
A Comprehensive Memory Analysis of Data Intensive
Workloads on Server Class Architecture

Hosein Mohammadi Makrani
George Mason University

Fairfax, Virginia
hmohamm8@gmu.edu

Hossein Sayadi
George Mason University

Fairfax, Virginia
hsayadi@gmu.edu

Sai Manoj Pudukotai
Dinakarra

George Mason University
Fairfax, Virginia

saimanoj.p.2013@ieee.org

Setareh Rafatirad
George Mason University

Fairfax, Virginia
srafatir@gmu.edu

Houman Homayoun
George Mason University

Fairfax, Virginia
hhomayou@gmu.edu

ABSTRACT
The emergence of data analytics frameworks requires computa-
tional resources and memory subsystems that can naturally scale to
manage massive amounts of diverse data. Given the large size and
heterogeneity of the data, it is currently unclear whether data ana-
lytics frameworks will require high performance and large capacity
memory to cope with this change and exactly what role main mem-
ory subsystems will play; particularly in terms of energy efficiency.
In this paper, we investigate how the choice of DRAM (high-end
vs low-end) impacts the performance of Hadoop, Spark, and MPI
based Big Data workloads in the presence of different storage types
on a local cluster. Our results show that Hadoop workloads do
not require high capacity memory. However, Spark and MPI based
workloads require large capacity memory. Moreover, Increasing
memory bandwidth through the increasing memory frequency
or the number of channels does not improve the performance of
Hadoop workloads while iterative tasks in Spark and MPI benefits
from high bandwidth memory. Among the configurable parameters,
our results indicate that increasing the number of DRAM channels
reduces DRAM power and improves the energy-efficiency across
all applications.

CCS CONCEPTS
•Hardware→Memory anddense storage;Memory anddense
storage; • Computer systems organization → Multicore archi-
tectures; Cloud computing;Multicore architectures; Cloud computing;

KEYWORDS
Memory, DRAM, Characterization, Performance, Power, Big Data,
Hadoop, Spark, In-Memory processing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6475-1/18/10. . . $15.00
https://doi.org/10.1145/3240302.3240320

ACM Reference Format:
Hosein Mohammadi Makrani, Hossein Sayadi, Sai Manoj Pudukotai Di-
nakarra, Setareh Rafatirad, and Houman Homayoun. 2018. A Comprehen-
sive Memory Analysis of Data Intensive Workloads on Server Class Ar-
chitecture. In The International Symposium on Memory Systems (MEMSYS),
October 1–4, 2018, Old Town Alexandria, VA, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3240302.3240320

1 INTRODUCTION
Big data is an enabler of future strategies and immediate change
through the power of predictive analytics and advanced data sci-
ence. Properly harnessing data can help to achieve better, fact-based
decision-making and improve the overall customer experience. By
using new big data technologies, companies can answer questions
in seconds rather than days, and in days rather than months. This
acceleration allows businesses to enable the type of quick reactions
to key business questions and challenges that can build competi-
tive advantage and improve performance, and provide answers for
complex problems or questions that have resisted analysis.

Big data analytics applications heavily rely on machine learning
and data mining algorithms [34, 35], and are running complex soft-
ware stack with significant interaction with I/O and OS, and exhibit
high computational intensity and I/O intensity [9]. In addition, un-
like conventional CPU applications, big data applications combine
a high data rate requirement with high computational power re-
quirement, in particular for real-time and near-time performance
constraints.

Big data frameworks such as Hadoop, Spark, and MPI are three
popular platform that enables big data analytics. Hadoop has been
developed to use a cluster of commodity server to process large
datasets. However, Spark is developed to overcome the limitation
of Hadoop on efficiently utilizing main memory. MPI, a de facto
industry standard for parallel programming on distributed memory
systems, is also another platform used for data analytics [37].

In the era of big data, it is important to evaluate the effect of
main memory parameters on the performance of data intensive
applications in the presence of different storage types.While there is
literature on understanding the behavior of big data applications by
characterizing them, most of prior works have focused on the CPU
parameters such as core counts, core frequency, cache parameters,
and network configuration or I/O implication with the assumption

https://doi.org/10.1145/3240302.3240320
https://doi.org/10.1145/3240302.3240320

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA H. Makrani et al.

of the demand for using the fastest and largest main memory in
the commodity hardware [4, 12, 16, 17, 20, 27, 31].

In this paper, we evaluate the impact of the memory parame-
ters on the performance and energy efficiency of big data analytics
frameworks. To perform the memory subsystem analysis, we have
investigated three configurable memory parameters includingmem-
ory capacity, memory frequency, and number of memory channels,
to determine how these parameters affect the performance and
power consumption of big data applications. Additionally, we study
the impact of storage on the memory behavior of big data appli-
cations. This analysis helps in making architectural decision such
as what memory architecture to use to build a server for big data
applications.

Our evaluation reveals that Hadoop applications do not require
a high bandwidth-capacity memory subsystem to enhance the per-
formance. Improving memory subsystem parameters beyond 1866
MHz Frequency and a single channel does not enhance Hadoop
performance noticeably. Moreover, Hadoop framework does not
require large capacity memory, since it stores all intermediates
data on the storage rather than in the main memory. On the other
hand, Spark and MPI applications benefit from higher memory fre-
quency and number of channels if the application is iterative such
as machine learning algorithms. However, increasing the number
of memory channels beyond two channels does not enhance the
performance of those applications. This is an indication for lack
of efficient memory allocation and management in both hardware
(memory controller) as well as software stack.

Furthermore, our results show that the memory usage of Spark
framework is predictable that helps to not over-provision the mem-
ory capacity for Spark based big data applications. On the other
hand, MPI framework shows that its memory capacity requirement
varies significantly across studied applications. This therefore in-
dicates that applications implemented with MPI are requiring a
large capacity memory to prevent from becoming a performance
bottleneck. To understand whether our observations on memory
subsystem behavior remains valid for future architectures with
higher number of cores, larger cache capacity, and higher operat-
ing frequency, we performed further micro-architectural study to
understand the impact of these parameters on memory behavior.
Our results suggest to use a low frequency DRAM memory with
high number of channels which reduces the power consumption of
DRAM by 57% without any performance degradation in order to
improve the energy efficiency of big data clusters.

The findings of this study are important as they help server
designers to avoid over provisioning the memory subsystem for
many of data analytics applications. Moreover, we found that the
current storage systems are the main bottleneck for the studied
applications hence any further improvement of memory and CPU
architecture without addressing the storage problem is a waste of
money and energy.

The remainder of this paper is organized as follows: Section 2
provides technical overview of the investigated workloads and the
experimental setup. Results are presented in Section 3. Section 4
describes related works. Finally, Section 5 concludes the paper.

2 EXPERIMENTAL SETUP
In this section, we present our experimental system configurations
and its setup. We first introduce the studied frameworks and work-
loads. We then describe our hardware platform. Finally, we present
experimental methodology and the tuning of HDFS (Hadoop Dis-
tributed File System) block size in order to optimize the platform
for Hadoop and Spark frameworks.

2.1 Frameworks
Hadoop:One of the most popular framework for big data is MapRe-
duce introduced by Google. Apache Hadoop is a java-based open
source implementation of the MapReduce programming model,
which is pivotal in big data computing [1]. Hadoop has been uti-
lized in various areas, such as machine learning, search engines, log
analysis, and e-commerce. The success of Hadoop is due to its scal-
ability, fault tolerance, and simplicity of programming. Hadoop is
composed of two layers. The first layer is a data storage called HDFS
and the second layer is a data processor called Hadoop MapReduce
framework. HDFS is a block based file system. Hadoop MapReduce
cannot keep reused data and state information during execution
[14]. Hence, it has to iteratively read the same data in each iter-
ation, which results in significant disk accesses and unnecessary
overhead.

Spark: Spark is anotherMapReduce-like cluster computing frame-
work designed to overcome Hadoop’s shortage in utilizing main
memory. Spark uses HDFS as data storage system. In addition, Spark
uses a new data structure called Resilient Distribute Dataset (RDD).
The main responsibility of RDD is to cache data, which avoids data
reloading from the disk. RDD allows users to cache the high value
data in memory, and controls the persistence of data. It is suitable
for applications with iterative algorithms that can achieve tremen-
dous speed up. Moreover, Spark supports a Directed Acyclic Graph
(DAG) schedule which avoids materializing the intermediate values
by pipeline operations to decrease I/O accesses. While Hadoop uses
a heartbeat scheduler to communicate scheduling decisions which
impose 5 to 10 second delay, Spark task scheduling is low latency
through an event-driven architecture.

MPI: A peer-to-Peer network is a decentralized and distributed
network where thousands of machines connected in the network
consume, as well as, serve resources. Nodes use Message Passing
Interface (MPI) to communicate and exchange data between them-
selves. One of the features of MPI is that a process does not need
to read same data over and over because it can live as long as the
system runs. However, MPI has a major drawback of lacking fault
tolerance. Each node in this network is a single point of failure
that can cause the whole system to shut down. Hence, users who
prefer a robust and fault tolerant framework exploit other big data
framework such as Hadoop. In response to this issue, there are
plans to include fault-tolerance inside the MPI model in its next
major release. In this paper, our focus is not on MPI applications
but on data analytics workloads which use MPI for parallel imple-
mentation. The nature of most of big data applications is simple but
the main challenge is to process big amount of data which is out
of the capability of a single server to process. Therefore, findings
of this paper regarding MPI are only valid for studied applications.

A Comprehensive Memory Analysis of Data Intensive
Workloads on Server Class Architecture MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

It is important to note that, there are complex MPI based applica-
tions (outside of the scope of this study) that could have completely
different behavior than what we have observed in our experiments.

In our study, we used Hadoop MapReduce version 2.7.1, Spark
version 2.1.0 in conjunction with Scala 2.11, and MPICH2 version
3.2 installed on Linux Ubuntu 16.04 LTS. Our JVM version is 1.8.

2.2 Workloads
Big data analytics applications are characterized by four critical
features, referred as the four "Vs": volume, velocity, variety, and
veracity. Big data is inherently large in volume. Velocity refers to
how fast the data is coming in and to how fast it needs to be analyzed.
Variety refers to the number and diversity of sources of data and
databases, such as sensor data, social media, multimedia, text, and
much more. Veracity refers to the level of trust, consistency, and
completeness of data. The diversity of applications is important for
characterizing big data frameworks. This diversity can enable users
to optimize their programs considering the memory configuration
of the framework.

Similarly, cluster designers can evaluate their candidate mem-
ory configurations by considering different classes of applications.
Hence, for this study we target various domains of applications
namely that of microkernels, graph analytics, machine learning,
E-commerce, social networks, search engines, and multimedia. We
used BigDataBench [37] and HiBench [14] for the choice of bench-
marking. We selected a diverse set of applications and frameworks
to be representative of data analytics domain. More details of these
workloads are provided in Table 1. The selected workloads have
different characteristics such as high level data graph and different
input/output ratios. Some of them have unstructured data type and
some others are graph based. Also these workloads are popular in
academia and are widely used in various studies.

2.3 Hardware platform
We carefully selected our experimental platform to investigate the
micro-architectural effect on the performance of data analytics
frameworks to understand whether our observations on memory
subsystem behavior remains valid for future architectures with
enhanced microarchitecture parameters or not. This includes an-
alyzing the results when increasing the core count and processor
operating frequency. This is important, as the results will shed light
on whether in future architectures larger number of cores, higher
cache capacity and higher operating frequency change memory
behavior of big data applications or not. Using the data collected
from our experimental test setup, we will drive architectural con-
clusion on how these microarchitecture parameters are changing
DRAMmemory behavior and therefore impacting performance and
energy-efficiency of data intensive applications.

For running the workloads and monitoring statistics, we used a
six-node standalone cluster with detailed characteristics presented
in Table 2. To have a comprehensive experiment we used different
SDRAMmemory modules. All modules are provided from the same
vendor. We used single socket servers in this study, in order to
hide the NUMA effect (to understand DRAM-only impact). While
network overhead in general is influencing the performance of
studied applications and therefore the characterization results, for

big data applications, as shown in a recent work [30], a modern
high speed network introduces only a small 2% performance benefit.
We therefore used a high speed 1 Gbit/s network to avoid making it
a performance bottleneck for this study. Our NICs have two ports
and we used one of them per node for this study.

2.4 Methodology
The experimental methodology of this paper is focused on under-
standing how data analytics frameworks are utilizing main memory.

Data collection:We used Intel Performance Counter Monitor
tool (PCM) [2] to understand hardware (memory and processor)
behavior. The performance counter data are collected for the en-
tire run of each application, those counters were used to get the
amount of Bytes read or written by memory controller to calculate
the memory bandwidth. We collect OS-level performance informa-
tion with DSTAT tool-a profiling tool for Linux based systems by
specifying the event under study. Some of the metrics that we used
for this study are memory footprint, L2, and Last Level Cache (LLC)
hits ratio, instruction per cycle (IPC), core C0 state residency, and
power consumption. For power measurement, we used PCM-power
utility [2], which provides the detailed power consumption of each
socket and DRAM. We did not use WattsUp power meter because
it does not have the breakdown of power and also it collects power
consumption of several parts of the system which are not related
to this study. Throughout this paper we will present the results
based on high speed SSD disk. The default values for experiments
are as follow: DRAM capacity=32GB, number of memory chan-
nels=4, memory frequency=2400 MHz, core count per CPU=16,
CPU frequency=2.6 GHz.

Parameter tuning: For both Hadoop and Spark frameworks,
it is important to set the number of mapper and reducer slots ap-
propriately to maximize the performance. Based on the result of
[13], the maximum number of mappers running concurrently on
the system to maximize performance should be equal to the to-
tal number of available CPU cores in the system. Therefore, for
each experiment, we set the number of mappers equal to the total
number of cores. We also follow same approach for the number
of parallel tasks in MPI. Adjusting default memory parameters of
Hadoop and Spark also is important. Hence, we tuned Hadoop and
Spark memory related configuration parameters. Followings are
two most important memory related parameters that we tuned for
all experiments:

mapreduce.map.memory.mb: is the uppermemory limit that Hadoop
allows to be allocated to amapper, inmegabytes. spark.executor.memory:
Amount of memory to use per executor process in Spark (e.g. 2g,
8g).

We set those values according to the following (we reserved 20%
of DRAM capacity for OS):

mapreduce .map.memory.mb =

(DRAMcapacity × 0.8)/
Numbero f concurrentmapperspernode

(1)

spark .executor .memory =

((DRAMcapacity − spark .driver .memory) × 0.8)/
Numbero f executorpernode

(2)

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA H. Makrani et al.

Table 1: Studied workloads

Workload Domain Input type Input size (huge) Framework Suite
Wordcount micro-kernel text 1.1 TB

Sort micro-kernel data 178.8 GB Hadoop, Spark, MPI
Grep micro-kernel text 1.1 TB BigData Bench

Terasort micro-kernel data 834 GB Hadoop, Spark
Naive Bayes E-commerce Data 306 GB Hadoop, Spark, MPI
Page Rank E-commerce Data 306 GB Hadoop, Spark
Bayes E-commerce Data 306 GB Hadoop, Spark HiBench

k-means Machine learning Graph 112.2 GB Hadoop, Spark, MPI BigDataBench
nweight Graph analytics Graph 176 GB Spark

HiBenchAggregation Analytical query Data 1.08 TB
HadoopJoin Analytical query Data 1.08 TB

Scan Analytical query Data 1.08 TB
B.MPEG Multimedia DVD stream 437 GB

MPI BigDataBench

DBN Multimedia Images MNIST Dataset
Speech recognition Multimedia Audio 252 GB
Image segmentation Multimedia Images 162 GB

SIFT Multimedia Images 162 GB
Face detection Multimedia Images 162 GB

Table 2: Hardware Platform

Hardware Parameter Valuetype

CPU

Model Intel Xeon
E5-2683 V4

Core 16 (32 thread)
Base Frequency 2.1 GHz
Turbo Frequency 3.0 GHz
TDP 120
L3 Cache 40 MB
Memory Type DDR4
Support 1866/2133/2400
Maximum Memory 76.8 GB/SBandwidth
Max Memory 4Channels supported

Disk
Model Samsung 960 PRO M.2
Capacity 512 GB

(SSD PCIE) Speed Max 3.5 GB/S

Disk
Model HyperX FURY
Capacity 480 GB

(SSD SATA) Speed 500 MB/S

Disk
Model Seagate
Capacity 500 GB

(HDD) Speed 7200 RPM
Network Model ST1000SPEXD4

Interface card Speed 1000 Mbps

A recent work has shown that among other tuning parameters in
a MapReduce framework, HDFS block size is also influential on
the performance [10]. HDFS Block size has a direct relation to the
number of parallel tasks (in Spark and Hadoop), as shown in EQ.
(3).

Numbero f Tasks = InputSize/BlockSize (3)

In the above equation, the input size is the size of data that is
distributed among nodes. The block size is the amount of data
that is transferred among nodes. Hence, block size has impact on
the network traffic and its usage. Therefore, we first evaluate how
changing this parameter affects the performance of the system.
We studied a broad range of HDFS block sizes varying from 32

MB to 1GB when the main memory capacity is 64 GB per node
and it has the highest frequency and number of channels. Table 3
demonstrates the best HDFS configuration for maximizing the per-
formance in both Hadoop and Spark frameworks based on the ratio
of Input data size to the total number of available processing cores,
and the application class. The rest of the experiments presented in
this paper are based on Table 3 configuration. We will present the
classification of applications into CPU-intensive, I/O-intensive, and
memory-intensive tasks in next section. Our tuning methodology
helps to put high pressure on memory subsystem.

Table 3: HDFS block size tuning

Application Input size/(# nodes × #cores per node)
class <64 MB <512 MB <4 GB > 4 GB
CPU 32 MB 64 MB 128 MB 256 MBintensive
I/O 64 MB 256 MB 512 MB 1 GBintensive

Iterative 64 MB 128 MB 256 MB 512 MBtasks

3 RESULTS
Our experimental results are presented in this section. First, we
present the memory analysis of the studied workloads. We present
how performance of studied workloads is sensitive to memory
capacity, frequency and number of channels. Then, we provide
results of architectural implication of processor parameters on data
analytics frameworks and memory requirements. We also discuss
the impact of storage system, and size of input data on memory
subsystem. In addition, we present the power analysis results. This
is to help finding out which memory configuration is a better choice
for energy-efficient big data processing.

3.1 Memory Analysis
In this section, we present a comprehensive discussion on memory
analysis results to help better understanding the memory require-
ments of big data frameworks. As the focus of this study is on the

A Comprehensive Memory Analysis of Data Intensive
Workloads on Server Class Architecture MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

Wordcount sort Grep Terasort PageRank Bayes nBayes Nweight Kmeans

N
o

rm
al

iz
ed

 e
x
e

ti
m

e

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

Wordcount sort Grep nBayes Kmeans B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa. Detc.

N
o

rm
al

iz
ed

 e
xe

 t
im

e

(a) Hadoop

(b) Spark

(c) MPI

0.9

0.96

1.02

1.08

1.14

1.2

1.26

1.32

1.38

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

Wordcount sort Grep Terasort PageRank Bayes nBayes Aggre. Join Scan Kmeans

N
o

rm
al

iz
ed

 e
x
e

ti
m

e

Figure 1: Effect of memory channel on the execution time
(Normalized to 4CH)

memory subsystem, each memory related experiment has been
performed 5 times. We present the average results, and also the
minimum and maximum values of each set of experiments as an
error bar.

Memory channels implication: The off-chip peak memory
bandwidth equation is shown in EQ. (4).

Bandwidth = Channels × Frequency ×Width (4)

We observe in Figure 1 that increasing the number of chan-
nels from 1 to 4 does not significantly reduces the execution time
of Hadoop applications (on average 6%). However, the execution
time of K-means and Nweight in Spark framework, and Image seg-
mentation with MPI implementation reduces more than 30%. It is
noteworthy that aforementioned workloads are iterative tasks. Fig-
ure 2 provides more insights to explain this exceptional behavior.
This figure demonstrates the memory bandwidth usage of each
workload. K-means, Image Segmentation, and Nweight memory
bandwidth usages are shown to be substantially higher than other
workloads. One reason is those workloads are iterative and the
second reason is the low cache hit rate of these application that
cause excessive access to main memory (we will present that cache
hit rate later in this paper). Therefore, providing more bandwidth
improves their performance. By increasing the number of channels
from 1 to 4, the performance gain is found to be 38%.

Memory frequency implication:As results in Figure 3 shows,
similarly we don’t observe significant reduction of execution time
by increasing memory frequency (from 1866 MHz to 2400 MHz) for
most of Hadoop applications. This finding may mislead to use the
lowest memory frequency for Hadoop applications. Based on EQ.

0

3000

6000

9000

12000

15000

18000

21000

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

1
C

H

2
C

H

4
C

H

Wordcount sort Grep Terasort PageRank Bayes nBayes Nweight Kmeans

B
an

d
w

id
th

(M

B
p
S

)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

1
C

H
2
C

H
4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4

C
H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

1
C

H
2

C
H

4
C

H

Wordcount sort Grep nBayes Kmeans B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa. Detc.
B

an
d

w
id

th

(M
B

p
S

)

(a) Hadoop

(c) MPI

(b) Spark

0

3000

6000

9000

12000

15000

18000

21000

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

1
C

H
2
C

H
4
C

H

Wordcount sort Grep Terasort PageRank Bayes nBayes Aggre. Join Scan Kmeans

B
an

d
w

id
th

 (
M

B
p

S
)

Figure 2: Impact of memory channel on bandwidth usage

(5), read latency of DRAM depends on the memory frequency.

Readlatency = 2 × (CL/Frequency) (5)

However, for DDRx (e.g. DDR3), this latency is set fixed by the
manufacturer with controlling CAS latency (CL). This means two
memory modules with different frequency (1333 MHz and 1866
MHz) and different CAS Latency (9 and 13) can have the same
read latency of 13.5 ns, but provide different bandwidth per chan-
nel (10.66 GB/s and 14.93 GB/s). Hence, as along as reduction of
frequency does not change the read latency, it is recommended
to reduce DRAM frequency for Hadoop applications. In the other
hand, we observe that iterative tasks in Spark and MPI require
high frequency memory and their execution time reduces by high
bandwidth memory.

DRAM capacity implication: To investigate the impact of
memory capacity on the performance of big data applications, we
run all workloads with 7 different memory capacities per node. Dur-
ing our experiments, Spark workloads encountered an error when
running on a 4GBmemory capacity per node due to lack of memory
space for the Java heap. Hence, the experiment of Spark workloads
is performed with at least 8 GB of memory. An interesting ob-
servation is that a large memory capacity has not impact on the
performance of studied Hadoop workloads. Hadoop applications
do not require high capacity memory because Hadoop stores all
intermediate values generated by map tasks on the storage. Hence,
regardless of the number of map tasks or input size, the memory
usage remains almost the same. In our experiments, the memory
capacity usage of studied Hadoop applications never exceeded 4
GB on each node.

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA H. Makrani et al.

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8

6
6

M

2
1

3
3

M

2
4

0
0

M

1
8

6
6

M

2
1

3
3

M

2
4

0
0

M

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8
6

6
M

2
1

3
3

M

2
4

0
0

M

1
8

6
6

M

2
1

3
3

M

2
4

0
0

M

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8
6

6
M

2
1
3

3
M

2
4

0
0

M

1
8

6
6

M

2
1

3
3

M

2
4

0
0

M

Wordcount sort Grep Terasort PageRank Bayes nBayes Nweight Kmeans

N
o
rm

al
iz

ed
 e

xe
 t

im
e

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8

6
6
M

2
1

3
3
M

2
4

0
0
M

1
8

6
6
M

2
1

3
3
M

2
4

0
0
M

1
8

6
6
M

2
1

3
3
M

2
4

0
0
M

1
8

6
6
M

2
1
3

3
M

2
4
0

0
M

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8
6

6
M

2
1
3

3
M

2
4
0

0
M

1
8

6
6
M

2
1

3
3
M

2
4

0
0
M

1
8

6
6
M

2
1

3
3
M

2
4

0
0
M

Wordcount sort Grep nBayes Kmeans B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa. Detc.

N
o
rm

al
iz

ed
 e

xe
 t

im
e

(b) Spark

(a) Hadoop

(c) MPI

0.9

0.96

1.02

1.08

1.14

1.2

1.26

1.32

1.38

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

1
3

3
3
M

1
6

0
0
M

1
8

6
6
M

Wordcount sort Grep Terasort PageRank Bayes nBayes Aggre. Join Scan Kmeans

N
o

rm
al

iz
ed

 e
x
e

ti
m

e

Figure 3: Effect of memory frequency on the execution time
(Normalized to 2400MHz)

0.9

1

1.1

1.2

1.3

1.4

4 GB 8 GB 1 6 GB 2 4 GB 3 2 GB 4 8 GB 6 4 GB

N
o
rm

al
iz

ed
 e

xe
 t

im
e

Hadoop Spark MPI

Figure 4: Impact of memory capacity per node on perfor-
mance

However, Spark and MPI based applications show different be-
havior. Spark uses RDD to cache intermediate values in memory.
Hence, by increasing the number of map tasks to run on a node,
the memory usage increases. Therefore, by knowing the number
of map tasks assigned to a nodes and the amount of intermediate
values generated by each task, the maximum memory usage per
node of Spark applications is predictable. To better understand the
impact of memory capacity on the performance, we have provided
the average normalized execution time of these three frameworks
in Figure 4 (Normalized to 64 GB). To illustrate how these frame-
works utilize DRAM capacity we present K-means memory usage
on different frameworks in Figure 5.

0

500000000

1E+09

1.5E+09

2E+09

2.5E+09

3E+09

3.5E+09

4E+09

1 9

17 2
5 33 41 4
9

5
7 65 73 8
1 89 97

1
0

5

11
3

12
1

1
2

9

1
3

7

14
5

15
3

1
6

1

16
9

17
7

1
8

5

M
e

m
o

ry
 U

sa
g

e
 (B

yt
e

)

Time(Second)

Read from
Storage

Write to
Storage

Read from
Storage

Write to
Storage

Computation Computation

Map phase Reduce phase

Input Data Intermediate values Output Data

(a) Hadoop

(b) Spark

Time (s)

M
em

o
ry

 u
sa

ge
 (

B
yt

e)

Figure 5: K-means memory usage on various frameworks

Input size implication: Today the paradigm has been shifted
and new MapReduce processing frameworks such as Hadoop and
Spark are emerging. Hadoop uses disk as storage and rely on a
cluster of servers to process data in a distributed manner. The
ability of hadoop frameworks is that each map task processes one
block of data on HDFS at a time. Hence, this relieves the pressure of
large input data on the memory subsystem. Therefore, regardless of
input size, the memory subsystem usage remains almost constant in
this framework. In the other hand, Spark is in-memory computing
framework and changing input size have a large impact on the
memory capacity usage. Fo MPI based applications, the extent of
impact of input size on memory capacity usage depends on the
application ’s implementation. Although, for most of MPI based
applications, we observed that memory capacity usage increases
by increasing input size.

Another parameter that can be affected by the size of input data
is the memory bandwidth usage. Our results reveal that the size of
input data does not noticeably change the memory behavior of big

A Comprehensive Memory Analysis of Data Intensive
Workloads on Server Class Architecture MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

0

4000

8000

12000

16000

Hadoop Spark MPI Hadoop Spark MPI

Mem. Capacity Usage (MB) Mem. BW Usage (MBpS)

medium large huge

Figure 6: Average results of input size’s effect on memory
behavior

data frameworks. Because the memory bandwidth usage depends
to the cache miss ratio of application (further we will discuss it
in detail). Also cache behavior of application mostly depends to
the application algorithm. Consequently, by increasing the size
of input, the cache hit ratio remains almost the same. Therefore,
while increasing the input size increases the job completion time,
the DRAM bandwidth requirements of applications do not change
noticeably. Figure 6 shows the average results of workloads from
Hibench benchmark. We have performed experiments with 3 sets
of input data namely medium, large, and huge (these are keywords
of Hibench for input generation).

3.2 Architectural analysis
As we discussed, several parameters, such as CPU frequency, num-
ber of cores per CPU, and cache hierarchy are studied in this paper
to characterize big data frameworks. In this section, we present the
classification of workloads into memory bound, compute bound,
and I/O bound based on architectural behavior, which helps to
accurately present the relation of performance and workload char-
acteristics.

Classification of workloads: As the goal of this section is to
study the combined impact of node architecture and data intensive
workload’s characteristics, it is important to classify those work-
loads. To this goal, we have explored the architectural behavior of
studied workloads to classify them and find more insights.

1) Core frequency implication: Figure 7 shows that studied work-
loads behave in two distinct ways. The execution time of the first
group is decreased linearly by increasing the core frequency. The
second groupâĂŹs execution time does not drop significantly by in-
creasing the CPU frequency, particularly when changing frequency
from 1.9 GHz to 2.6 GHz. These two trends indicate that studied
workloads have distinct behaviors of being either CPU bound or
I/O bound. This conclusion further advocated by C0 state residency
of processor in Figure 8. This proves sort, grep, PageRank, and scan
from Hadoop, wordcount, grep, PageRank, Bayes, and nBayes from
Spark, and sort, BasicMPEG, and grep from MPI to be I/O bound
while others to be CPU bound. This can be explained as follows: If
increasing the processorâĂŹs frequency reduces the active state
residency (C0) of the processor, the workload is I/O bound, as when
a core is waiting for I/O, the core changes its state to save power.

0

1000

2000

3000

4000

5000

6000

7000

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

Wordcount sort Grep Terasort PageRank Bayes nBayes Aggre. Join Scan Kmeans

N
o
rm

al
iz

ed
 e

xe
 t

im
e

0

500

1000

1500

2000

2500

1
.2

G

1
.9

G

2
.6

G

1
.2

G

1
.9

G

2
.6

G

1
.2

G

1
.9

G

2
.6

G

1
.2

G

1
.9

G

2
.6

G

1
.2

G

1
.9

G

2
.6

G

1
.2

G

1
.9

G

2
.6

G

1
.2

G

1
.9

G

2
.6

G

1
.2

G

1
.9

G

2
.6

G

1
.2

G

1
.9

G

2
.6

G

Wordcount sort Grep Terasort PageRank Bayes nBayes Nweight Kmeans

N
o

rm
al

iz
ed

 e
xe

 t
im

e

0

1000

2000

3000

4000

5000

6000

7000

8000

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1
.9

G
2

.6
G

Wordcount sort Grep nBayes Kmeans B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa. Detc.

N
o

rm
al

iz
ed

 e
xe

 t
im

e

(a) Hadoop

(b) Spark

(c) MPI

Figure 7: Impact of CPU frequency on the execution time

Similarly, if active state residency does not change the workload is
CPU bound.

2) Cache implication: Modern processor has a 3-level cache hi-
erarchy. Figure 9 shows cache hit ratio of level 2 (L2) and last
level cache (LLC). The results reveal an important characteristic of
data intensive workloads. Our experimental results show most of
the studied workloads (particularly MapReduce workloads) have
a much higher cache hit ratio, which helps reducing the number
of accesses to the main memory. Based on simulation as well as
real-system experiment results in recent works, it is reported that
these applications’ cache hit rate is too low (under 10%) [4, 12]
for a system with 10 MB of LLC and for having LLC hit rate of
40%, the system should have around 100 MB of LLC. However, our
real system experimental results show that most of data intensive
workloads have much higher LLC hit rate (more than 50%) with
only 40 MB LLC.

The reason of high cache hit ratio is that each parallel task of
MapReduce framework processes data in a sequential manner. This
behavior increases the cache hits; therefore it prevents excessive
access to DRAM. Hence, based on the cache hit ratio of workloads
and the intensity of accesses to memory, we can classify them into
memory bound. If the cache hit ratio is low and the workload is
an iterative task, it is classified as memory intensive. Our char-
acterization showed that N-weight and Kmeans from Spark, and
Image Segmentation from MPI are memory intensive. Therefore,
we divided our workloads into three major groups of I/O bound,
compute bound, and memory bound.

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA H. Makrani et al.

0

20

40

60

80

100

120
1

.2
G

1
.9

G
2

.6
G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

1
.2

G
1

.9
G

2
.6

G

Wordcount Sort Grep Terasort NweightPageRank Bayes nBayes Aggre. Join Scan Kmeans B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa. Detc.

C
0

 r
es

id
en

cy
 (

p
er

ce
n
ta

g
e)

Hadoop Spark MPI

Figure 8: C0 residency of processor

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

H
ad

o
o

p

S
p
ar

k

M
P

I

H
ad

o
o

p

S
p
ar

k

M
P

I

H
ad

o
o

p

S
p
ar

k

M
P

I

H
ad

o
o

p

S
p
ar

k

S
p
ar

k

H
ad

o
o

p

S
p
ar

k

H
ad

o
o

p

S
p
ar

k

H
ad

o
o

p

S
p
ar

k

M
P

I

H
ad

o
o

p

H
ad

o
o

p

H
ad

o
o

p

H
ad

o
o

p

S
p
ar

k

M
P

I

B
.

M
P

E
G

D
B

N

S
p
.

R
ec

.

Im
.
S

eg
.

S
IF

T

F
a.

 D
et

c.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayesAggre.JoinScanKmeans Multimedia

L3 L2

Figure 9: LLC and L2 hit rate

0.00

0.50

1.00

1.50

2.00

2.50

0%

20%

40%

60%

80%

100%

Core bound Memory bound I/O bound
Retiring (%) Bad speculation (%)
Frontend bound (%) Backend bound (%)
C0 residency (%) IPC

Figure 10: Averagemicro-architectural information of three
classes

Top-Down methodology [40] chooses the micro-op (Âţop) queue
of a out-of-order server as a dividing point between a coreâĂŹs
front-end and back-end, and uses it to classify Âţop pipeline slots in
four broad categories: Retiring, Front-end bound, Bad speculation,
Back-end bound. Out of these, The Retiring classifies as âĂĲuseful
workâĂİ and the rest prevent the workload from utilizing the full
core width. We apply this approach to the our big data workloads
and Figure 10 illustrates the micro architectural differences between
three classes. Based on this classification, we present our result in
the following sections.

Disk implication: To show how choice of storage can change
the performance while using different memory configuration, we
performed several experiments using three types of storage (HDD,
SSD SATA, and SSD PCIe). Figure 11 shows that changing the disk
fromHDD to SSD PCIe improves the performance of Spark, Hadoop,
and MPI by 1.6x, 2.4x, and 3.3x respectively. The reason that MPI
workloads take more advantage from faster disk is that these work-
loads are written in C++. However, Hadoop and Spark are Java
based frameworks and they use HDFS as an intermediate layer to
access and manage storage. Our results show a high bandwidth
DRAM is not required to accelerate the performance of MapRe-
duce frameworks in presence of a slow HDD. However, MPI based
workloads has the potential to benefit from high-end DRAM.

1

2

3

4

5

Low End

Mem- HD D

HighEnd

Mem- HD D

Low End

Mem- S S D
S ATA

HighEnd

Mem- S S D
S ATA

Low End

Mem- S S D
PCI e

HighEnd

Mem- S S D
PCI e

P
er

fo
rm

an
ce

 Im
p

ro
ve

m
en

t

Hadoop Comp. Hadoop I/O Spark Mem. Spark Comp.

Sark I/O MPI Mem. MPI Comp. MPI I/O

Figure 11: Effect of memory and storage configuration on
the performance

Another point regarding the storage is to use multiple disks per
node to alleviate IO bottleneck. We performed a new set of experi-
ments with two SSD storages per node. While the performance will
improve for IO intensive applications but using multiple disks per
node does not guarantee the parallel access to the data blocks of
HDFS to reduce the IO bottleneck. Another point is to use RAID.
Since HDFS is taking care of fault-tolerance and "striped" reading,
there is no need to use RAID underneath an HDFS. Using RAID
will only be more expensive, offer less storage, and also be slower
(depending on the concrete RAID configuration). Since the Namen-
ode is a single-point-of-failure in HDFS, it requires a more reliable
hardware setup. Therefore, the use of RAID is recommended only
on the Namenodes.

A Comprehensive Memory Analysis of Data Intensive
Workloads on Server Class Architecture MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

It is important to note that SSD increases the read and write
bandwidth of disk and substantially reduces the latency of access to
disk compared to HDD. However, accessing to I/O means losing of
millions of CPU cycles, which is large enough to remove any notice-
able advantage of using a high-performance DRAM. On the other
hand, the only way to take advantage of a SSD is to read or write a
big file (hundreds of megabyte) at once but our result shows that
HDFS reads the data in much smaller blocks, regardless of HDFS
block size. Figure 12 demonstrates the memory bandwidth utiliza-
tion of each class on different storage type. Bandwidth utilization
of memory bound workloads is shown to be substantially higher
than other workloads and the results shows Using low speed disk
reduces 55% the memory bandwidth usage and therefore prevents
to get performance benefit from high bandwidth DRAM.

0

0.1

0.2

0.3

0.4

0.5

0.6

1
C

H
 -

1
8

6
6

M

1
C

H
 -

2
1

3
3

M

1
C

H
 -

2
4

0
0

M

2
C

H
 -

1
8

6
6

M

2
C

H
 -

2
1

3
3

M

2
C

H
 -

2
4

0
0

M

4
C

H
 -

1
8

6
6

M

4
C

H
 -

2
1

3
3

M

4
C

H
 -

2
4

0
0

M

1
C

H
 -

1
8

6
6

M

1
C

H
 -

2
1

3
3

M

1
C

H
 -

2
4

0
0

M

2
C

H
 -

1
8

6
6

M

2
C

H
 -

2
1

3
3

M

2
C

H
 -

2
4

0
0

M

4
C

H
 -

1
8

6
6

M

4
C

H
 -

2
1

3
3

M

4
C

H
 -

2
4

0
0

M

1
C

H
 -

1
8

6
6

M

1
C

H
 -

2
1

3
3

M

1
C

H
 -

2
4

0
0

M

2
C

H
 -

1
8

6
6

M

2
C

H
 -

2
1

3
3

M

2
C

H
 -

2
4

0
0

M

4
C

H
 -

1
8

6
6

M

4
C

H
 -

2
1

3
3

M

4
C

H
 -

2
4

0
0

M

HDD SSD SATA SSD PCIe

A
ve

ra
ge

 M
em

o
ry

 B
an

d
w

id
th

 U
ti

liz
at

io
n I/O bound Compute bound Memory Bound

Figure 12: Average memory bandwidth utilization

Core count implication: In the previous section, we classified
workloads into three groups. Figure 13 demonstrates the effect of
increasing the number of cores per node on the performance of
two groups of CPU intensive and IO intensive. The expectation
is that performance of the system improves linearly by adding
cores because big data workloads are heavily parallel. However,
we observe a different trend. For CPU intensive workloads and
when the core count is less than 6 cores per node, the performance
improvement is close to the ideal case. The interesting trend is
that increasing the number of cores per node does not improve the
performance of data intensive workloads noticeably beyond 6 cores.
As the increase in the number of cores increases the number of
accesses to the disk, the disk becomes the bottleneck of the system.
At 8 cores, the CPU utilization is dropped to 44% for I/O intensive
workloads, on average. This experiment performed when storage
was SSD PCIe.

Based on those observations, we develop Eq. (6) to find the num-
ber of cores for which further increase does not noticeably enhance
the performance of system:

Max(cores) = ((BW × Nd))/((Nsc × Fr × λ)) (6)

We define the variables used in this equation as follow: BW is the
nominal bandwidth of each disk. Nd is the number of disk installed
on the server. Nsc is the number of sockets. Fr is CPU core frequency

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18

Pe
rf

o
rm

an
ce

Number of Cores

SSD - CPU intensive SSD - I/O intensive HDD - I/O intensive

HDD - CPU intensive Expectation

Figure 13: Effect of core count on the performance

0
5

10
15
20
25

4
K

B

8
K

B

1
6

K
B

3
2

K
B

6
4

K
B

1
2

8
K

B

2
5

6
K

B

5
1

2
K

B

1
M

B

2
M

B

4
M

B

1
6

M
B

6
4

M
B

1
2

8
M

B

(m

B
)

Request size

SSD HDD

Figure 14: Lambda value for different request size and stor-
age type

IO Request

Size (IRS)
IRS = 16KB 32KB = IRS = 256KB 512KB = IRS = 128MB

Workload

class
Com. Mem. IO Com. Mem. IO Com. Mem. IO

Ave. error 5% 6% 15% 4% 4% 12% 4% 4% 7%

TABLE IV: Average error of optimum core count prediction

Figure 15: Average error of optimum core count prediction

and Lambda is a constant, which we found through our real-system
experiments. As the effective I/O bandwidth depends on the block
size and I/O request size, we have used fio [3] to calculate Lambda
for different block size requests, presented in Figure 14. Designers
can use this equation to select an optimum configuration, such as
the number of cores, core frequency, disk type, and number of disks
per node. As an example, the number of cores beyond which there
is no noticeable performance gain on a server with one socket, one
SSD storage with nominal 400 MBpS bandwidth, 16KB IO request
size, running at 2.8 GHz is 8 based on the above equation. We have
validated equation 1 for different classes of workload and the result
is presented in Figure 15.

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA H. Makrani et al.

0

2

4

6

8

10

12

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

1
8

6
6

M
2

1
3

3
M

2
4

0
0

M

Had . S park MP I Had . S park MP I Had . S park MP I Had . S park S park Had . S park Had . S park Had . S park MP I Had . Had . Had . Had . S park MP I B.MP EG DBN S .Rec . I .S eg. S IF TF a .Det.

Wordcount S o rt Grep Teraso r t N weight P ageRank Bayes nBayes Aggre . Jo in S can K means Mult imed ia

D
R

A
M

 p
o

w
er

 (
W

at
t)

2CH 1CH 4CH

Figure 16: DRAM power consumption

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1
8

6
6

M

2
1

3
3

M

2
4

0
0

M

1
8

6
6

M

2
1

3
3

M

2
4

0
0

M

1
8

6
6

M

2
1

3
3

M

2
4

0
0

M

1 . 2G 1 .9G 2 .6G

1CH 2CH 4CH

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8
1

8
6

6
M

2
1

3
3

M

2
4

0
0

M

1
8

6
6

M

2
1

3
3

M

2
4

0
0

M

1
8

6
6

M

2
1

3
3

M

2
4

0
0

M

1 . 2 G 1 . 9 G 2 .6G

1CH 2CH 4CH

(a) Hadoop

0.8

1

1.2

1.4

1.6

1.8

2

2.2

18
66

M

21
33

M

24
00

M

18
66

M

21
33

M

24
00

M

18
66

M

21
33

M

24
00

M

1.2G 1.9G 2.6G
1CH 2CH 4CH

(b) Spark (c) MPI

Figure 17: Average normalized EDP (Normalized to 4CH, 2400MHz, 2.6GHz)

3.3 Power Analysis
Figure 16 reports the DRAM power consumption. The first obser-
vation is that by increasing the frequency of DRAM by about 28%
(1866 MHz to 2400 MHz), the power increases by almost 15%. Also,
DRAM power increases when the core frequency raises as this
increases the number of accesses to off-chip memory per unit of
time. However, the DRAM power consumption is reduced when
we increase the number of channels. An interesting observation is
that a memory with 4 channels consumes 42% less power than a
memory with 1 channel. This is due to the fact that DRAM channels
are designed to increase the efficiency of interleaving. Thus, the
memory controller can manage accesses more efficiently, which in
turn reduces the power consumption.

In our experiments, the number of DIMMs/Channel is one. De-
spite the small/no impact on performance, increasing the number of
memory channels to four significantly impacts the power consump-
tion. Reducing the power of DRAM while increasing the number of
channels can be explained as follow: Consider a 32 GB and 4 chan-
nel memory (occupied 4 DIMMs with 8 GB module), the memory
controller does not need to put all modules in active state unlike
the single channel. In single channel memory, one module with 32
GB capacity always must be in active state regardless of memory
usage pattern. However, with 4 channels, memory controller can
manage each channel individually and if there is no need to access
to a channel, it can go to power saving mode. This increases the
options for memory controller to perform power management.

Figure 17 depicts the average normalized Energy Delay Product
(EDP) of frameworks. EQ. (7) indicates how we calculated this
metric.

EDP = (CPUenerдy + DRAMenerдy) × ExecutionTime (7)

The results reveal that almost always increasing the number
of channels improves EDP, as memory controller power manage-
ment policy can benefit from such increase and reduce the power
accordingly. Increasing the number of channels does not increase
the execution time of studied applications. It also reduces DRAM
power by up to 40%. Therefore, decreasing DRAM power decreases
system power and consequently the energy of the system.

(Enerдy = Power × Delay) (8)

Hence, increasing the number of memory channels leads to an im-
provement in energy efficiency. The EDP’s results of 1-channel and
2-channel memory are very similar. The trend in this figure shows
that increasing the memory frequency increases EDP across all CPU
operating frequency points. This implies that a high frequency off-
chip memory is not an appropriate choice for EDP optimization for
this class of big data applications. Furthermore, we observe that
the EDP at 1.9 GHz CPU frequency is close to 2.6 GHZ. It shows
that running the processor with highest frequency is not always
necessary. A configuration with a single channel running at 2400
MHz memory frequency when CPU is running at 1.2 GHz is shown
to have the worst EDP. On the other hand, a configuration with

A Comprehensive Memory Analysis of Data Intensive
Workloads on Server Class Architecture MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA

4-channel and 1866 MHz memory frequency when CPU is running
at 2.6 GHz is shown to have the best EDP for big data applications.

4 RELATEDWORK
4.1 Memory
A recent work on big data [12] profiles the memory access patterns
of Hadoop and noSQL workloads by collecting memory DIMM
traces using special hardware. This study does not examine the
effects of memory frequency and number of channels on the per-
formance of the system. A more recent work [11] provides a perfor-
mance model that considers the impact of memory bandwidth and
latency for big data, high performance, and enterprise workloads.
The work in [4] shows how Hadoop workload demands different
hardware resources. This work also studies the memory capac-
ity as a parameter that impacts the performance. However, as we
showed in this work, their finding is in contrast with ours. In [43]
the authors evaluate contemporary multi-channel DDR SDRAM
and Rambus DRAM systems in SMT architectures. The work in [7]
mainly focuses on page table and virtual memory optimization of
big data and [17] presents the characterization of cache hierarchy
for a Hadoop cluster. These works do not analyze the DRAM mem-
ory subsystem. In addition, several studies have focused on memory
system characterization of various non-big data workloads such
as SPEC CPU or parallel benchmark suites [5, 6, 36, 42]. Moreover,
[21] studied the impact of memory parameters on the power and
energy efficiency of big data frameworks but did not study the ef-
fect of input size and processor configuration on memory behavior.
Another recent work studied the effect of memory bandwidth on
the performance of MapReduce frameworks and presented a mem-
ory navigator for modern hardware [22]. Few works [23, 33, 41]
studied the impact of fault tolerant techniques on the performance
and memory usage of embedded system. These works do not an-
alyze the memory subsystem. There are also works on memory
architecture such as [32, 39] but they did not analyzed the impact
of memory parameters on big data applications.

4.2 Big Data
A recent work on big data benchmarking [38] analyzes the redun-
dancy among different big data benchmarks such as ICTBench,
HiBench and traditional CPU workloads and introduces a new
big data benchmark suite for spatio-temporal data. The work in
[31] selects four big data workloads from the BigDataBench [37]
to study I/O characteristics, such as disk read/write bandwidth,
I/O devices utilization, average waiting time of I/O requests, and
average size of I/O requests. Another work [20] studies the perfor-
mance characterization of Hadoop and DataMPI, using Amdahl’s
second law. This study shows that a DataMPI is more balanced
than a Hadoop system. In a more recent work [15] the authors ana-
lyze three SPEC CPU2006 benchmarks (libquantum, h264ref, and
hmmer) to determine their potential as big data computation work-
loads. The work in [8] examines the performance characteristics
of three high performance graph analytics. One of their findings
is that graph workloads fail to fully utilize the platform’s memory
bandwidth. In a recent work [18], Principle Component Analysis is
used to detect the most important characteristics of big data work-
loads from BigDataBench. To understand Spark’s architectural and

micro-architectural behaviors, a recent work evaluates the bench-
mark on a 17-node Xeon cluster [19]. Their results show that Spark
workloads have different behavior than Hadoop and HPC bench-
marks. Again, this study does not consider the effect of memory
subsystems on big data. The work in [16] performs performance
analysis and characterizations for Hadoop K-means iterations. This
study has also proposed a performance prediction model in order
to estimates performance of Hadoop K-means iterations, without
considering the memory requirements. The results of the latest
works on memory characterization of Hadoop applications also are
in-line with our findings [24, 26]. Moreover, there are studies on
hardware acceleration of Hadoop applications that do not analyze
the impact of memory and storage on the performance [28, 29].
Makrani et al. proposed compressive sensing based accelerator for
multimedia big data application to reduce the I/O bottleneck for
getting performance gain from high-end memory [25].

5 CONCLUSION
This paper answers the important questions of whether some of
important data analytics frameworks such as Hadoop, Spark and
MPI require high-capacity and high performance DRAM memory
and what the role of memory for energy-efficient processing of
data intensive applications is. Characterizing memory behavior of
frameworks is important as it helps guiding scheduling decision
in cloud scale architectures as well as helping making decisions in
designing server cluster for big data computing. While latest works
have performed a limited study on memory characterization of data
intensive applications, this work performs a comprehensive analysis
of memory requirements through an experimental evaluation setup.
We study diverse domains of applications from microkernels, graph
analytics, machine learning, E-commerce, social networks, search
engines, and multimedia in Hadoop, Spark, and MPI. This gives
us several insights into understanding the memory role for these
important frameworks.

The contribution of this paper is to give an insight on the role
the memory subsystem plays in the overall performance of the
servers when running data analytics frameworks. Our experimental
results illustrate that data intensive workloads show three distinct
behaviors (CPU-intensive, Disk-intensive, and memory-intensive).
Based on the results presented in this paper, we observed that
Hadoop framework is not memory intensive. This means Hadoop
does not require high frequency, and large number of channels
memory for higher performance. Our results show MPI and Spark
based iterative tasks benefit from high memory frequency and
large number of channels. Among the configurable parameters,
our results indicate that increasing the number of DRAM channels
reduces DRAM power and improves the energy-efficiency.

Moreover, our result shows that changing the disk from HDD
to SSD improves the performance of Spark, Hadoop, and MPI by
1.6x, 2.4x, and 3.3x respectively. However, I/O bandwidth caps the
performance benefit of multicore CPU. Therefore, we developed an
experimental equation to help designers to find the number of cores
for which further increase does not enhance system performance
noticeably. Moreover, we found that the current storage systems are
the main bottleneck for the studied applications hence any further

MEMSYS, October 1–4, 2018, Old Town Alexandria, VA, USA H. Makrani et al.

improvement of memory and CPU architecture without addressing
the storage problem is a waste of money and energy.

REFERENCES
[1] [n. d.]. The Apache Software Foundation, Available at: https://hadoop.apache.org/.
[2] [n. d.]. Available at: https://software.intel.com/en-us/articles/intel-performance-

counter-monito.
[3] Sanjay P Ahuja, Thomas F Furman, Kerwin E Roslie, and Jared T Wheeler. 2013.

Empirical Performance Assessment of Public Clouds Using System Level Bench-
marks. International Journal of Cloud Applications and Computing (IJCAC) 3, 4
(2013), 81–91.

[4] I. Alzuru and et. al. 2015. Hadoop Characterization. In IEEE Trust-
com/BigDataSE/ISPA.

[5] L. A. Barroso, K. Gharachorloo, and E. Bugnion. 1998. Memory system character-
ization of commercial workloads. In Int. Symp. on Computer Architecture.

[6] L. A. Barroso, K. Gharachorloo, and E. Bugnion. 1998. Memory system character-
ization of commercial workloads. In Int. Symp. on Computer Architecture.

[7] Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D Hill, and Michael M
Swift. 2013. Efficient virtual memory for big memory servers. In ACM SIGARCH
Computer Architecture News, Vol. 41. ACM, 237–248.

[8] Scott Beamer, Krste Asanovic, and David Patterson. 2015. Locality Exists in
Graph Processing: Workload Characterization on an Ivy Bridge Server. In IEEE
Int. Symp. on Workload Characterization.

[9] Bertino and et. al. 2013. Big-data opportunities and challenges. In Annual Com-
puter Software and Applications Conf.

[10] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The
PARSEC benchmark suite: Characterization and architectural implications. In
Proceedings of the 17th international conference on Parallel architectures and com-
pilation techniques. ACM, 72–81.

[11] R. Clapp and et. al. 2015. Quantifying the Performance Impact of Memory
Latency and Bandwidth for Big Data Workloads. In IEEE Int. Symp. on Workload
Characterization.

[12] M. Dimitrov and et. al. 2013. Memory system characterization of big data work-
loads. In IEEE Int. Conf. on Big Data.

[13] Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad
Alisafaee, Djordje Jevdjic, Cansu Kaynak, Adrian Daniel Popescu, Anastasia
Ailamaki, and Babak Falsafi. 2012. Clearing the clouds: a study of emerging
scale-out workloads on modern hardware. In ACM SIGPLAN Notices, Vol. 47.
ACM, 37–48.

[14] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and Bo Huang. 2010. The Hi-
Bench benchmark suite: Characterization of the MapReduce-based data analysis.
In Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference
on. IEEE, 41–51.

[15] Kathlene Hurt and Eugene John. 2015. Analysis of Memory Sensitive SPEC
CPU2006 Integer Benchmarks for Big Data Benchmarking. In Proceedings of the
1st Workshop on Performance Analysis of Big Data Systems. ACM, 11–16.

[16] Joseph Issa. 2016. Performance characterization and analysis for Hadoop K-means
iteration. Journal of Cloud Computing 5, 1 (2016), 3.

[17] Zhen Jia, Lei Wang, Jianfeng Zhan, Lixin Zhang, and Chunjie Luo. 2013. Charac-
terizing data analysis workloads in data centers. InWorkload Characterization
(IISWC), 2013 IEEE International Symposium on. IEEE, 66–76.

[18] Zhen Jia, Jianfeng Zhan, Lei Wang, Rui Han, Sally A McKee, Qiang Yang, Chunjie
Luo, and Jingwei Li. 2014. Characterizing and subsetting big data workloads. In
Workload Characterization (IISWC), 2014 IEEE International Symposium on. IEEE,
191–201.

[19] Tao Jiang, Qianlong Zhang, Rui Hou, Lin Chai, Sally A Mckee, Zhen Jia, and
Ninghui Sun. 2014. Understanding the behavior of in-memory computing work-
loads. In Workload Characterization (IISWC), 2014 IEEE International Symposium
on. IEEE, 22–30.

[20] Fan Liang, Chen Feng, Xiaoyi Lu, and Zhiwei Xu. 2014. Performance character-
ization of hadoop and data mpi based on amdahl’s second law. In Networking,
Architecture, and Storage (NAS), 2014 9th IEEE International Conference on. IEEE,
207–215.

[21] Hosein Mohammadi Makrani and Houman Homayoun. 2017. Memory require-
ments of hadoop, spark, andMPI based big data applications on commodity server
class architectures. InWorkload Characterization (IISWC), 2017 IEEE International
Symposium on. IEEE, 112–113.

[22] Hosein Mohammadi Makrani and Houman Homayoun. 2017. MeNa: A Mem-
ory Navigator for Modern Hardware in a Scale-out Environment. In 2017 IEEE
International Symposium on Workload Characterization (IISWC). IEEE, 2–11.

[23] Hosein Mohammadi Makrani, Amir Mahdi Hosseini Monazzah, Hamed Farbeh,
and Seyed Ghassem Miremadi. 2014. Evaluation of software-based fault-tolerant
techniques on embedded OSâĂŹs components. In International Conference on
Dependability (DEPEND). 51–57.

[24] Hosein Mohammadi Makrani, Setareh Rafatirad, Amir Houmansadr, and Houman
Homayoun. 2018. Main-Memory Requirements of Big Data Applications on

Commodity Server Platform. In 18th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID). IEEE.

[25] Hosein Mohammadi Makrani, Hossein Sayadi, Sai Manoj Pudukotai Dinakarra,
Setareh Rafatirad, and Houman Homayoun. 2018. Compressive Sensing on
Storage Data: An Effective Solution to Alleviate I/O Bottleneck in Data-Intensive
Workloads. In 29th Annual IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP).

[26] HoseinMohammadi Makrani, Shahab Tabatabaei, Setareh Rafatirad, and Houman
Homayoun. 2017. Understanding the role of memory subsystem on performance
and energy-efficiency of Hadoop applications. In Green and Sustainable Comput-
ing Conference (IGSC), 2017 Eighth International. IEEE, 1–6.

[27] Maria Malik, Avesta Sasan, Rajiv Joshi, Setareh Rafatirah, and Houman Homay-
oun. 2016. Characterizing Hadoop applications on microservers for performance
and energy efficiency optimizations. In Performance Analysis of Systems and
Software (ISPASS), 2016 IEEE International Symposium on. IEEE, 153–154.

[28] Katayoun Neshatpour, Hosein Mohammadi Makrani, Avesta Sasan, Hassan
Ghasemzadeh, Setareh Rafatirad, and Houman Homayoun. 2018. Design Space
Exploration for Hardware Acceleration of Machine Learning Applications in
MapReduce. In The 26th IEEE International Symposium on Field-Programmable
Custom Computing Machines (FCCM).

[29] Katayoun Neshatpour, Hosein Mohammadi Makrani, Avesta Sasan, Hassan
Ghasemzadeh, Setareh Rafatirad, and Houman Homayoun. 2018. Architec-
tural considerations for FPGA acceleration of Machine Learning Applications in
MapReduce. In International Conference on Embedded Computer Systems: Archi-
tectures, Modeling and Simulation(SAMOS).

[30] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, Byung-Gon Chun,
and V ICSI. 2015. Making Sense of Performance in Data Analytics Frameworks..
In NSDI, Vol. 15. 293–307.

[31] Fengfeng Pan, Yinliang Yue, Jin Xiong, and Daxiang Hao. 2014. I/O characteriza-
tion of big data workloads in data centers. In Workshop on Big Data Benchmarks,
Performance Optimization, and Emerging Hardware. Springer, 85–97.

[32] Sai Manoj PD, Jie Lin, Shikai Zhu, Yingying Yin, Xu Liu, Xiwei Huang, Chongshen
Song, Wenqi Zhang, Mei Yan, Zhiyi Yu, et al. 2017. A scalable network-on-chip
microprocessor with 2.5 d integrated memory and accelerator. IEEE Transactions
on Circuits and Systems I: Regular Papers 64, 6 (2017), 1432–1443.

[33] Hossein Sayadi, Hamed Farbeh, Amir Mahdi Hosseini Monazzah, and Seyed Ghas-
sem Miremadi. 2014. A data recomputation approach for reliability improvement
of scratchpad memory in embedded systems. In Defect and Fault Tolerance in
VLSI and Nanotechnology Systems (DFT), 2014 IEEE International Symposium on.
IEEE, 228–233.

[34] Hossein Sayadi, H.M Makrani, Onkar Randive, Sai Manoj P D, Setareh Rafatirad,
and Houman Homayoun. 2018. Customized Machine Learning-Based Hardware-
Assisted Malware Detection in Embedded Devices. The 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Communications
(IEEE TrustCom-18) (2018).

[35] Hossein Sayadi, Nisarg Patel, Sai Manoj P D, Avesta Sasan, Setareh Rafatirad,
and Houman Homayoun. 2018. Ensemble Learning for Effective Run-Time
Hardware-Based Malware Detection: A Comprehensive Analysis and Classifica-
tion. ACM/IEEE Design Automation Conference, DAC (2018).

[36] Yakun Sophia Shao and David Brooks. 2013. ISA-independent workload char-
acterization and its implications for specialized architectures. In Performance
Analysis of Systems and Software (ISPASS), 2013 IEEE International Symposium on.
IEEE, 245–255.

[37] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He,
Wanling Gao, Zhen Jia, Yingjie Shi, Shujie Zhang, et al. 2014. Bigdatabench: A
big data benchmark suite from internet services. In High Performance Computer
Architecture (HPCA), 2014 IEEE 20th International Symposium on. IEEE, 488–499.

[38] Wen Xiong, Zhibin Yu, Zhendong Bei, Juanjuan Zhao, Fan Zhang, Yubin Zou, Xue
Bai, Ye Li, and Chengzhong Xu. 2013. A characterization of big data benchmarks.
In Big Data, 2013 IEEE International Conference on. IEEE, 118–125.

[39] Dongjun Xu, Ningmei Yu, PD Sai Manoj, Kanwen Wang, Hao Yu, and Mingbin
Yu. 2015. A 2.5-D memory-logic integration with data-pattern-aware memory
controller. IEEE Design & Test 32, 4 (2015), 1–10.

[40] Ahmad Yasin. 2014. A top-down method for performance analysis and counters
architecture. In Performance Analysis of Systems and Software (ISPASS), 2014 IEEE
International Symposium on. IEEE, 35–44.

[41] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2–2.

[42] Fucen Zeng, Lin Qiao, Mingliang Liu, and Zhizhong Tang. 2012. Memory perfor-
mance characterization of spec cpu2006 benchmarks using tsim. Physics Procedia
33 (2012), 1029–1035.

[43] Zhichun Zhu and Zhao Zhang. 2005. A performance comparison of DRAM mem-
ory system optimizations for SMT processors. In Int. Symp. on High-Performance
Computer Architecture.

	Abstract
	1 Introduction
	2 Experimental Setup
	2.1 Frameworks
	2.2 Workloads
	2.3 Hardware platform
	2.4 Methodology

	3 Results
	3.1 Memory Analysis
	3.2 Architectural analysis
	3.3 Power Analysis

	4 Related Work
	4.1 Memory
	4.2 Big Data

	5 Conclusion
	References

