
Thread Scheduling Based on Low-Quality Instruction
Prediction for Simultaneous Multithreaded Processors

 Houman Homayoun1, Kin F. Li1, and Setareh Rafatirad2

 1Department of Electrical and Computer Engineering, University of Victoria, {homayoun,kinli}@uvic.ca
 2Department of Computer Science, Azad University, rafatirad@azad.ac.ir

Abstract- A Simultaneous Multithreaded (SMT) Processor is
capable of executing instructions from multiple threads in the
same cycle. SMT in fact was introduced as a complementary
architecture to superscalar to increase the throughput of the
processor. Recently, several computer manufacturers have
introduced their first generation SMT architecture.

SMT permits multiple threads to compete simultaneously for
shared resources. An example is the race for the fetch unit which
is a critical logic responsible for thread scheduling decisions.
When more threads than hardware execution contexts are
available, the decision of choosing the best threads to fetch
instructions from, will affect the processor's efficiency.

In this paper we present a new approach to choose the most
useful threads among all available threads while they compete on
a shared resource. We identify the quality of instructions based on
the time they spend in the instruction queue. Low-quality
instructions spend more time in the instruction queue.
Accordingly threads with fewer number of low-quality
instructions have a higher contribution to the entire processor
throughput. In an experimental study, we identify such low-
quality instructions in each thread to a maximum of 92%
accuracy (average 72%). We exploit this to increase the overall
processor throughput by giving higher priority to threads with
lesser number of low-quality instructions. Overall we achieve an
average of 11% performance improvement over the traditional
algorithm that schedules threads in a round-robin fashion.

I. INTRODUCTION

A Simultaneous Multithreaded (SMT) Processor is capable

of executing instructions from multiple threads in the same
cycle [2, 6]. SMT introduces a complementary architecture to
superscalar to increase the throughput of the processor by
running different programs (which are referred to as threads) at
the same time. In fact SMT exploits the independency of
instructions belonging to different threads to increase the
processor throughput.

Past studies show that a considerable amount of hardware
resources in conventional superscalar processors are unused
during execution of a single program [2, 5, 8, and 9]. SMT
attempts to use all superscalar resources by assigning them to
multiple threads. Accordingly threads compete every cycle to
acquire shared hardware resources such as instruction and data
caches, TLBs, register renaming unit, fetch bandwidth,
instruction queue and functional units [4]. The desirable policy
in resource competition is the one which biases toward the

threads with more contribution to the overall throughput.
According to [1], a major factor that makes a thread more
desirable over others is its instruction behavior in the
instruction queue. To achieve a higher throughput, threads with
instructions that spend the least time in the instruction queue
should be given the highest priority in scheduling. The problem
to find such a scheduling policy is that we basically have no
information about the time instructions spend in the instruction
queue before they are issued. Instead, several policies proposed
in the literature use feedbacks from other parts of the processor
as a replacement of such oracles scheduling [3, 4, 7 and 11].
An algorithm that gives priority to threads with the fewest
instructions in the pipeline, and a fetch policy which gives
priority to threads with the fewest D-cache misses are two
examples of such proposals.

In this work we take a step towards finding the oracles
scheduler. We first study instruction behavior in SMT
processors. Then we propose an approach to predict the time
instruction spend in instruction queue before they are issued
(we refer to this factor as issue delay). Issue delay prediction
outcome can then be used for scheduling decision in any thread
or instruction race condition to get processor resources.
Finally, to improve processor throughput, we use our
prediction outcome for scheduling decision in one of the
shared resources in SMT architecture: the fetch unit.

II. LOW-QUALITY INSTRUCTION PREDICTION

Instruction queue in SMT architecture, like in superscalar

machines, is the core for out-of-order execution. Instructions
wait in instruction queue until their source operands become
available. There are many factors influencing instruction issue
delay (also referred to as IID), including instruction
dependency and resource availability.

Fig. 1 shows the IID distribution for a multiprogram
workload of a subset of the SPEC CPU2000 benchmark suit
which includes a wide variety of typical applications with high
and low IPC and those limited by memory, branch
misprediction, etc [10]. For workloads with two benchmarks
we simulated 200 million instructions after skipping the initial
200 million instructions. Workloads with four benchmarks
were fast-forwarded for 400 million instructions and then were
simulated for 400 million committed instructions. Instructions
are categorized based on their issue delay to high quality (HQ)

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

or low quality (LQ). If an instruction’s issue delay exceeds a
pre-determined threshold, we refer it as a low-quality
instruction otherwise it as a high-quality instruction. Through
this study we define LQ-instructions as those spending at least
5 cycles in the instruction queue. This threshold is dependent
on the processor configuration and it has been chosen after
experimenting with different numbers of cycles. On average,

when 2 threads are available, around 26% (maximum of 46%)
of the instructions are LQ, i.e., they spend at least 5 cycles in
the instruction queue. This drops to 15% in the case when 4
threads are available. This in fact is expected since with 4
threads the opportunity to fetch HQ instructions is higher.

Fig. 2 shows the configuration we propose to predict LQ-
instructions. Fetch unit reads instructions from the instruction
cache. Next, instructions are decoded and their logical register

operands are renamed to physical register. Renamed
instructions are dispatched to instruction queue. This is the
beginning of out of order execution. Before this stage all
instructions are processed in sequential order as in the
program. Once instructions pass this stage they can be
processed out of order. An instruction queue is a pool of
instructions waiting for their source operands to become
available. When operands become available, the instruction is
sent to an appropriate free functional unit. To predict LQ-
instructions we use a small 64-entry program counter (PC)-
indexed table. We refer to this table as the IID-table. While
exploiting larger and more complex structures may improve
prediction accuracy, we avoid such structures to keep power
and latency overhead at a low level.

To predict whether an instruction is LQ, we probe the IID-
table at dispatch stage. If the instruction PC is found in the
table, which indicates that the instruction was low quality last
time, we predict it to be low quality this time. An instruction
with both source operands ready before being dispatched to an
instruction queue is deemed HQ, and such prediction is
unnecessary. At instruction issue time, if an instruction's IID is
at least 5, we store its PC in the IID-table if it is not already in
it otherwise nothing is done. On the other hand, the PC of an
instruction having an IID less than 5 is removed from the IID-
table if it has an entry in it otherwise nothing is done.

We evaluate the proposed prediction scheme using two
metrics: prediction accuracy and prediction effectiveness.

LQ-instruction prediction accuracy reports how often
instructions predicted to have an issue delay of at least 5, do
indeed stay in the instruction queue for at least 5 cycles. This,
while important, does not provide enough information, as it
indicates nothing regarding the percentage of LQ-instructions
identified. Therefore, we also report prediction effectiveness,
i.e., the percentage of LQ-instructions identified.

A. Prediction Accuracy

In Fig. 3 we report prediction accuracy for LQ-instructions.
On average, prediction accuracy is 72%. In workloads with

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

gc
c_

eq
ua

ke

gz
ip_

eq
ua

ke

gc
c_

cra
fty

gc
c_

gz
ip

mgri
d_

eq
ua

ke

cra
fty

_e
qu

ak
e

cra
fty

_e
qu

ak
e_

gc
c_

gz
ip

gc
c_

gz
ip_

eq
ua

ke
_m

gri
d

mgri
d_

eq
uc

k_
cra

fty
_g

cc

4 Threads2 Threads

Fig. 1. Distribution of LQ-instructions in SMT processor.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

gc
c_

eq
ua

ke

gz
ip_

eq
ua

ke

gc
c_

cra
fty

gc
c_

gz
ip

mgri
d_

eq
ua

ke

cra
fty

_e
qu

ak
e

cra
fty

_e
qu

ak
e_

gc
c_

gz
ip

gc
c_

gz
ip_

eq
ua

ke
_m

gri
d

mgri
d_

eq
uc

k_
cra

fty
_g

cc

4 Threads2 Threads

Fig. 3. LQ-instruction prediction accuracy.
Fig. 2. SMT pipeline with logic to predict LQ-instructions.

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

two benchmarks, gzip has the highest accuracy (about 92%)
while crafty has the lowest rate (about 71%). Gzip and mgrid
have respectively the highest and lowest prediction accuracy
(82% and 25%) for workloads with four threads.

B. Prediction Effectiveness
In Fig. 4 we report prediction effectiveness. On average,

effectiveness is about 40%. In workloads with two
benchmarks, the maximum effectiveness is achieved for gzip
where we accurately identify more than 70% of LQ-
instructions. Minimum effectiveness is obtained for crafty,
where only about 18% of LQ-instructions are identified. The
same benchmarks also have the highest and lowest prediction
effectiveness for workloads with four threads (79% and 15%).
The identification of the characteristics of applications with
low prediction effectiveness will make an interesting study in
the future.

Overall, our scheme correctly predicts 42% of all LQ-

instructions. The average prediction accuracy is 72%.
Accordingly, we can use our predictor outcome in scheduling
decision when multiple threads compete to obtain common
resources. Predicted Non-LQ(HQ) instructions and thus
threads with lesser number of predicted LQ-instructions are
expected to have more contribution to processor throughput
since their instructions can be moved out of the instruction
queue faster than other threads. Therefore, at thread level
competition higher priority is assigned to threads with fewer
number of LQ-instructions in the instruction queue.

III. THREAD SCHEDULING DECISION IN FETCH UNIT

In this section we present a scheduling algorithm based on

LQ-instruction prediction. Then we compare our scheme to an
instruction-quality unconscious algorithm which schedules
regardless of thread behavior.

As explained earlier LQ-instructions stay in the instruction
queue for long cycles and as a result they impede subsequent
instructions that have data dependency to be issued. To achieve
a higher throughput, scheduling policy should be able to
identify threads which will use processor resources more
efficiently. We give a higher priority to threads which have
fewer number of predicted LQ-instructions in the instruction
queue. Threads with more predicted LQ-instructions do not
require as much hardware resources as the other threads since
these instructions stay in the instruction queue for a relatively
longer period. These threads are given lower priority in our
scheduling policy to maximize resource utilization. We refer to
this scheme as Low-LQ prediction based scheme.

Finally, to validate our proposed scheme we compare it to a
scheduling algorithm which gives a higher priority to threads
with more predicted LQ-instructions (High-LQ prediction
based). It can be argued that such algorithm would clear up the
overall system faster by fetching more LQ-instructions, thus
making them more readily available which may result in higher
overall IPC.

IV. RESULTS

In this section we report our analysis framework. For the
microarchitectural simulation, we used a modified version of
SMTSIM v2.0 alpha [2]. The base processor model which
fetches from at most two threads in the same cycle is detailed
in Table I.

Table I

Base processor configuration
Pipeline 9 stages
Fetch Policy 8 instructions/cycle, up to 2 threads
Functional Units 6 integer, 3 floating point
Instruction Queues 64-entry integer and floating point queues
Renaming Registers 100 integer and floating point
Commit Width 12 instructions/cycle
Branch Predictor Hybrid Predictor
BTB 4K entries, 4-way set associative
I-Cache 256KB, 2-way set associative, single

ported
D-Cache 256KB, 2-way set associative, dual ported
L2 cache 16 MB, direct mapped, 20-cycle latency,

fully pipelined
Memory bus 128 bits wide, 4-cycle latency

In Fig. 5 we report how scheduling policy based on LQ
prediction can improve performance over the traditional round-
robin policy. Across all workloads, Low-LQ scheduler has
higher IPC throughput over the round-robin scheme. On
average, scheduling based on LQ prediction improves
performance by 11%. Four-thread programs benefit more from
such scheduling than 2 threads. This shows the importance of
using a smart scheduler as the number of threads increases.

Fig. 6 compares the performance of the Low-LQ scheme
with the High-LQ prediction based scheme. Across all work-

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

gc
c_

eq
ua

ke

gz
ip_

eq
ua

ke

gc
c_

cra
fty

gc
c_

gz
ip

mgri
d_

eq
ua

ke

cra
fty

_e
qu

ak
e

cra
fty

_e
qu

ak
e_

gc
c_

gz
ip

gc
c_

gz
ip_

eq
ua

ke
_m

gri
d

mgri
d_

eq
uc

k_
cra

fty
_g

cc

2 Threads 4 Threads

Fig. 4. LQ instruction prediction effectiveness.

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

gc
c_

eq
ua

ke

gz
ip

_e
qu

ak
e

gc
c_

cr
af

ty

gc
c_

gz
ip

m
gr

id
_e

qu
ak

e

cr
af

ty
_e

qu
ak

e

cr
af

ty
_e

qu
ak

e_
gc

c_
gz

ip

gc
c_

gz
ip

_e
qu

ak
e_

m
gr

id

m
gr

id
_e

qu
ck

_c
ra

fty
_g

cc

av
er

ag
e

Th
ro

ug
hp

ut
 (I

PC
) High-LQ prediction based

Low-LQ prediction based

loads the Low-LQ scheme outperforms High-LQ scheme with
an average of 26% higher IPC. Low-LQ scheduling achieves a
higher IPC by smartly giving each thread the hardware
resources it requires, and clearing up the whole system faster.
In fact, the round-robin scheduling scheme performs better
than the High-LQ scheme in every benchmark.

Fig. 6. Performance degradation of High-LQ scheduling compare to Low-LQ
scheduling.

V. CONCLUSION AND FUTURE WORK

In this work, we defined LQ-instructions and introduced an

algorithm to predict these instructions. We then proposed an
LQ prediction based policy for thread scheduling decision in

the fetch unit. In thread level competition we assigned higher
priority to threads with fewer number of predicted LQ-
instructions. Our results showed a significant improvement
over the traditional round-robin scheduling scheme. The same
policy can be used in instruction level competition in which
higher priority is given to predicted HQ instructions. Future
work will examine LQ and HQ prediction based policies in
other common SMT processor resources such as register
renaming unit, instruction queue, TLBs and functional units.
The usefulness of instruction execution time as a decision
factor for scheduling will also be investigated. Furthermore,
the tradeoff between prediction overhead and the performance
gained will be studied.

REFERENCES

[1] Dean Tullsen, Susan Eggers, Joel Emer, Henry Levy, Jack Lo, and

Rebecca Stamm, “Exploiting Choice: Instruction Fetch and Issue on an
Implementable Simultaneous Multithreading Processor”, Proceedings of
the 23rd Annual International Symposium on Computer Architecture,
May 1996.

[2] Dean Tullsen, Susan Eggers, and Henry Levy, “Simultaneous
Multithreading: Maximizing On-Chip Parallelism”, Proceedings of the
22rd Annual International Symposium on Computer Architecture, June
1995.

[3] Josh Redstone, Susan Eggers, and Henry Levy, “Mini-threads: Increasing
TLP on Small-Scale SMT Processors”, Proceedings of the International
Conference on High-Performance Computer Architecture, February
2003.

[4] Sujay Parekh, Susan Eggers, Jack Lo, and Henry Levy, “Thread-
Sensitive Scheduling for SMT Processors”, University of Washington
Technical Report, 2000.

[5] Daniele Folegnani and Antonio Gonzalez, “Energy-Effective Issue
Logic,” Proceedings of the 28th Annual International Symposium on
Computer Architecture (ISCA-2001), Goteborg, Sweden, July 2001.

[6] Susan Eggers, Joel Emer, Henry Levy, Jack Lo, Rebecca Stamm, and
Dean Tullsen, “Simultaneous Multithreading: A Platform for Next-
generation Processors”, IEEE Micro, September/October 1997.

[7] Eric Tune, Rakesh Kumar, Dean M. Tullsen, Brad Calder, “Balanced
Multithreading: Increasing Throughput Via a Low Cost Multithreading
Hierarchy”, Proceedings of the 37th International Symposium on
Microarchitecture, December, 2004.

[8] Arun K. Somani and Joel Nickel, “REESE: A Method of Soft Error
Detection in Microprocessors”, Proceedings of the International
Conference on Dependable Systems and Networks (DSN-2001),
Goteborg, Sweden, July 2001.

[9] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy,
Karthik Sankaranarayanan, and David Tarjan, “Temperature-Aware
Microarchitecture”, Proceedings of the 30th Annual International
Symposium on Computer Architecture (ISCA-2003), June 2003.

[10] Standard Performance Evaluation Corporation: SPEC CPU 2000 V1.2 at
www.spec.org/cpu2000

[11] Chulho Shin, Seong-Won Lee, Jean-Luc Gaudiot, “Dynamic Scheduling
Issues in SMT Architectures”, Proceedings of the 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003).

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

gc
c_

eq
ua

ke

gz
ip

_e
qu

ak
e

gc
c_

cr
af

ty

gc
c_

gz
ip

m
gr

id
_e

qu
ak

e

cr
af

ty
_e

qu
ak

e

cr
af

ty
_e

qu
ak

e_
gc

c_
gz

ip

gc
c_

gz
ip

_e
qu

ak
e_

m
gr

id

m
gr

id
_e

qu
ck

_c
ra

fty
_g

cc

av
er

ag
e

Th
ro

ug
hp

ut
 (I

PC
)

Low-LQ prediction based
round-robin

 Fig. 5. Performance improvement achieved by using LQ prediction.

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from IEEE Xplore. Restrictions apply.

	ligne: 0-7803-8935-2/05/$20.00 ©2005 IEEE.

