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Abstract- A Simultaneous Multithreaded (SMT) Processor is 
capable of executing instructions from multiple threads in the 
same cycle. SMT in fact was introduced as a complementary 
architecture to superscalar to increase the throughput of the 
processor. Recently, several computer manufacturers have 
introduced their first generation SMT architecture. 

SMT permits multiple threads to compete simultaneously for 
shared resources. An example is the race for the fetch unit which 
is a critical logic responsible for thread scheduling decisions. 
When more threads than hardware execution contexts are 
available, the decision of choosing the best threads to fetch 
instructions from, will affect the processor's efficiency.  

In this paper we present a new approach to choose the most 
useful threads among all available threads while they compete on 
a shared resource. We identify the quality of instructions based on 
the time they spend in the instruction queue. Low-quality 
instructions spend more time in the instruction queue. 
Accordingly threads with fewer number of low-quality 
instructions have a higher contribution to the entire processor 
throughput. In an experimental study, we identify such low-
quality instructions in each thread to a maximum of 92% 
accuracy (average 72%). We exploit this to increase the overall 
processor throughput by giving higher priority to threads with 
lesser number of low-quality instructions. Overall we achieve an 
average of 11% performance improvement over the traditional 
algorithm that schedules threads in a round-robin fashion.   

 

I. INTRODUCTION 

 
A Simultaneous Multithreaded (SMT) Processor is capable 

of executing instructions from multiple threads in the same 
cycle [2, 6]. SMT introduces a complementary architecture to 
superscalar to increase the throughput of the processor by 
running different programs (which are referred to as threads) at 
the same time. In fact SMT exploits the independency of 
instructions belonging to different threads to increase the 
processor throughput.  

Past studies show that a considerable amount of hardware 
resources in conventional superscalar processors are unused 
during execution of a single program [2, 5, 8, and 9]. SMT 
attempts to use all superscalar resources by assigning them to 
multiple threads. Accordingly threads compete every cycle to 
acquire shared hardware resources such as instruction and data 
caches, TLBs, register renaming unit, fetch bandwidth, 
instruction queue and functional units [4]. The desirable policy 
in resource competition is the one which biases toward the 

threads with more contribution to the overall throughput. 
According to [1], a major factor that makes a thread more 
desirable over others is its instruction behavior in the 
instruction queue. To achieve a higher throughput, threads with 
instructions that spend the least time in the instruction queue 
should be given the highest priority in scheduling. The problem 
to find such a scheduling policy is that we basically have no 
information about the time instructions spend in the instruction 
queue before they are issued. Instead, several policies proposed 
in the literature use feedbacks from other parts of the processor 
as a replacement of such oracles scheduling [3, 4, 7 and 11]. 
An algorithm that gives priority to threads with the fewest 
instructions in the pipeline, and a fetch policy which gives 
priority to threads with the fewest D-cache misses are two 
examples of such proposals.  

In this work we take a step towards finding the oracles 
scheduler. We first study instruction behavior in SMT 
processors. Then we propose an approach to predict the time 
instruction spend in instruction queue before they are issued 
(we refer to this factor as issue delay). Issue delay prediction 
outcome can then be used for scheduling decision in any thread 
or instruction race condition to get processor resources. 
Finally, to improve processor throughput, we use our 
prediction outcome for scheduling decision in one of the 
shared resources in SMT architecture: the fetch unit. 
 

II. LOW-QUALITY INSTRUCTION PREDICTION 

 
Instruction queue in SMT architecture, like in superscalar 

machines, is the core for out-of-order execution. Instructions 
wait in instruction queue until their source operands become 
available. There are many factors influencing instruction issue 
delay (also referred to as IID), including instruction 
dependency and resource availability.  

Fig. 1 shows the IID distribution for a multiprogram 
workload of a subset of the SPEC CPU2000 benchmark suit 
which includes a wide variety of typical applications with high 
and low IPC and those limited by memory, branch 
misprediction, etc [10]. For workloads with two benchmarks 
we simulated 200 million instructions after skipping the initial 
200 million instructions.  Workloads with four benchmarks 
were fast-forwarded for 400 million instructions and then were 
simulated for 400 million committed instructions. Instructions 
are categorized based on their issue delay to high quality (HQ) 
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or low quality (LQ). If an instruction’s issue delay exceeds a 
pre-determined threshold, we refer it as a low-quality 
instruction otherwise it as a high-quality instruction. Through 
this study we define LQ-instructions as those spending at least 
5 cycles in the instruction queue. This threshold is dependent 
on the processor configuration and it has been chosen after 
experimenting with different numbers of cycles. On average, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

     
when 2 threads are available, around 26% (maximum of 46%) 
of the instructions are LQ, i.e., they spend at least 5 cycles in 
the instruction queue. This drops to 15% in the case when 4 
threads are available. This in fact is expected since with 4 
threads the opportunity to fetch HQ instructions is higher. 

Fig. 2 shows the configuration we propose to predict LQ- 
instructions. Fetch unit reads instructions from the instruction 
cache. Next, instructions are decoded and their logical register 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

operands are renamed to physical register. Renamed 
instructions are dispatched to instruction queue. This is the 
beginning of out of order execution. Before this stage all 
instructions are processed in sequential order as in the 
program. Once instructions pass this stage they can be 
processed out of order. An instruction queue is a pool of 
instructions waiting for their source operands to become 
available. When operands become available, the instruction is 
sent to an appropriate free functional unit. To predict LQ-
instructions we use a small 64-entry program counter (PC)-
indexed table. We refer to this table as the IID-table. While 
exploiting larger and more complex structures may improve 
prediction accuracy, we avoid such structures to keep power 
and latency overhead at a low level. 

To predict whether an instruction is LQ, we probe the IID-
table at dispatch stage. If the instruction PC is found in the 
table, which indicates that the instruction was low quality last 
time, we predict it to be low quality this time. An instruction 
with both source operands ready before being dispatched to an 
instruction queue is deemed HQ, and such prediction is 
unnecessary. At instruction issue time, if an instruction's IID is 
at least 5, we store its PC in the IID-table if it is not already in 
it otherwise nothing is done. On the other hand, the PC of an 
instruction having an IID less than 5 is removed from the IID-
table if it has an entry in it otherwise nothing is done.  

We evaluate the proposed prediction scheme using two 
metrics: prediction accuracy and prediction effectiveness. 

LQ-instruction prediction accuracy reports how often 
instructions predicted to have an issue delay of at least 5, do 
indeed stay in the instruction queue for at least 5 cycles. This, 
while important, does not provide enough information, as it 
indicates nothing regarding the percentage of LQ-instructions 
identified. Therefore, we also report prediction effectiveness, 
i.e., the percentage of LQ-instructions identified. 

 
A. Prediction Accuracy 

In Fig. 3 we report prediction accuracy for LQ-instructions. 
On average, prediction accuracy is 72%. In  workloads with 
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Fig. 1. Distribution of LQ-instructions in SMT processor. 
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Fig. 3. LQ-instruction prediction accuracy. 
Fig. 2. SMT pipeline with logic to predict LQ-instructions. 
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two benchmarks, gzip has the highest accuracy (about 92%) 
while crafty has the lowest rate (about 71%). Gzip and mgrid 
have respectively the highest and lowest prediction accuracy 
(82% and 25%) for workloads with four threads. 

 

B. Prediction Effectiveness 
In Fig. 4 we report prediction effectiveness. On average, 

effectiveness is about 40%. In workloads with two 
benchmarks, the maximum effectiveness is achieved for gzip 
where we accurately identify more than 70% of LQ- 
instructions. Minimum effectiveness is obtained for crafty,  
where only about 18% of LQ-instructions are identified. The 
same benchmarks also have the highest and lowest prediction 
effectiveness for workloads with four threads (79% and 15%). 
The identification of the characteristics of applications with 
low prediction effectiveness will make an interesting study in 
the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Overall, our scheme correctly predicts 42% of all LQ- 

instructions. The average prediction accuracy is 72%. 
Accordingly, we can use our predictor outcome in scheduling 
decision when multiple threads compete to obtain common 
resources. Predicted Non-LQ(HQ) instructions and thus 
threads with lesser number of predicted LQ-instructions are 
expected to have more contribution to processor throughput 
since their instructions can be moved out of the instruction 
queue faster than other threads. Therefore, at thread level 
competition higher priority is assigned to threads with fewer 
number of LQ-instructions in the instruction queue. 

 
 

III. THREAD SCHEDULING DECISION IN FETCH UNIT 

 
In this section we present a scheduling algorithm based on 

LQ-instruction prediction. Then we compare our scheme to an 
instruction-quality unconscious algorithm which schedules 
regardless of thread behavior.  

As explained earlier LQ-instructions stay in the instruction 
queue for long cycles and as a result they impede subsequent 
instructions that have data dependency to be issued. To achieve 
a higher throughput, scheduling policy should be able to 
identify threads which will use processor resources more 
efficiently. We give a higher priority to threads which have 
fewer number of predicted LQ-instructions in the instruction 
queue. Threads with more predicted LQ-instructions do not 
require as much hardware resources as the other threads since 
these instructions stay in the instruction queue for a relatively 
longer period. These threads are given lower priority in our 
scheduling policy to maximize resource utilization. We refer to 
this scheme as Low-LQ prediction based scheme. 

Finally, to validate our proposed scheme we compare it to a 
scheduling algorithm which gives a higher priority to threads 
with more predicted LQ-instructions (High-LQ prediction 
based). It can be argued that such algorithm would clear up the 
overall system faster by fetching more LQ-instructions, thus 
making them more readily available which may result in higher 
overall IPC.  

 

IV. RESULTS 

In this section we report our analysis framework. For the 
microarchitectural simulation, we used a modified version of 
SMTSIM v2.0 alpha [2]. The base processor model which 
fetches from at most two threads in the same cycle is detailed 
in Table I.  

 
Table I  

Base processor configuration 
Pipeline 9 stages 
Fetch Policy 8 instructions/cycle, up to 2 threads     
Functional Units 6 integer, 3 floating point 
Instruction Queues 64-entry integer and floating point queues 
Renaming Registers 100 integer and floating point 
Commit Width 12 instructions/cycle 
Branch Predictor Hybrid Predictor 
BTB 4K entries, 4-way set associative 
I-Cache 256KB, 2-way set associative, single 

ported  
D-Cache 256KB, 2-way set associative, dual ported 
L2 cache 16 MB, direct mapped, 20-cycle latency, 

fully pipelined 
Memory bus 128 bits wide, 4-cycle latency 

 

In Fig. 5 we report how scheduling policy based on LQ 
prediction can improve performance over the traditional round-
robin policy. Across all workloads, Low-LQ scheduler has 
higher IPC throughput over the round-robin scheme. On 
average, scheduling based on LQ prediction improves 
performance by 11%. Four-thread programs benefit more from 
such scheduling than 2 threads. This shows the importance of 
using a smart scheduler as the number of threads increases.  

Fig. 6 compares the performance of the Low-LQ scheme 
with the High-LQ prediction based scheme. Across all work- 
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Fig. 4. LQ instruction prediction effectiveness. 
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loads the Low-LQ scheme outperforms High-LQ scheme with 
an average of 26% higher IPC. Low-LQ scheduling achieves a 
higher IPC by smartly giving each thread the hardware 
resources it requires, and clearing up the whole system faster. 
In fact, the round-robin scheduling scheme performs better 
than the High-LQ scheme in every benchmark. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

Fig. 6. Performance degradation of High-LQ scheduling compare to Low-LQ 
scheduling. 

 

V. CONCLUSION AND FUTURE WORK 

 
In this work, we defined LQ-instructions and introduced an 

algorithm to predict these instructions. We then proposed an 
LQ prediction based policy for thread scheduling decision in  

the fetch unit. In thread level competition we assigned higher 
priority to threads with fewer number of predicted LQ-
instructions. Our results showed a significant improvement 
over the traditional round-robin scheduling scheme. The same 
policy can be used in instruction level competition in which 
higher priority is given to predicted HQ instructions. Future 
work will examine LQ and HQ prediction based policies in 
other common SMT processor resources such as register 
renaming unit, instruction queue, TLBs and functional units. 
The usefulness of instruction execution time as a decision 
factor for scheduling will also be investigated. Furthermore, 
the tradeoff between prediction overhead and the performance 
gained will be studied. 
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 Fig. 5. Performance improvement achieved by using LQ prediction. 
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