAN 0.7005

NR-DGT 1.43 0.91 0.94 0.97 NR-DGT 0.7016

NEC-DGT 1.91 0.93 0.97 0.97 NEC-DGT 0.7203

Syn-III IN 35.46 0.31 0.59 0.56 GraphRNN 0.4528

DCRNN 263.23 0.09 0.41 0.39 GraphVAE 0.3702

STGCN 43.34 0.22 0.48 0.47 GT-GAN 0.5770

NR-DGT 5.90 0.90 0.94 0.92 NR-DGT 0.6259

NEC-DGT 4.56 0.93 0.97 0.96 NEC-DGT 0.6588

Syn-IV IN 4.63 0.10 0.53 0.51 GraphRNN 0.5172

DCRNN 63.03 0.12 0.22 0.16 GraphVAE 0.3001

STGCN 6.52 0.08 0.11 0.10 GT-GAN 0.8052

NR-DGT 4.49 0.12 0.55 0.54 NR-DGT 0.6704

NEC-DGT 1.86 0.73 0.93 0.89 NEC-DGT 0.8437

only method to handle both. Specifically, in terms of node attributes, the proposed NEC-
DGT get smaller N-MSE value than all the node attributes prediction methods by 85%,
71%, 95% and 95% on average for four dataset, respectively. Also, NEC-DGT outperforms
the other methods by 46%, 36%, 44% and 58% on average for four dataset, respectively,
on N-R2, N-P, and N-SP. This is because all the node prediction methods only consider
a fixed graph topology, while NEC-DGT allows the edges to vary. In terms of edges, the
proposed NEC-DGT get the highest E-ACC than all the other graph generation methods. It
also has higher E-ACC than graph topology translation method: GT-GAN by 7% on average
since NEC-DGT considers both edge and node attributes in learning the translation mapping
while GT-GAN only considers edges. The proposed NEC-DGT outperforms the NR-DTG
by around 3% on average in terms of all metrics, which demonstrates the effectiveness of the
graph spectral-based regularization.

5.2.2 Evaluation of the learned translation mapping for synthetic graphs

To evaluate whether the inherent relationship between node and edge (reflected by node
degree) attributes is learned and maintained by NEC-DGT, we draw the distributions of
the node attribute versus node degree of each node in the generated graphs to visualize their
relationship. For comparison, a ground-truth correlation is drawn according to the predefined
rule of generating the dataset, namely each node’s degree and attribute follows the function
y = x + 5. Figure 6 shows four example distributions of nodes in terms of node attributes

123

Deep graph transformation for attributed, directed, and… 1327

Fig. 6 Relation visualizations between node attributes and node degrees for samples from four synthetic graphs

and degree with the black line as ground-truth. As shown in Fig. 6, the nodes are located
closely on the ground-truth, especially for the syn-I and syn-IV, where around 85% nodes are
correctly located. This is largely because the proposed graph spectral-based regularization
successfully discovers the patterns: the densely connected nodes all tend to have large node
attributes and in reverse.

To explore the performance of the proposed methods in dealing with graphs with different
densities, 7 subsets of input–output synthetic graph pairs are generated for validations, where
the graph density of input graphs ranges from 0.1 to 0.9. Figure 7 plots the relationship
between graph density and the different evaluation metrics. As shown in Fig. 7, when the
graph density ranges from 0.2 to 0.8, the proposed model is robustness in handling graphs
without varying densities, namely both dense or sparse graphs. However, when the density
of input graph increases to 0.9, namely the density of target graph is almost 1, it is difficult
for the model to learn a valid pattern from a fully connected graph.

5.2.3 Metric-based evaluation for malware datasets

Table 3 shows the evaluation of NEC-DGT by comparing the generated and real target
graphs. For malware graphs, the node attributes are evaluated by N-ACC by calculating the
percentage of nodes whose attributes are correctly predicted in all nodes. The edge attributes
are continuous value evaluated by E-MSE, E-R2 and E-P. We also use E-Acc to evaluate
the correct existence of edges among all pairs of nodes. The results in Table 3 demonstrates
that NEC-DGT performs the best for all the three datasets. In terms of E-Acc, the graph
generation methods (GraphRNN and GraphVAE) cannot handle the graph translation work
and got low E-Acc of around 0.6 at Mal-I,Mal-II, and 0.8 at Mal-III. GT-GAN achieves
high E-ACC, but its E-MSE is about 2 folds larger than that of the proposed NEC-DGT on
average. NEC-DGT successfully handle the translation tasks with high E-Acc above 0.9, and

123

1328 X. Guo et al.

Fig. 7 Transformation performance when dealing with input graphs with different densities regarding two
synthetic dataset: a the synthetic-I dataset and b the synthetic-II dataset

Table 3 Evaluation of generated target graphs forMalware dataset (N for node attributes, E for edge attributes,
P for Pearson correlation, SP for Spearman correlation and Acc for accuracy)

Method E-Acc E-MSE E-R2 E-P Method N-Acc

Malware-I

GraphRNN 0.6107 1831.43 0.52 0.00 IN 0.8786

GraphVAE 0.5064 2453.61 0.00 0.04 DCRNN 0.8786

GT-GAN 0.6300 1718.02 0.42 0.11 STGCN 0.9232

NR-DGT 0.9107 668.57 0.82 0.91 NR-DGT 0.9108

NEC-DGT 0.9218 239.79 0.78 0.91 NEC-DGT 0.9295

Malware-II

GraphRNN 0.7054 1950.46 0.44 0.29 IN 0.8828

GraphVAE 0.6060 2410.57 0.73 0.16 DCRNN 0.8790

GT-GAN 0.9033 462.73 0.13 0.81 STGCN 0.9330

NR-DGT 0.9117 448.48 0.68 0.83 NR-DGT 0.8853

NEC-DGT 0.9380 244.40 0.81 0.91 NEC-DGT 0.9340

Malware-III

GraphRNN 0.8397 1775.58 0.16 0.23 IN 0.8738

GraphVAE 0.8119 2109.64 0.39 0.32 DCRNN 0.8738

GT-GAN 0.9453 550.30 0.63 0.80 STGCN 0.9375

NR-DGT 0.9543 341.10 0.76 0.88 NR-DGT 0.8773

NEC-DGT 0.9604 273.67 0.81 0.90 NEC-DGT 0.9002

the smallest E-MSE. In terms of N-Acc, NEC-DGT outperforms other methods by around
5% on the first two datasets. In summary, the proposed NEC-DGT cannot only jointly predict
the node and edges attributes, but also performs the best in most of metrics. The superiority of
NEC-DGT over the NR-DGT in terms of E-MSE demonstrates that the graph spectral-based
regularization indeed improve modeling translation mapping.

123

Deep graph transformation for attributed, directed, and… 1329

Fig. 8 Cases of Malware translation by NEC-DGT

5.2.4 Case study for Malware dataset

Figure 8 investigates three cases of input, real target and generated target graph by NEC-
DGT. The green nodes refer to the uncompromised devices, while the red nodes refer to the
compromised devices. The width of each edge reflects the distance between two devices.
In the first case, both in generated and real target graphs, Devices 4 and 6 are restored to
normal, while Device 19 get attacked and is isolated from the other devices. It validates that
our NEC-DGT successfully finds the rules of translating nodes and performs like the true
confinement process. In the second case, Device 8 propagates the malware to Device 38,
which is also modeled by NEC-DGT in generated graphs. In addition, the NEC-DGT not
only correctly predicts the nodes attributes, but also discovers the change in edge attributes,
e.g., in the third case, most of the connections of compromised Device 10 were cut both in
generated and real target graphs.

5.2.5 Metric-based evaluation for molecule reaction datasets

In this task, the NEC-DGT is compared to the Weisfeiler–Lehman Difference Network
(WLDN) [29], which is a graph learning model specially for reaction prediction. Table 4
shows the performance of our NEC-DGT on the reaction dataset on five metrics, which are
the same with the synthetic datasets. The proposed NEC-DGT outperforms both the trans-
lation model GT-GAN and the WLDN by 5% on average. Though the atoms do not change
during reaction, we evaluate the capacity of our NEC-DGT to copy the input node features.
As shown in Table 4, The NEC-DGT get the smallest N-MSE and get higher N-R2 than
other comparison methods by around 18%. This shows that our NEC-DGT can deal with

123

1330 X. Guo et al.

Table 4 Evaluation of generated target graphs for molecule dataset: N for node attributes, E for edge attributes

Method N-MSE N-R2 N-P N-Sp Method E-Acc

IN 0.0805 0.46 0.13 0.12 GT-GAN 0.8687

STGCN 0.0006 0.98 0.99 0.97 WLDN 0.9667

NR-DGT 0.0008 0.97 0.99 0.99 NR-DGT 0.9918

NEC-DGT 0.0004 0.99 0.99 0.99 NEC-DGT 0.9925

Table 5 Pearson correlation between the predicted graph and empirical graph on HCP datasets (Res for
Resting, Emo for Emotion, Gam for Gambling, Re for Relational)

Method Res Emo Gam Lang Motor Re Social WM

Ganlan2008 0.41 0.42 0.44 0.44 0.45 0.44 0.45 0.45

Abdelnour2018 0.40 0.41 0.43 0.43 0.44 0.43 0.44 0.45

Sign-NEC-DGT(NR) 0.42 0.43 0.44 0.45 0.46 0.45 0.45 0.46

Sign-NEC-DGT 0.43 0.43 0.46 0.45 0.45 0.45 0.46 0.46

a wide range of real-world applications, whether the edges and nodes need change or keep
stable.

5.2.6 Metric-based evaluation for HCP datasets

We consider two classic brain network prediction methods that use SC to FC [2,16] as the
comparison methods for this experiment. Abdelnour et al. [2] considered the graph spectral
transformation kernels by assuming that SC and FC share the identical eigenvectors on their
Laplacians. Another method directly considers the graph translation between SC and FC.
The goal is to predict the FC given the SC when the brain is doing different tasks.

Table 5 shows thePearson coefficient by comparing the predicted graphswith the empirical
target graphs. Our method achieves the highest Pearson coefficient on seven out of eight
datasets with superiority of 3.8%, and the highest average Pearson correlation. Specifically,
the proposed sign-NEC-DGT outperformed the comparison methods by 5.8% on average
in the resting task and 5.4% in Gambling tasks. Also, the proposed sign-NEC-DGT has a
1.3% higher Pearson coefficient than the one without regularization, which demonstrates the
effectiveness of the proposed signed graph spectral regularization. This superiority is mainly
because the proposed sign-NEC-DGT has the most freedom to learn different parameters for
dealing with positive and negative edge attributes.

5.2.7 Case study for HCP dataset

Figure 9 plots two subjects: (1) structural connectivity (i.e., the adjacent matrix of the source
graph shown on the left column), (2) empirical functional connectivity (i.e., the adjacent
matrix of the target graph shown on the middle column), and (3) predicted functional con-
nectivity (i.e., the adjacent matrix of the target graph shown on the right column). As shown
in Fig. 9, the predicted FC using Subject 87s SC is very close to the same subject’s empirical
FC. On the other hand, the predicted FC using Subject 71s SC is different from Subject 87s
empirical FC, although Subject 87s SC is very similar to Subject 71s SC. This is because

123

Deep graph transformation for attributed, directed, and… 1331

Fig. 9 Cases of FC prediction by sign-NEC-DGT

SC reflects the human brains anatomical neural network, which has relatively fewer indi-
vidual differences among human beings. Unlike SC, the FC used in this dataset reflects the
Pearson correlations between two time series (i.e., Blood Oxygen Level Dependent (BOLD)
signal) of different brain regions of interest (ROIs), when the subject is instructed under the
resting-state. Practically, it is difficult to control these subjects brain activities, which causes
the empirical FC to be very noisy such that it may affect the performance of all prediction
methods.

5.2.8 Metric-based evaluation for breast cancer community dataset

In this task, the goal is to predict the direct transition network of a user at one health stage
given the transition network at another health stage (Dx). Thus, there are five tasks relating
to five different target stages. Due to the requirement of handling the directed graphs, we
use two comparison methods: GT-GAN [21] and IN [4]. Table 6 shows the metric-based
evaluation results for this task.

As shown in Table 6, the proposed di-NEC-DGT is the only method that not only can
handle the node attribute prediction but also can predict the edge attributes for the directed
graph. More importantly, it achieves a better performance than the comparison methods for
all the different tasks. Specifically, for node prediction tasks, the proposed di-NEC-DGT
achieves the a better performance than IN on four metrics on average by about 47.9% in the
Chemotherapy task, 44.8% in the Radiation task, 45.4% in the Hormonal task, 45.3% in the

123

1332 X. Guo et al.

Table 6 Evaluation of generated target graphs for breast cancer dataset: N for node attributes, E for edge
attributes, Chem for Chemotherapy, Ra for Radiation, Hor for Hormonal, Sur for Surgery, Tar for Targeted

Task Method N-MSE N-R2 N-P N-Acc Method E-Acc

Chem IN 0.0666 0.31 0.72 0.9167 GT-GAN 0.9993

di-NEC-DGT(NR) 0.0068 0.93 0.98 0.9991 di-NEC-DGT(NR) 0.9988

di-NEC-DGT 0.0060 0.94 0.98 0.9995 di-NEC-DGT 0.9988

Ra IN 0.0667 0.31 0.72 0.9167 GT-GAN 0.9953

di-NEC-DGT(NR) 0.0076 0.92 0.97 0.9989 di-NEC-DGT(NR) 0.9981

di-NEC-DGT 0.0073 0.92 0.98 0.9985 di-NEC-DGT 0.9982

Hor IN 0.0661 0.32 0.73 0.9177 GT-GAN 0.9945

di-NEC-DGT(NR) 0.0078 0.92 0.97 0.9983 di-NEC-DGT(NR) 0.9973

di-NEC-DGT 0.0061 0.94 0.98 0.9996 dir-NEC-DGT 0.9973

Sur IN 0.0661 0.32 0.73 0.9175 GT-GAN 0.9981

di-NEC-DGT(NR) 0.0066 0.93 0.98 0.9992 dir-NEC-DGT(NR) 0.9981

di-NEC-DGT 0.0064 0.94 0.98 0.9992 dir-NEC-DGT 0.9981

Tar IN 0.0671 0.31 0.71 0.9158 GT-GAN 0.9986

di-NEC-DGT(NR) 0.0205 0.79 0.90 0.9866 di-NEC-DGT(NR) 0.9989

di-NEC-DGT 0.0073 0.92 0.98 0.9989 di-NEC-DGT 0.9989

Surgery task, and 47.1% in the Targeted task. The success of the proposed di-NEC-DGT lies
mainly on its outgoing and incoming edge parameters and the customized approximation of
the direct spectral Laplacian matrix. In addition, for some specific tasks where the edge and
node may have many more relations, the spectral regularization term plays a very important
role for good prediction. For example, in the Targeted task, di-NEC-DGT has a 17.5% better
metric score on average than the same model without regularization.

6 Conclusion and future work

This paper focuses on a new problem: multi-attributed graph translation. To achieve this, we
propose a novel NEC-DGT consisting of several blocks which translates a multi-attributed
input graph to a target graph. To jointly tackle the different types of interactions among nodes
and edges, node and edge translation paths are proposed in each block and the graph spectral-
based regularization is proposed to preserve the consistent spectral property of graphs.
Extensive experiments have been conducted on the synthetic and real-world datasets. As
the extension of the undirected NEC-DGT, this paper also proposed the sign-NEC-DGT for
the signed graphs and di-NEC-DGT for the directed graphs. Experiment results show that
our NEC-DGT can discover the ground-truth translation rules and significantly outperform
comparison methods in terms effectiveness.

This paper provides a further step of research for graph transformation problems in more
general scenarios. We are excited about the prospect of introducing the interpretability of
the translation process for explainable deep graph transformation in future work, where each
semantic factor in formatting the target graph can be captured and controlled by each latent
dimension learned during the translation process. We further hope to inspire future work to
think beyond the plane graphs for three-dimensional (3D) graph transformation, where the

123

Deep graph transformation for attributed, directed, and… 1333

geometry of graphs (i.e., the spatial location of nodes) also plays a crucial role in influencing
the properties of the graphs, such as molecules and air transport networks.

Acknowledgements Thisworkwas supported by theNational ScienceFoundation (NSF)GrantNos. 1755850,
1841520, 2007716, 2007976, 1942594, 1907805, a Jeffress Memorial Trust Award, Amazon Research Award,
NVIDIA GPU Grant, and Design Knowledge Company (subcontract number: 10827.002.120.04).

References

1. Abdelnour F, Voss HU, Raj A (2014) Network diffusion accurately models the relationship between
structural and functional brain connectivity networks. Neuroimage 90:335–347

2. Abdelnour F, Dayan M et al (2018) Functional brain connectivity is predictable from anatomic network’s
Laplacian eigen-structure. Neuroimage 172:728–739

3. Barabási AL et al (1999) Emergence of scaling in random networks. Science 286(5439):509–512
4. Battaglia P, Pascanu R, Lai M, Rezende DJ et al (2016) Interaction networks for learning about objects,

relations and physics. In: Advances in neural information processing systems, pp 4502–4510
5. Bézivin J, Heckel R (2005) 04101 abstracts collection—language engineering for model-driven software

development. In: Dagstuhl seminar proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik
6. Bojchevski A, Shchur O, Zügner D, Günnemann S (2018) Netgan: generating graphs via random walks.

In: International conference on machine learning, vol 80, pp 610–619
7. Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on

graphs. arXiv preprint arXiv:1312.6203
8. Cao S, LuW,XuQ (2016) Deep neural networks for learning graph representations. In: AAAIConference

on artificial intelligence, pp 1145–1152
9. Chung F (2005) Laplacians and the Cheeger inequality for directed graphs. Ann Comb 9(1):1–19

10. CorbettD (2004) Interoperability of ontologies using conceptual graph theory. In: International conference
on conceptual structures. Springer, Berlin, Heidelberg, pp 375–387

11. Dai H, Tian Y, Dai B, Skiena S, Song L (2018) Syntax-directed variational autoencoder for structured
data. In: International conference on learning representations

12. Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast
localized spectral filtering. In: Advances in neural information processing systems, pp 3844–3852

13. Ehrig H, Prange U, Taentzer G (2004) Fundamental theory for typed attributed graph transformation. In:
International conference on graph transformation. Springer, pp 161–177

14. Ehrig H, Ehrig K, Prange U, Taentzer G (2006) Fundamentals of algebraic graph transformation, Mono-
graphs in theoretical computer science. an EATCS series

15. Erdős P, Rényi A (1960) On the evolution of random graphs. Publ Math Inst Hung Acad Sci 5(1):17–60
16. Galán RF (2008) On how network architecture determines the dominant patterns of spontaneous neural

activity. PLoS ONE 3(5):e2148
17. Gallier J (2016) Spectral theory of unsigned and signed graphs. applications to graph clustering: a survey.

arXiv preprint arXiv:1601.04692
18. GaoY,GuoX,ZhaoL (2018)Local event forecasting and synthesis using unpaired deep graph translations.

In: ACM SIGSPATIAL workshop on analytics for local events and news, p 5
19. Gao Y, Wu L, Homayoun H, Zhao L (2019) Dyngraph2seq: dynamic-graph-to-sequence interpretable

learning for health stage prediction in online health forums. In: International conference on data mining,
pp 1042–1047

20. Gori M,Monfardini G, Scarselli F (2005) A newmodel for learning in graph domains. IEEE International
joint conference on neural networks. IEEE, vol 2, pp 729–734

21. Guo X, Wu L, Zhao L (2018) Deep graph translation. arXiv preprint arXiv:1805.09980
22. Guo X, Zhao L, Qin Z, Wu L, Shehu A, Ye Y (2020) Interpretable deep graph generation with node-edge

co-disentanglement. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining, pp 1697–1707

23. Guthaus MR, Ringenberg JS, Ernst D, Austin TM, Mudge T, Brown RB (2001) Mibench: a free,
commercially representative embedded benchmark suite. In: IEEE international workshop on workload
characterization, pp 3–14

24. Haase C, Ishtiaq S, Ouaknine J, Parkinson MJ (2013) Seloger: a tool for graph-based reasoning in
separation logic. In: International conference on computer aided verification. Springer, pp 790–795

25. Hammond DK, Vandergheynst P, Gribonval R (2011) Wavelets on graphs via spectral graph theory. Appl
Comput Harm Anal 30(2):129–150

123

http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1601.04692
http://arxiv.org/abs/1805.09980

1334 X. Guo et al.

26. Henning JL (2006) Spec cpu2006 benchmark descriptions. ACM SIGARCH Comput Archit News
34(4):1–17

27. Horn RA, Johnson CR (2012) Matrix analysis. Cambridge University Press, Cambridge
28. JenkinsonM, Beckmann CF, Behrens TE,WoolrichMW, Smith SM (2012) FSL. Neuroimage 62(2):782–

790
29. Jin W, Coley C, Barzilay R, Jaakkola T (2017) Predicting organic reaction outcomes with Weisfeiler–

Lehman network. In: Advances in neural information processing systems, pp 2607–2616
30. JinW,BarzilayR, Jaakkola T (2018) Junction tree variational autoencoder formolecular graph generation.

In: International conference on machine learning, vol 80, pp 2328–2337
31. Kaluza MCDP, Amizadeh S, Yu R (2018) A neural framework for learning DAG to DAG translation. In:

Workshop on neural information processing systems
32. Kawahara J, Brown CJ, Miller SP, Booth BG, Chau V, Grunau RE, Zwicker JG, Hamarneh G (2017)

BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment.
Neuroimage 146:1038–1049

33. Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. In: Inter-
national conference on learning representations

34. Kivilcim BB, Ertugrul IO et al (2018)Modeling brain networks with artificial neural networks. In: Graphs
in biomedical image analysis and integrating medical imaging and non-imaging modalities, pp 43–53

35. König B, Kozioura V (2008) Towards the verification of attributed graph transformation systems. In:
International conference on graph transformation. Springer, pp 305–320

36. Kusner MJ, Paige B, Hernández-Lobato JM (2017) Grammar variational autoencoder. In: International
conference on machine learning, vol 70, pp 1945–1954

37. LiY, TarlowD,BrockschmidtM, Zemel R (2016)Gated graph sequence neural networks. In: International
conference on learning representations

38. Li Y, Vinyals O, Dyer C, Pascanu R, Battaglia P (2018) Learning deep generative models of graphs. arXiv
preprint arXiv:1803.03324

39. Li Y, Yu R, Shahabi C, Liu Y (2018) Diffusion convolutional recurrent neural network: data-driven traffic
forecasting. In: International conference on learning representations

40. López CM (1997) Chip firing and the Tutte polynomial. Ann Comb 1(1):253–259
41. LoweDM(2012) Extraction of chemical structures and reactions from the literature. Doctoral dissertation,

University of Cambridge
42. Mousavi SF, Safayani M, Mirzaei A, Bahonar H (2017) Hierarchical graph embedding in vector space

by graph pyramid. Pattern Recognit 61:245–254
43. Mugnier ML, Chein M (1992) Conceptual graphs: fundamental notions. Revue dintelligence artificielle

6(4):365–406
44. Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs. In: Inter-

national conference on machine learning, vol 48, pp 2014–2023
45. Nikolentzos G, Meladianos P, Tixier AJP, Skianis K, Vazirgiannis M (2018) Kernel graph convolutional

neural networks. In: International conference on artificial neural networks, pp 22–32
46. Sai PD, Manoj HS (2019) Lightweight node-level malware detection and network-level malware con-

finement in IoT networks. In: ACM/EDAA/IEEE design automation and test in Europe (DATE)
47. Plump D, Steinert S (2004) Towards graph programs for graph algorithms. In: International conference

on graph transformation. Springer, pp 128–143
48. Samanta B, De A, Ganguly N, Gomez-Rodriguez M (2018) Designing random graph models using

variational autoencoders with applications to chemical design. arXiv preprint arXiv:1802.05283
49. Sayadi H et al (2019) 2SMaRT: a two-stage machine learning-based approach for run-time special-

ized hardware-assisted malware detection. In: ACM/EDAA/IEEE design automation and test in Europe
(DATE)

50. Sayadi H, Patel N et al (2018) Ensemble learning for hardware-basedmalware detection: a comprehensive
analysis and classification. In: ACM/EDAA/IEEE design automation conference

51. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G (2008) The graph neural network model.
IEEE Trans Neural Netw 20(1):61–80

52. Simonovsky M, Komodakis N (2018) Graphvae: towards generation of small graphs using variational
autoencoders. In: International conference on artificial neural networks, pp 412–422

53. Smith BM (2002) A dual graph translation of a problem in life. In: International conference on principles
and practice of constraint programming. Springer, pp 402–414

54. Sturmfels P, Rutherford S, Angstadt M, Peterson M, Sripada CS, Wiens J (2018) A domain guided
CNN architecture for predicting age from structural brain images. In: Machine learning for healthcare
conference, vol 85, pp 295–311

123

http://arxiv.org/abs/1803.03324
http://arxiv.org/abs/1802.05283

Deep graph transformation for attributed, directed, and… 1335

55. Sun M, Li P (2019) Graph to graph: a topology aware approach for graph structures learning and gener-
ation. In: International conference on artificial intelligence and statistics, pp 2946–2955

56. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, ConsortiumWMH et al (2013)
The Wu-Minn human connectome project: an overview. Neuroimage 80:62–79

57. Wang P, Kong R, Kong X, Liégeois R, Orban C, Deco G, van den Heuvel MP, Yeo BT (2019) Inversion
of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain. Sci Adv
5(1):eaat7854

58. Wang S, Sun S, Li Z, Zhang R, Xu J (2017) Accurate de novo prediction of protein contact map by
ultra-deep learning model. PLoS Comput Biol 13(1):e1005324

59. Wu L, Yen IEH, Zhang Z, Xu K, Zhao L, Peng X, Xia Y, Aggarwal C (2019) Scalable global alignment
graph kernel using random features: from node embedding to graph embedding. In: ACM SIGKDD
international conference on knowledge discovery & data mining, pp 1418–1428

60. Xu K, Wu L, Wang Z, Feng Y, Sheinin V (2018) SQL-to-text generation with graph-to-sequence model.
In: Conference on empirical methods in natural language processing, pp 931–936

61. Xu K, Wu L, Wang Z, Feng Y, Witbrock M, Sheinin V (2018) Graph2seq: graph to sequence learning
with attention-based neural networks. arXiv preprint arXiv:1804.00823

62. Xu K, Wu L, Wang Z, Yu M, Chen L, Sheinin V (2018) Exploiting rich syntactic information for seman-
tic parsing with graph-to-sequence model. In: Conference on empirical methods in natural language
processing, pp 918–924

63. You J, Ying R, Ren X, Hamilton WL, Leskovec J (2018) Graphrnn: generating realistic graphs with deep
auto-regressive models. In: International conference on machine learning, vol 80, pp 5694–5703

64. Yu B, Yin H, Zhu Z (2018) Spatio-temporal graph convolutional networks: a deep learning framework
for traffic forecasting. In: International joint conference on artificial intelligence, pp 3634–3640

65. Zhao L (2020) Event prediction in big data era: a systematic survey. arXiv preprint arXiv:2007.09815

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Xiaojie Guo is a Ph.D. candidate in the Department of Information Sci-
ence and Technology at GMU. She is supervised by Dr. Liang Zhao.
She received her M.S. degree and B.E. degree in Control Engineer-
ing from Soochow University, China. Her research interests include
data mining, artificial intelligence, and machine learning, with special
interests in deep learning on graphs, deep graph transformation, deep
graph generation as well as disentangled representation learning. She
received the Best Paper Award from ICDM in 2019.

123

http://arxiv.org/abs/1804.00823
http://arxiv.org/abs/2007.09815

1336 X. Guo et al.

Liang Zhao is an Assistant Professor at the Department of Computer
Science at Emory University. He received the Ph.D. degree from Vir-
ginia Tech, USA. His research interests include data mining, artificial
intelligence, and machine learning, with special interests in spatiotem-
poral and network data mining, deep learning on graphs, nonconvex
optimization, and interpretable machine learning. He has published
over 80 papers in top-tier conferences and journals such as KDD,
ICDM, TKDE, Proceedings of the IEEE, TKDD, TSAS, IJCAI, AAAI,
WWW, CIKM, SIGSPATIAL, and SDM. He won NSF CAREER
Award, Amazon Research Award, Jeffress Trust Award in 2019, Out-
standing Doctoral Student in the Department of Computer Science at
Virginia Tech in 2017.

Houman Homayoun is an Associate Professor in the Department
of Electrical and Computer Engineering at University of California,
Davis. He is the director of National Science Foundation Center
for Hardware and Embedded Systems Security and Trust (CHEST).
Houman conduct research in hardware security and trust, data-intensive
computing and heterogeneous computing, where he has published
more than 100 technical papers and directed over 8M in research fund-
ing from NSF, DARPA, AFRL, NIST and various industrial sponsors.
He received several best paper awards and nominations in various con-
ferences including GLSVLSI 2016, ICDM 2019, and ICCAD 2019,
and 2020. He served as Member of Advisory Committee, Cybersecu-
rity Research and Technology Commercialization working group in the
Commonwealth of Virginia in 2018. Since 2017 he has been serving as
an Associate Editor of IEEE Transactions on VLSI. He was the techni-
cal program co-chair of GLSVLSI 2018 and the general chair of 2019
conference.

Sai Manoj Pudukotai Dinakarrao is an assistant professor at George
Mason University (GMU). Prior joining to GMU as an assistant pro-
fessor, he was research assistant professor and post-doctoral research
fellow at GMU. He received his Ph.D. in Electrical and Electron-
ics Engineering from Nanyang Technological University, Singapore
in 2015. He received his Masters in Information Technology from
International Institute of Information Technology Bangalore (IIITB),
Bangalore, India in 2012. His research interests include on-chip hard-
ware security, neuromorphic computing, adversarial machine learning,
self-aware SoC design, image processing and time-series analysis. His
works received best paper awards and nominations in top-tier confer-
ences. His recent works have won best paper award in ICCE 2020,
ICDM 2019 and were nominated for best paper award in DATE 2018,
IGSC 2020, AsianHOST 2020. He is the recipient of the “A. Richard
Newton Young Research Fellow” award in Design Automation Confer-
ence, 2013.

123

Deep graph transformation for attributed, directed, and… 1337

Authors and Affiliations

Xiaojie Guo1 · Liang Zhao2 · Houman Homayoun3 ·
Sai Manoj Pudukotai Dinakarrao4

B Liang Zhao
liang.zhao@emory.edu,lzhao9@gmu.edu

Xiaojie Guo
xguo7@gmu.edu

Houman Homayoun
hhomayoun@ucdavis.edu

Sai Manoj Pudukotai Dinakarrao
spudukot@gmu.edu

1 Department of Information Science and Technology, George Mason University, Fairfax, USA
2 Department of Computer Science, Emory University, Atlanta, Georgia
3 Department of Electrical and Computer Engineering, University of California, Davis, Davis, USA
4 Department of Electrical and Computer Engineering, George Mason Univeristy, Fairfax, USA

123

http://orcid.org/0000-0002-2648-9989

	Deep graph transformation for attributed, directed, and signed networks
	Abstract
	1 Introduction
	2 Related works
	2.1 Traditional graph transformation
	2.2 Graph neural networks learning
	2.3 Deep generative models for graph generation
	2.4 Graph-structured data translation

	3 Problem formulation
	4 The proposed method: NEC-DGT
	4.1 Overall architecture
	4.2 Multi-block asynchronous translation architecture
	4.2.1 Node and edge translation paths
	4.2.2 Spectral graph regularization

	4.3 Edge translation path
	4.3.1 Influence-on-edge layers
	4.3.2 Edge updating layers
	4.3.3 Relationship with other edge convolution networks

	4.4 Node translation path
	4.4.1 Influence-on-node layers
	4.4.2 Node updating layers

	4.5 Graph spectral-based regularization
	4.5.1 Non-parametric graph Laplacian regularization
	4.5.2 Scalable approximation
	4.5.3 Graph frequency regularization

	4.6 Extensions of graph spectral-based regularization
	4.6.1 Extension to signed graphs
	4.6.2 Extension to directed graphs

	4.7 Complexity analysis

	5 Experiments
	5.1 Experimental setup
	5.1.1 Datasets
	5.1.2 Comparison methods
	5.1.3 Evaluation metrics

	5.2 Performance
	5.2.1 Metric-based evaluation for synthetic graphs
	5.2.2 Evaluation of the learned translation mapping for synthetic graphs
	5.2.3 Metric-based evaluation for malware datasets
	5.2.4 Case study for Malware dataset
	5.2.5 Metric-based evaluation for molecule reaction datasets
	5.2.6 Metric-based evaluation for HCP datasets
	5.2.7 Case study for HCP dataset
	5.2.8 Metric-based evaluation for breast cancer community dataset

	6 Conclusion and future work
	Acknowledgements
	References

