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Abstract 
While Ultra Deep Submicron (UDSM) CMOS scaling gives 
embedded processor designers ample silicon budget to increase 
processor resources to improve performance, restrictions with the 
power budget and practically achievable operating clock 
frequencies act as limiting factors. In this paper we show how just 
increasing processor resource size is not effective in improving 
performance due to constraints on achievable operating clock 
frequency. In response we propose two adaptive resource resizing 
techniques L2RS and L2ML1RS that adaptively resize resources by 
exploiting cache misses. Our results show a significant performance 
improvement and overall energy-delay reduction of on average 
9.2% (upto 34%) and 3.8% respectively across SPEC2K 
benchmarks for L2ML1RS. Applying L2RS resulted in 6.8% 
performance improvement (upto 24%) and 4.6% energy-delay 
reduction. We also present the required circuit modification to apply 
these techniques which shown to be minimal. 
 
Categories and Subject Descriptors   C.1.1 [Processor 
Architectures]: Single Data Stream Architectures; C.4 Performance 
of Systems 
 
General Terms   Performance, Design 
 
Keywords   Architecture, Performance, Energy-Delay, Out-of-Order 
Embedded Processor, Resource Resizing 
 
1. Introduction 
High performance embedded applications in the multimedia, 
networking, imaging and high-end consumer application domains 
are becoming increasingly prevalent in the market today. Since 
these applications have high performance requirements, there has 
been a gradual shift towards using more complex out-of-order 
superscalar embedded processors to meet performance goals. 
Examples of such embedded microprocessors include the IBM 
PowerPC 750FX [11] [22], NEC’s VR5500 and VR77100 Star 
Sapphire [4] processors which have an on-chip L2 cache, along  

 
with a large instruction queue (IQ), reorder buffer (ROB) and 
register file (RF).  
With CMOS technology scaling into the Ultra Deep Submicron 
(UDSM) region, hundreds of millions of transistors can already be 
integrated on a single System-on-chip (SoC). While this gives 
designers ample silicon budget to increase processor resources to 
improve performance, restrictions with the power budget and 
practically achievable operating clock frequencies act as limiting 
factors that prevent increases in processor resource sizes. As we will 
see in this work, while increasing the size of processor resources 
such as the reorder buffer (ROB), instruction queue (IQ), and 
register file (RF) can deliver a higher IPC (instructions per cycle), 
the negative impact such a resource increase has on achievable 
operating frequency can result in an overall performance 
degradation in terms of execution time. This is due to the fact that 
the access times to the muti-ported RF and IQ (in the bypass stage) 
are one of the most critical timing factors that determine the 
achievable processor operating frequency [1]-[3] [5]. We further 
study the possibility of adaptively resizing these units. Our study is 
based on the observation that after an L2 cache miss or multiple L1 
cache misses one of the ROB/IQ/RF completely fills up and 
becomes the performance bottleneck. To reduce such fill up 
occurrences and hence improve performance we study the effect of 
increasing size of ROB/IQ and RF at the cost of increasing their 
access time. We study two possible approaches to overcome this 
problem – either lowering the processor operating clock frequency 
or pipelining access to these units. Our result show that none of 
these techniques resulted in a noticeable performance improvement 
(and in fact result in performance degradation for most of the 
studied cases) and reveals that the negative impact of applying 
pipelining or frequency scaling as a result of processor resource 
upsizing on the performance becomes dominant over the positive 
effect of resource upsizing on reducing the fill up rate and 
performance improvements. 
We further study how these occupancy rates vary during a period 
where at least one L2 or at least two DL1 cache misses are pending 
(we refer to this as cache miss period) compared to when these 
cache miss scenarios do not occur (we refer to these periods as 
normal periods). Based on the results, we propose adaptive resource 
resizing and using aggressive resource upsizing only during a cache 
miss period. During the normal period, resources are kept at their 
typical size and as such they can operate at the normal operating 
frequency. During a cache miss period we increase the resource 
sizes which in turn results in an increase in their access times as 
well. To meet frequency targets, we use pipelining on these upsized 
resources. 
Our adaptive resource scaling proposes two techniques – L2RS and 
L2ML1RS. In L2RS we start with resources at their typical size and 
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will only increase their size when we encounter an L2 cache miss. 
In L2ML1RS we apply the scaling on a single L2 cache miss or 
when at least two DL1 cache misses are pending. In both techniques 
the resource size is returned to their normal size once all of cache 
misses are serviced and the scaled up part has no data. We also 
present the required circuit modification to realize these techniques. 
Our proposed circuit modification is applied to a unified register file 
and in contrast to costly banking or clustering techniques it comes 
with minimal hardware modification; adding one pass transistor per 
register file bitline. The results show a significant performance 
improvement and an overall energy-delay reduction of on average 
9.2% and 3.8% respectively across SPEC2K benchmarks for 
L2ML1RS. Applying L2RS resulted in 6.8% performance 
improvement and 4.6% energy-delay reduction. 
The rest of the paper is organized as follows: related work is 
described in Section 2. In Section 3 we presented the motivation for 
proposed architectural techniques.  Section 4 describes our proposed 
architectural technique and the required circuit modification. 
Experimental results are presented in Section 5. Finally, in Section 6 
we offer concluding remarks. 
 

2. Related Work 
There has been a lot of research that proposed altering the structure 
of the register file (RF), reorder buffer (ROB) and instruction queue 
(IQ) for improving performance. One set of techniques uses 
localities of communication to split the microarchitecture into 
distributed clusters, each containing a subset of the RF, ROB and IQ 
[1] [6]-[9] [18]. The different functional units in a cluster can 
service different requests in parallel as long as inter-operation value 
communication is within a cluster; a penalty occurs when a value is 
passed from one cluster to another. A critical issue in the design of 
such systems is the heuristics used to map instructions to clusters. 
These schemes have the potential to scale to larger issue widths but 
require complex inter-cluster control logic to map instructions to 
clusters and to handle inter-cluster dependencies.  
Alternatively, other approaches retain a centralized 
microarchitecture, but partition the processor units such as the RF 
[3] [10] and IQ [14] [17] to reduce access time and energy 
dissipation. Partitioning the register file into multiple banks for 
instance reduces the ports on the partitions, which reduces the pre-
charging and sensing times and the related energy dissipation. But 
these reductions come at the cost of value multiplexing and port 
conflict problems. The major drawback of all these banking 
techniques in general is in the complexity that speculation adds and 
more specifically the complexity they introduce on handling the 
coherency in register caches and banking conflicts. This added 
complexity becomes even more critical for embedded processors 
that work in resource-constrained environments. 
There have also been some techniques to dynamically resize the 
ROB [12] [16], IQ [14]-[16] and RF [13] at runtime to reduce 
energy dissipation. None of the above schemes exploit the L1 and 
L2 cache misses for resource adaptation. The technique that comes 
closest to our work is [5], which performs early register de-
allocation based on L2 misses to improve performance. This is 
accomplished by speculatively committing the load-independent 
instructions and deallocating the registers corresponding to the 
previous mappings of their destinations, without waiting for the 
cache miss request to be serviced. The early deallocated registers 
are then made immediately available for allocation to other 
instructions, thus improving the overall processor throughput. 
However, such a scheme increases complexity since it requires 

additional resources such as bit vectors to identify the sources and 
the destinations of the load-dependent instructions, additional bits in 
the ROB and possibly a backup register file to store de-allocated 
values. In contrast, we propose a much simpler circuit level 
approach that dynamically adapts the ROB, RF and IQ on cache 
misses to achieve significant performance improvements. 
 

3. Motivation   
A load instruction miss in the cache (DL1 or L2) prevents any 
dependent instructions from being issued in a processor. The 
dependent instructions fill up the reorder buffer, the instruction 
queue, register file, and/or the load and store queues (LQ/SQ) until 
the miss returns. In this section we briefly study the status of the 
ROB, IQ and RF during such a scenario for our out-of-order 2-way 
embedded processor similar to the IBM PowerPC 750FX  
architecture [11] with a separate IL1 (level 1 instruction cache) and 
DL1 (level 1 data cache) of 32KB with access time of 2 cycles and 
a unified L2 (level 2 cache) of size 256KB with an access time of 
12 cycles. The miss penalty of accessing the main memory is 60 
cycles. The size of ROB, IQ and RF is 24, 12 and 32 respectively.   
At every cycle, up to two new instructions are dispatched to the 
ROB and up to two physical registers are allocated out of the pool of 
free registers. To allocate new instructions, the processor also 
releases up to two committed-instruction physical registers and their 
ROB entries at every cycle. This is done in program order to enable 
precise interrupt handling. When a cache miss occurs, the load 
instruction that caused the miss stays on top of the ROB and doesn’t 
allow the subsequent instructions to be committed. As a result, the 
subsequent instructions occupying the ROB and RF cannot be 
released until the miss returns. This gradually increases ROB and 
RF occupancy, and reduces the processor issue rate. The same 
scenario occurs for the LQ/SQ and IQ – the subsequent dependent 
instructions to the load with a miss cannot be issued due to data 
dependency. Such instructions reside in the IQ until the miss 
returns. Accordingly the IQ occupancy increases as the processor 
fills it with up to two instructions per cycle. Due to data 
dependencies however, very few out of these can be issued. 
Given the long cache miss service time (12 cycles for DL1 and 60 
cycles for L2 in our architecture), the above scenario can happen 
quite frequently. For the case of an L2 miss, due to the long service 
time, either the ROB, RF, LQ/SQ or IQ can completely fill up with 
subsequent instructions and the processor ends up being stalled 
(issue rate of 0) until the miss is serviced. We refer to this as 
scenario I. In the case of a DL1 miss, the service time is much 
smaller than that for an L2 miss, and it is less possible that any of 
LQ/SQ, ROB and IQ (all referred to as buffer) fills up completely 
before the cache miss is serviced.  Note that when one DL1 cache 
miss occurs, its dependent instructions cannot be issued and all the 
subsequent instructions cannot be committed as discussed above. 
This reduces the issue rate and increases the occupancy of the 
aforementioned buffers. In the presence of many pending DL1 
cache misses, the impact on issue rate would be large and the 
occupancy of queues will increase significantly. We refer to this 
case where multiple DL1 misses are pending as scenario II. We 
refer to the period during which one or more L2 miss/misses and/or 
at least two DL1 misses are pending as cache miss period. We refer 
to the rest of program execution time as normal period. Figure 1 
illustrates the status of the ROB occupancy in our architecture for 
the scenarios described above, during a cache miss period and for 
a normal period (non-scenario I occurs when there is no pending 
L2 cache miss and non-scenario II occurs when there is none or 
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one pending DL1 cache miss exist in the pipeline). As can be seen 
from the figure, the ROB occupancy during scenario I increases 
significantly compared to its occupancy during normal period for 
all integer (INT) SPEC2K benchmarks. The maximum increase 
occurs for the gcc benchmark, for which the ROB occupancy 
doubles (increases by more than 100%). Across all floating points 
(FP) benchmarks we observed a smaller increase. The average 
increase across all benchmarks is around 20%. For scenario II the 
ROB occupancy increases but less than for scenario I. The 
average ROB occupancy increase is 14%.  This difference is due 
to the smaller latency penalty of DL1 cache miss compared to an 
L2 cache miss. 
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Figure 1. Case study: ROB occupancy variation during 
scenario I and scenario II compared to normal period. (a) INT 
benchmark (b) FP benchmark 
 
In figure 2 we report the frequency of ROB saturation (i.e., how 
often it becomes completely full) during scenario I and scenario 
II. It should be noted that the ROB can also potentially fill up 
completely due to TLB misses, but for this work we only consider 
cache misses. The results from the figure show that the ROB is 
filled completely for a significant portion of a program execution 
time, 45% of the time on average. Interestingly, in FP 
benchmarks, this rate is larger than for INT benchmarks, due to 
the fact that FP benchmarks have higher L2 and DL1 miss rates 
compared to INT benchmarks. Another explanation for the ROB 
filling up significantly more often in FP benchmarks compare to 
INT benchmarks is that FP instruction operation latency is higher 
than the INT operation latency. 
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Figure 2. Frequency of ROB saturation due to L2 cache miss 
or at least two DL1 cache misses. (a) INT benchmark (b) FP 
benchmark 
 

3.1 Impact of Increasing Resource Sizes 
Intuitively, from the results presented above, it can be inferred that 
increasing the size of the ROB, as well as the IQ and RF will 
prevent them from filling up completely as frequently and    
potentially improve performance. It should be noted that the sizes of 
these buffers have to be scaled up together; otherwise the non-
scaled ones would become a performance bottleneck.  
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Figure 3. Break down of RF component delay with increasing 
RF size 
 
Typically, the size of the RF is a limiting timing factor that 
determines the maximum operating frequency of a processor as 
discussed in several other works [1] [2] [3] [5]. Increasing the size 
of the RF increases its access time. This is mostly due to increase in 
the length of the bitline. Figure 3 shows the delay breakdown 
among the various components of the RF, for 32, 48, 64 and 96 
entry RF configurations. Results are shown for a single read 
operation, with delays calculated using a modified version of 
CACTI4 [19]. A clear trend seen in this figure is the significant 
increase in bitline delay when the size of register file increases. This 
can be explained as follows: The signal propagation delay of bitline 
is relative to its equivalent capacitance. The equivalent capacitance 
on the bitline is  Ceq = N * diffusion capacitance of pass transistors 
+ wire capacitance (usually 10% of total diffusion capacitance) 
where N is the total number of rows. As the number of rows 
increases the equivalent bitline capacitance also increases and since 
the propagation delay on the bitline is relative to RCeq, the 
propagation delay approximately increases with the number of 
rows. The propagation delay for the remaining RF components 
increases only slightly with an increase in RF size, as shown in the 
figure. 
It is thus clear that increasing RF size increases its access time. A 
similar increase in access time occurs for the ROB and IQ. As a 
result, the achievable operating frequency of the processor is 
reduced when resource sizes are increased. To reduce access time it 
is possible to apply banking or clustering techniques to improve RF 
access time, as has been proposed for high performance processors 
[10] [3] . However banking or clustering the RF is a costly solution, 
due to the significant complexity that is introduce in handling 
banking conflicts and coherency in RF banks. Such complexity can 
be prohibitive, especially in the resource constrained environments 
in which embedded processors operate. 
 The increase in access time for upsized resources leads to two main 
implementation choices for designers: (i) reducing operating clock 
frequency, and (ii) maintaining operating clock frequency by 
pipelining resources. In the next two sections, we explore these two 
techniques in more detail, to analyze their impact on performance. 
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3.2 Impact of Reduced Operating Clock Frequency 
Table 1 presents three different processor configurations as a case 
study to see the effectiveness of increasing the size of resources 
(RF, ROB and IQ) to reduce the occurrences of stalls and hence 
potentially improve processor performance. 
Table 1. Reduction in operating clock frequency with resource 
upsizing  
Processor 
Configuration 

Conf. 1 
baseline 

Conf. 2 
intermediat
e 

Conf. 3 
aggressive 

Conf. 4 
upper bound 

RF size 32 48 64 96 
ROB size 24 32 48 64 
IQ size 12 24 32 48 
RF access 
time (ns) 

1.76 1.92 2.03 2.19 

Operating 
Freq (MHz) 

560 520 490 450 

 
As explained earlier and consistent with several previous works, we 
assume that RF access time determines the achievable operating 
frequency of the processor. As we scaled up all the resources, we 
assume that the RF access still decides the achievable operating 
frequency. The baseline configuration is shown in the Conf. 1 
column, with a 560 MHz operating frequency. The Conf. 2 column 
represents an intermediate configuration, with the RF, ROB and IQ 
upsized to 48, 32 and 24 entries, respectively. Using a modified 
version of CACTI4 [19], the access time for RF is found to increase 
to 1.92 ns. As a result, the operating clock frequency for the 
processor cannot exceed 520 MHz for this configuration. The Conf. 
3 column represents a configuration in which resources are upsized 
aggressively and the achievable operating clock frequency is 
reduced further to 490 MHz. The final configuration (Conf. 4 
column) presents an upper bound architecture for which the 
resource sizes may not be achievable in the design due to 
power/area and timing constraints.  
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Figure 4. Normalized execution time for different 
configuration with reduced operating frequency compared to 
the baseline architecture. 
 
Figure 4 shows the performance for the different configurations 
described above (normalized to the baseline configuration), while 
operating at their maximum achievable operating frequency. Figure 
5 provides more insight on the frequency of ROB completely filling 
up during execution, for the different configurations.  
For the INT benchmarks, it can be seen from Figure 5 that although 
increasing the ROB, RF and IQ sizes in configurations 2, 3 and 4 
reduces the frequency of resource saturation (i.e., complete fill up) 

during execution, lowering the operating frequency impacts the 
performance negatively, as can be seen in Figure 4. In other words, 
for the trade-off between resource upsizing (and hence reducing 
their saturation rate) and lowering the clock frequency, the latter 
becomes more important and plays a major role in deciding the 
performance of the INT benchmarks. An exception is mcf for which 
upsizing the resources results in performance increase. Interestingly 
such increase exists only for intermediate and aggressive 
configuration (conf_2 and conf_3) but as we move to upper bound 
configuration (conf_4) we witness a performance impact. 
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Figure 5. Case Study: Frequency of ROB saturation during 
execution, for different configurations. 
 
To provide better insight we refer to how frequently ROB 
saturates across different configurations for mcf as reported in 
figure 5. As shown the ROB saturation rate drop significantly 
when moving from baseline configuration to aggressive 
configuration, but this decrease slows down significantly when 
moving to upperbound configuration. This in fact indicates a clear 
trade-off between the benefit of resource resizing on reducing 
resource saturation frequency and the impact it has on operating 
frequency.  

 
 

Table 2. Configurations with pipelined resource access 
Processor 

Configuration
Conf. 1 
baseline

Conf. 2 
intermediate 

Conf. 3 
aggressive

Conf. 4 
upper bound

RF size 32 48 64 96 
ROB size 24 32 48 64 
IQ size 12 24 32 48 

RF access 
time (ns) 

1.76 1.92 2.03 2.19 

ROB  access 
time (ns) 

1.43 1.58 1.83 1.91 

Operating 
Freq (MHz) 

560 560 560 560 

Pipeline 
Depth 

5 RF: 2 cycle; 
Bypass: 2 

cycle 

RF, ROB: 
2 cycle; 

Bypass: 2 
cycle 

RF , ROB: 2 
cycle; 

Bypass: 2 
cycle; 

wakeup: 2 
cycle 

 
For the FP benchmarks shown in Figure 4, it can be seen that 
there is a performance improvement for some benchmarks, and 
performance degradation for others, as resources are upsized and 
operating frequency reduced. applu is similar to mcf with a 
performance improvement when going from conf_1 to conf_2 and 
conf_3, but performance degrades when we further increase the 
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size of resources at the cost of lowering the operating frequency. 
The maximum performance benefit is achieved for art which is 
consistent with the results in figure 5, with a significant saturation 
frequency reduction across different configurations. On average 
there is less than 0.5% performance improvement for intermediate 
configuration compare to our baseline. The aggressive and upper 
bound configuration results in performance degradation by up to 
13% and 21%, and 0.7% and 2.8% on an average, compared to 
our baseline.  
 
3.3 Impact of Pipelining Resource Access 
In this section, we study the same scaled configurations presented 
in the previous section, but with the difference that this time we 
try to achieve the same operating clock frequency as the baseline 
architecture for all configurations. We refer to the RF access time 
of 1.76 ns for the baseline (or target) clock frequency as the worse 
pass delay (WPD). We pipelined resources with access times 
greater than the baseline WPD. This was the case for the RF in the 
intermediate configuration (as shown in Table 2). After 
pipelining, any access to the RF would require two processor 
cycles. To model this, it becomes necessary to modify several 
processor pipeline stages in which the RF is accessed. These 
include the (i) register rename logic, (ii) issue stage, and (iii) 
bypass logic. The bypass logic in particular requires an extra 
level. As previous studies [2] have shown, such an extra level 
leads to significant complexity in the pipeline. In this case, the 
data is available at the time of data bypass, then they are 
disappearing in the next cycle and finally they will be available 
the next cycle from register files. Using one level of bypass 
creates holes which as explained in [2] are undesirable and would 
lead to significant complexity to the issue logic. To avoid such 
complexity, an alternative is to just have two levels of bypass. In 
such a case only the last level of bypass is kept to avoid “holes” 
when there is an access to register file. We modify the pipeline 
according to this latter approach. For the aggressive configuration, 
in addition to pipelining the RF access, ROB access is also 
pipelined since its access delay is greater than the WPD, as shown 
in table 2. As such we need to modify the following additional 
pipeline stages (in addition to the changes described above for the 
intermediate configuration): (i) dispatch stage, and (ii) commit 
stage. For the upper bound configuration, in addition to pipelining 
the RF and ROB, we assume that the wakeup stage also required 
to be pipelined since its access delay goes above WPD. In other 
words, if the produced source operand tags are available in a 
given cycle, 
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Figure 6. Normalized execution time for different 
configurations with additional pipelining while operating at 
the same frequency. 

they will be broadcast in the next cycle. It should be noted that 
this is different from bypassing the data which has already been 
pipelined in the intermediate, aggressive and upper bound 
configurations.  
Figure 6 shows the results for the pipelined configurations with 
the same operating frequency as the baseline configuration (target 
frequency) for all the scaled up configurations (i.e., conf_2, 
conf_3 and conf_4).  
As can be seen, a performance degradation is observed across 
most INT benchmarks. For all these configurations, introducing 
additional pipelining increases the branch miss prediction 
penalties. This is more visible in the INT benchmarks as their 
performance is more susceptible to branch penalties, compared to 
the FP benchmarks. For FP benchmarks there is a significant 
variation in performance impact. In applu, art, facerec, and swim 
there is a notable performance improvement.  For these 
benchmarks, the benefit of increasing the resource sizes 
(ROB/IQ/RF) overcomes the negative impact of additional 
pipelining. This is not the case for lucas and wupwise. 
Interestingly these are the benchmarks with lowest resource 
saturation among all FP benchmarks, as reported in figure 5. As 
such, the negative impact of additional pipelining would be 
dominant in their overall performance. On average the 
performance degradation is 2.9%, 8.1% and 14.3% for the 
intermediate, aggressive, and upper bound configurations 
respectively, compared to the baseline configuration.  
As the results in this and the previous subsection show, neither of 
these two techniques result in a noticeable performance 
improvement (in most cases there is actually a performance 
degradation). We conclude that the negative impact of pipelining 
and frequency scaling on the performance becomes dominant over 
the positive impact of resource upsizing. In the next section we 
describe a different approach that actually improves overall 
performance significantly during resource upsizing. 
 
4. Proposed Approach   
The results in figure 2 suggest that there is no need for aggressive 
resource upsizing during the normal period. Based on our 
observations in subsections 3.2 and 3.3, we realized the need for 
an adaptive resource scaling technique based on cache misses, that 
allows the processor to use smaller resources (having a lower 
access time) during the normal period and larger resources 
(having a higher access time) during the cache miss period.  
Our proposed approach thus applies resource scaling and uses 
aggressively upsized resources only during the cache miss period. 
During the normal period, resources are kept at their typical size 
and as such they can operate at the target operating frequency 
(WPD of 1.76 ns for the RF from table 2, which determines the 
processor operating frequency). During the cache miss period we 
scale up the resource sizes, which results in an increase in their 
access time.  
For the resources with access time greater than the typical WPD, 
we propose pipelining, as discussed in section 3.3. It should be 
noted that while the goal of our work is to increase performance, 
the power and complexity overhead should also be taken into 
consideration while implementing our approach. Pipelining the 
ROB and wakeup logic for instance significantly increases design 
complexity. As such we only consider a more realistic scenario, 
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which is scaling up resources to configuration 2 (intermediate), in 
which only the access to the RF needs to be pipelined.  
Note that while it is also possible to increase resource sizes 
further, we avoid doing so due to the extra power overhead of a 
larger ROB, RF and particularly the IQ.  
As part of our approach, we propose two techniques for scaling 
resources.  
In the first technique, we start with resources at their typical size 
and only increase their size when we encounter an L2 cache miss. 
We refer to this technique as L2 miss driven resource scaling 
(L2RS).  
In the second technique, we perform scaling on a single L2 cache 
miss or when at least two DL1 cache misses are pending. We refer 
to this algorithm as L2 and multi-DL1 miss driven resource 
scaling (L2ML1RS). In both techniques, the resource size is 
returned to its normal size once all of the cache misses have been 
serviced and the scaled up part has no more data.  
It should be noted that both these techniques have a fairly simple 
implementation and do not add significant complexity to the 
embedded processor pipeline, since the scheduler in embedded 
processors already keeps track of miss load instructions in DL1 
and L2 caches. Though, L2ML1RS is slightly more complex than 
L2RS since it requires counting the number of pending L1 cache 
misses.  We now describe the circuit level modifications required 
to implement these techniques. 
 
4.1 Circuit Modification 
Table 2 indicates that increasing ROB size from 24 to 48 does not 
increase its access time beyond the baseline WPD. Consequently, 
the ROB can be designed with 48 entries without needing extra 
pipelining and still be accessed at the target clock frequency. We 
use the same reasoning to design the IQ with 24 entries (instead of 
12 in the baseline configuration). For our adaptive resizing 
scheme, we divided the ROB into two partitions of 32 and 16 
entries each. For power conservation we used gated Vdd 
technique to power gate the part with 16 entries always, except 
during cache miss period. Similarly, we divided the IQ into two 
equal partitions of 12 entries and power gated one partition 
always, except during a cache miss period. For the RF however, 
increasing its size results in an access time greater than the 
baseline WPD (table 2). The challenge here is to design the RF in 
such a way that its access requires only a single processor cycle 
when its size is 32 entries and a two cycle access time only when 
we increase its size.  
Figure 7 shows our proposed solution which requires a minimal 
modification to a unified register file (unlike more complex 
banking schemes). As the results in figure 3 reported, among all 
RF components, the bitline delay increase is responsible for more 
than 90%  of access  time increase for a 64 entry RF  compare to  
32 entries one. This is due to the fact that bitline delay is decided 
by its equivalent capacitance which in turn is proportional to the 
number of RF entries (rows).  
Accordingly, to be able to achieve an access delay close to the 
baseline WPD for a 64 entry RF when only 32 of its entries are 
being used, we need to reduce the equivalent capacitance on the 
bitline by eliminating the diffusion capacitance of the 32 unused 
entries. 
 

 
Figure 7. Proposed circuit modification for RF 

 

 
For this purpose, the RF is divided into two segments of 32 entries 
each which are connected through pass transmission gates as 
shown in figure 7. This allows the upper segment bitline to 
become isolated from the lower segment bitline if the pass gate is 
off. It should be noted that all other components such as the 
bitline, sense-amp, etc. are shared for both structures. During the 
normal period the upper segment is power gated and the 
transmission gate is turned off to isolate the lower bitline segment 
from the upper bitline segment. Only the lower segment bitline is 
pre-charged during this period. Since the upper bitline segment is 
floating, the bitline capacitance during normal period is decided 
by the lower segment bitline. As such, the bitline delay in this 
case remain close to the bitline delay of a 32-row register file (the 
only difference is the delay added by the source capacitance of the 
pass gate, which is negligible). It should be noted that in our 
baseline RF configuration, the sense amp is used for pre-charging 
the bitline in addition to sensing the difference of voltage on the 
bitline and its complement during a read operation, as shown in 
figure 7. If the baseline architecture has a separate pre-charge 
circuitry, then such pre-charge circuitry has to be duplicated for 
both the top and bottom segments in our proposed architecture. 
In addition, we need to be able to detect when the upper segment 
is empty (for downsizing at the end of cache miss period when the 
added segment is empty). To do that we have augmented the 
upper segment with one extra bit per entry. This bit is set when an 
entry (register) is taken and is being reset when the entry is 
committed. By ORing these bits we can detect when the segment 
is empty.  
Since the remaining components of RF delay change very slightly, 
the RF access delay remains close to that for a 32-row RF when 
the upper segment is isolated. The delay of accessing the RF while 
the upper segment is isolated is 1.79 ns, which is only slightly 
larger than for a baseline 32-row register file (1.76 ns). When the 
upper segment is active and the RF has its full size, its access 
requires 1.93 ns, which can be completed in two processor cycles.  
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5. Experimental Results    
In this section we present experimental results to show how our 
adaptive resource resizing approach impacts processor 
performance. First we describe our simulation framework. Table 
3, describes the base processor architecture in detail, which 
operates at 560 MHz frequency and is similar to IBMPowerPC 
750FX embedded microprocessor [11]. We use SPEC2K 
benchmarks executed with reference data sets, and compiled with 
the O4 flag using the Compaq compiler. The architecture was 
simulated using an extensively modified version of MASE 
(SimpleScalar 4.0) [20]. The benchmarks were fast–forwarded for 
1 billion instructions, then fully simulated for 1 billion 
instructions.  We used a modified version of CACTI4 [19] for 
estimating access time of the ROB and RF.  For estimating energy 
consumption of our adaptive technique we integrate Wattch [21] 
into our simulator infrastructure. We used process parameters for 
a 65nm process at 560MHz with 1V supply voltage. 
In figure 8(a) and (b) we report the results for both our proposed 
L2RS and L2ML1RS techniques. In figure 8(a) we report the 
performance improvement in terms of IPC and in figure 8 (b) we 
report the energy-delay product of adaptive technique compare to 
the non-adaptive architecture (conf_1). As can be seen from figure 
8 (a), the performance improvement is significant across most 
benchmarks for L2RS, up to 24% for art and an average of 6.8%.  
The performance improvement for L2ML1RS is even more, up to 
34% for swim and an average of 9.2%. The performance 
improvement for L2ML1RS is more in this case compared to 
L2RS because it presents more opportunities for upsizing the 
resources.  
 

Table 3. Processor organization 
L1 I-cache 32KB, 2 

cycles 
Instruction 
queue 

12 entry 

L1 D-cache 32KB, 2 
cycles 

Register file 32 entry 

L2 cache 256KB, 8 
way, 12 
cycles 

Load/store 
queue 

12 entry 

Fetch and 
dispatch  

2 wide Branch 
predictor 

g-share,256-
entry BTB 

Issue 2 way out of 
order 

Arithmetic 
unit 

2 integer, 2 
floating-point 
units 

Memory 60 cycles Complex unit 1 INT, 1 FP 
multiply/divide 
units 

Reorder 
buffer 

24 entry Pipeline 5 cycles  

 
The exception in the overall observations is gzip which degrades 
in performance by 1.36% for L2ML1RS. As can be seen in figure 
8(a), the performance improvement for gzip when applying the 
L2RS technique is negligible while there is not much opportunity 
for resource scaling for this benchmarks (figure 2). As such 
applying L2ML1RS which comes with more resizing frequency 
resulted in performance degradation. Another trend seen in figure 
8 is for the INT benchmarks, for which the upsizing frequency 
and as such the performance benefit is lower for the FP 
benchmarks. 
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Figure 8. Experimental results: (a) performance improvement 
with L2RS and L2ML1RS compare to conf_1 (b) Normalized 
energy-delay product compare to conf_1. 
 
Recalling from results of experiments presented in section 3, in 
the same benchmarks the performance for INT benchmarks 
degraded more compared to the FP benchmarks.  
Finally, the energy-delay product of our adaptive architecture 
compared to the non-adaptive architecture (conf_1) is shown in 
figure 8(b). As can be seen for most benchmarks our technique 
results in overall reduction in energy-delay product. Exceptions 
are gcc, gzip and parser for which the energy-delay increased in 
both L2RS and L2ML1RS. Interestingly in the same benchmarks 
our technique did not result in performance improvements and as 
such the resizing would only result in increasing processor energy. 
The average energy-delay is reduced by 4.6% and 3.8% 
respectively for L2RS and L2ML1RS compared to the baseline 
configuration. 
 
6. Conclusion and Future Work  
In this work we presented the results of an architectural study 
which shows that the ROB, RF and IQ size are a performance 
bottleneck in embedded processor. We further studied the effect 
of increasing size of ROB/IQ and RF on processor performance. 
As our results demonstrate, increasing the size of these units 
(upsizing) would increase their access time and as such the 
processor cannot operate at its target clock frequency. We study 
two possible approaches to overcome this problem; either 
lowering the processor operating clock frequency or pipelining 
access to these units. Our result show that none of these 
techniques resulted in a noticeable performance improvement and 
in fact results in performance degradation for most of the studied 
cases. In response we propose two adaptive resource resizing 
techniques; L2RS and L2ML1RS. In L2RS the resources are 
increased during L2 cache miss service time. In L2ML1RS we 
increase the resources during L2 cache miss service time or when 
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at least two DL1 cache misses are pending. Our results show a 
significant performance improvement and overall energy-delay 
reduction of on average 9.2% (upto 34%) and 3.8% respectively 
across SPEC2K benchmarks for L2ML1RS. Applying L2RS 
resulted in 6.8% (24%) performance improvement and 4.6% 
energy-delay reduction. We also present the circuit modification 
to realize these techniques, which is shown to be minimal. 
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