
Improving Performance and Reducing Energy-Delay
with Adaptive Resource Resizing for Out-of-Order Embedded

Processors
Houman Homayoun†, Sudeep Pasricha†, Mohammad Makhzan‡, Alex Veidenbaum†

†Center for Embedded Computer Systems
University of California, Irvine, CA

{hhomayou, sudeep, alexv}@ics.uci.edu

‡Department of Electrical and Computer Engineering
University of California, Irvine, CA

mmakhzan@uci.edu

Abstract
While Ultra Deep Submicron (UDSM) CMOS scaling gives
embedded processor designers ample silicon budget to increase
processor resources to improve performance, restrictions with the
power budget and practically achievable operating clock
frequencies act as limiting factors. In this paper we show how just
increasing processor resource size is not effective in improving
performance due to constraints on achievable operating clock
frequency. In response we propose two adaptive resource resizing
techniques L2RS and L2ML1RS that adaptively resize resources by
exploiting cache misses. Our results show a significant performance
improvement and overall energy-delay reduction of on average
9.2% (upto 34%) and 3.8% respectively across SPEC2K
benchmarks for L2ML1RS. Applying L2RS resulted in 6.8%
performance improvement (upto 24%) and 4.6% energy-delay
reduction. We also present the required circuit modification to apply
these techniques which shown to be minimal.

Categories and Subject Descriptors C.1.1 [Processor
Architectures]: Single Data Stream Architectures; C.4 Performance
of Systems

General Terms Performance, Design

Keywords Architecture, Performance, Energy-Delay, Out-of-Order
Embedded Processor, Resource Resizing

1. Introduction
High performance embedded applications in the multimedia,
networking, imaging and high-end consumer application domains
are becoming increasingly prevalent in the market today. Since
these applications have high performance requirements, there has
been a gradual shift towards using more complex out-of-order
superscalar embedded processors to meet performance goals.
Examples of such embedded microprocessors include the IBM
PowerPC 750FX [11] [22], NEC’s VR5500 and VR77100 Star
Sapphire [4] processors which have an on-chip L2 cache, along

with a large instruction queue (IQ), reorder buffer (ROB) and
register file (RF).
With CMOS technology scaling into the Ultra Deep Submicron
(UDSM) region, hundreds of millions of transistors can already be
integrated on a single System-on-chip (SoC). While this gives
designers ample silicon budget to increase processor resources to
improve performance, restrictions with the power budget and
practically achievable operating clock frequencies act as limiting
factors that prevent increases in processor resource sizes. As we will
see in this work, while increasing the size of processor resources
such as the reorder buffer (ROB), instruction queue (IQ), and
register file (RF) can deliver a higher IPC (instructions per cycle),
the negative impact such a resource increase has on achievable
operating frequency can result in an overall performance
degradation in terms of execution time. This is due to the fact that
the access times to the muti-ported RF and IQ (in the bypass stage)
are one of the most critical timing factors that determine the
achievable processor operating frequency [1]-[3] [5]. We further
study the possibility of adaptively resizing these units. Our study is
based on the observation that after an L2 cache miss or multiple L1
cache misses one of the ROB/IQ/RF completely fills up and
becomes the performance bottleneck. To reduce such fill up
occurrences and hence improve performance we study the effect of
increasing size of ROB/IQ and RF at the cost of increasing their
access time. We study two possible approaches to overcome this
problem – either lowering the processor operating clock frequency
or pipelining access to these units. Our result show that none of
these techniques resulted in a noticeable performance improvement
(and in fact result in performance degradation for most of the
studied cases) and reveals that the negative impact of applying
pipelining or frequency scaling as a result of processor resource
upsizing on the performance becomes dominant over the positive
effect of resource upsizing on reducing the fill up rate and
performance improvements.
We further study how these occupancy rates vary during a period
where at least one L2 or at least two DL1 cache misses are pending
(we refer to this as cache miss period) compared to when these
cache miss scenarios do not occur (we refer to these periods as
normal periods). Based on the results, we propose adaptive resource
resizing and using aggressive resource upsizing only during a cache
miss period. During the normal period, resources are kept at their
typical size and as such they can operate at the normal operating
frequency. During a cache miss period we increase the resource
sizes which in turn results in an increase in their access times as
well. To meet frequency targets, we use pipelining on these upsized
resources.
Our adaptive resource scaling proposes two techniques – L2RS and
L2ML1RS. In L2RS we start with resources at their typical size and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
LCTES’08 June 12–13, 2008, Tucson, Arizona, USA.
Copyright © 2008 ACM 978-1-60558-104-0/08/06…$5.00.

71

will only increase their size when we encounter an L2 cache miss.
In L2ML1RS we apply the scaling on a single L2 cache miss or
when at least two DL1 cache misses are pending. In both techniques
the resource size is returned to their normal size once all of cache
misses are serviced and the scaled up part has no data. We also
present the required circuit modification to realize these techniques.
Our proposed circuit modification is applied to a unified register file
and in contrast to costly banking or clustering techniques it comes
with minimal hardware modification; adding one pass transistor per
register file bitline. The results show a significant performance
improvement and an overall energy-delay reduction of on average
9.2% and 3.8% respectively across SPEC2K benchmarks for
L2ML1RS. Applying L2RS resulted in 6.8% performance
improvement and 4.6% energy-delay reduction.
The rest of the paper is organized as follows: related work is
described in Section 2. In Section 3 we presented the motivation for
proposed architectural techniques. Section 4 describes our proposed
architectural technique and the required circuit modification.
Experimental results are presented in Section 5. Finally, in Section 6
we offer concluding remarks.

2. Related Work
There has been a lot of research that proposed altering the structure
of the register file (RF), reorder buffer (ROB) and instruction queue
(IQ) for improving performance. One set of techniques uses
localities of communication to split the microarchitecture into
distributed clusters, each containing a subset of the RF, ROB and IQ
[1] [6]-[9] [18]. The different functional units in a cluster can
service different requests in parallel as long as inter-operation value
communication is within a cluster; a penalty occurs when a value is
passed from one cluster to another. A critical issue in the design of
such systems is the heuristics used to map instructions to clusters.
These schemes have the potential to scale to larger issue widths but
require complex inter-cluster control logic to map instructions to
clusters and to handle inter-cluster dependencies.
Alternatively, other approaches retain a centralized
microarchitecture, but partition the processor units such as the RF
[3] [10] and IQ [14] [17] to reduce access time and energy
dissipation. Partitioning the register file into multiple banks for
instance reduces the ports on the partitions, which reduces the pre-
charging and sensing times and the related energy dissipation. But
these reductions come at the cost of value multiplexing and port
conflict problems. The major drawback of all these banking
techniques in general is in the complexity that speculation adds and
more specifically the complexity they introduce on handling the
coherency in register caches and banking conflicts. This added
complexity becomes even more critical for embedded processors
that work in resource-constrained environments.
There have also been some techniques to dynamically resize the
ROB [12] [16], IQ [14]-[16] and RF [13] at runtime to reduce
energy dissipation. None of the above schemes exploit the L1 and
L2 cache misses for resource adaptation. The technique that comes
closest to our work is [5], which performs early register de-
allocation based on L2 misses to improve performance. This is
accomplished by speculatively committing the load-independent
instructions and deallocating the registers corresponding to the
previous mappings of their destinations, without waiting for the
cache miss request to be serviced. The early deallocated registers
are then made immediately available for allocation to other
instructions, thus improving the overall processor throughput.
However, such a scheme increases complexity since it requires

additional resources such as bit vectors to identify the sources and
the destinations of the load-dependent instructions, additional bits in
the ROB and possibly a backup register file to store de-allocated
values. In contrast, we propose a much simpler circuit level
approach that dynamically adapts the ROB, RF and IQ on cache
misses to achieve significant performance improvements.

3. Motivation
A load instruction miss in the cache (DL1 or L2) prevents any
dependent instructions from being issued in a processor. The
dependent instructions fill up the reorder buffer, the instruction
queue, register file, and/or the load and store queues (LQ/SQ) until
the miss returns. In this section we briefly study the status of the
ROB, IQ and RF during such a scenario for our out-of-order 2-way
embedded processor similar to the IBM PowerPC 750FX
architecture [11] with a separate IL1 (level 1 instruction cache) and
DL1 (level 1 data cache) of 32KB with access time of 2 cycles and
a unified L2 (level 2 cache) of size 256KB with an access time of
12 cycles. The miss penalty of accessing the main memory is 60
cycles. The size of ROB, IQ and RF is 24, 12 and 32 respectively.
At every cycle, up to two new instructions are dispatched to the
ROB and up to two physical registers are allocated out of the pool of
free registers. To allocate new instructions, the processor also
releases up to two committed-instruction physical registers and their
ROB entries at every cycle. This is done in program order to enable
precise interrupt handling. When a cache miss occurs, the load
instruction that caused the miss stays on top of the ROB and doesn’t
allow the subsequent instructions to be committed. As a result, the
subsequent instructions occupying the ROB and RF cannot be
released until the miss returns. This gradually increases ROB and
RF occupancy, and reduces the processor issue rate. The same
scenario occurs for the LQ/SQ and IQ – the subsequent dependent
instructions to the load with a miss cannot be issued due to data
dependency. Such instructions reside in the IQ until the miss
returns. Accordingly the IQ occupancy increases as the processor
fills it with up to two instructions per cycle. Due to data
dependencies however, very few out of these can be issued.
Given the long cache miss service time (12 cycles for DL1 and 60
cycles for L2 in our architecture), the above scenario can happen
quite frequently. For the case of an L2 miss, due to the long service
time, either the ROB, RF, LQ/SQ or IQ can completely fill up with
subsequent instructions and the processor ends up being stalled
(issue rate of 0) until the miss is serviced. We refer to this as
scenario I. In the case of a DL1 miss, the service time is much
smaller than that for an L2 miss, and it is less possible that any of
LQ/SQ, ROB and IQ (all referred to as buffer) fills up completely
before the cache miss is serviced. Note that when one DL1 cache
miss occurs, its dependent instructions cannot be issued and all the
subsequent instructions cannot be committed as discussed above.
This reduces the issue rate and increases the occupancy of the
aforementioned buffers. In the presence of many pending DL1
cache misses, the impact on issue rate would be large and the
occupancy of queues will increase significantly. We refer to this
case where multiple DL1 misses are pending as scenario II. We
refer to the period during which one or more L2 miss/misses and/or
at least two DL1 misses are pending as cache miss period. We refer
to the rest of program execution time as normal period. Figure 1
illustrates the status of the ROB occupancy in our architecture for
the scenarios described above, during a cache miss period and for
a normal period (non-scenario I occurs when there is no pending
L2 cache miss and non-scenario II occurs when there is none or

72

one pending DL1 cache miss exist in the pipeline). As can be seen
from the figure, the ROB occupancy during scenario I increases
significantly compared to its occupancy during normal period for
all integer (INT) SPEC2K benchmarks. The maximum increase
occurs for the gcc benchmark, for which the ROB occupancy
doubles (increases by more than 100%). Across all floating points
(FP) benchmarks we observed a smaller increase. The average
increase across all benchmarks is around 20%. For scenario II the
ROB occupancy increases but less than for scenario I. The
average ROB occupancy increase is 14%. This difference is due
to the smaller latency penalty of DL1 cache miss compared to an
L2 cache miss.

5.0
7.0
9.0

11.0
13.0
15.0
17.0
19.0
21.0
23.0
25.0

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

ap
pl

u ar
t

fa
ce

re
c

ga
lg

el

lu
ca

s

sw
im

w
up

w
is

e

A
VE

R
A

G
E

ROB-Scenario I ROB - non Scenario I ROB-Scenario II ROB - non Scenario II

(a) (b)

Figure 1. Case study: ROB occupancy variation during
scenario I and scenario II compared to normal period. (a) INT
benchmark (b) FP benchmark

In figure 2 we report the frequency of ROB saturation (i.e., how
often it becomes completely full) during scenario I and scenario
II. It should be noted that the ROB can also potentially fill up
completely due to TLB misses, but for this work we only consider
cache misses. The results from the figure show that the ROB is
filled completely for a significant portion of a program execution
time, 45% of the time on average. Interestingly, in FP
benchmarks, this rate is larger than for INT benchmarks, due to
the fact that FP benchmarks have higher L2 and DL1 miss rates
compared to INT benchmarks. Another explanation for the ROB
filling up significantly more often in FP benchmarks compare to
INT benchmarks is that FP instruction operation latency is higher
than the INT operation latency.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

ap
pl

u ar
t

fa
ce

re
c

ga
lg

el

lu
ca

s

sw
im

w
up

w
is

e

A
VE

R
A

G
E

(a) (b)
Figure 2. Frequency of ROB saturation due to L2 cache miss
or at least two DL1 cache misses. (a) INT benchmark (b) FP
benchmark

3.1 Impact of Increasing Resource Sizes
Intuitively, from the results presented above, it can be inferred that
increasing the size of the ROB, as well as the IQ and RF will
prevent them from filling up completely as frequently and
potentially improve performance. It should be noted that the sizes of
these buffers have to be scaled up together; otherwise the non-
scaled ones would become a performance bottleneck.

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

RF-32 RF-48 RF-64 RF-96

de
la

y
(n

s)

input driver decoder wordline
bitline sense_amp output driver

Figure 3. Break down of RF component delay with increasing
RF size

Typically, the size of the RF is a limiting timing factor that
determines the maximum operating frequency of a processor as
discussed in several other works [1] [2] [3] [5]. Increasing the size
of the RF increases its access time. This is mostly due to increase in
the length of the bitline. Figure 3 shows the delay breakdown
among the various components of the RF, for 32, 48, 64 and 96
entry RF configurations. Results are shown for a single read
operation, with delays calculated using a modified version of
CACTI4 [19]. A clear trend seen in this figure is the significant
increase in bitline delay when the size of register file increases. This
can be explained as follows: The signal propagation delay of bitline
is relative to its equivalent capacitance. The equivalent capacitance
on the bitline is Ceq = N * diffusion capacitance of pass transistors
+ wire capacitance (usually 10% of total diffusion capacitance)
where N is the total number of rows. As the number of rows
increases the equivalent bitline capacitance also increases and since
the propagation delay on the bitline is relative to RCeq, the
propagation delay approximately increases with the number of
rows. The propagation delay for the remaining RF components
increases only slightly with an increase in RF size, as shown in the
figure.
It is thus clear that increasing RF size increases its access time. A
similar increase in access time occurs for the ROB and IQ. As a
result, the achievable operating frequency of the processor is
reduced when resource sizes are increased. To reduce access time it
is possible to apply banking or clustering techniques to improve RF
access time, as has been proposed for high performance processors
[10] [3] . However banking or clustering the RF is a costly solution,
due to the significant complexity that is introduce in handling
banking conflicts and coherency in RF banks. Such complexity can
be prohibitive, especially in the resource constrained environments
in which embedded processors operate.
 The increase in access time for upsized resources leads to two main
implementation choices for designers: (i) reducing operating clock
frequency, and (ii) maintaining operating clock frequency by
pipelining resources. In the next two sections, we explore these two
techniques in more detail, to analyze their impact on performance.

73

3.2 Impact of Reduced Operating Clock Frequency
Table 1 presents three different processor configurations as a case
study to see the effectiveness of increasing the size of resources
(RF, ROB and IQ) to reduce the occurrences of stalls and hence
potentially improve processor performance.
Table 1. Reduction in operating clock frequency with resource
upsizing
Processor
Configuration

Conf. 1
baseline

Conf. 2
intermediat
e

Conf. 3
aggressive

Conf. 4
upper bound

RF size 32 48 64 96
ROB size 24 32 48 64
IQ size 12 24 32 48
RF access
time (ns)

1.76 1.92 2.03 2.19

Operating
Freq (MHz)

560 520 490 450

As explained earlier and consistent with several previous works, we
assume that RF access time determines the achievable operating
frequency of the processor. As we scaled up all the resources, we
assume that the RF access still decides the achievable operating
frequency. The baseline configuration is shown in the Conf. 1
column, with a 560 MHz operating frequency. The Conf. 2 column
represents an intermediate configuration, with the RF, ROB and IQ
upsized to 48, 32 and 24 entries, respectively. Using a modified
version of CACTI4 [19], the access time for RF is found to increase
to 1.92 ns. As a result, the operating clock frequency for the
processor cannot exceed 520 MHz for this configuration. The Conf.
3 column represents a configuration in which resources are upsized
aggressively and the achievable operating clock frequency is
reduced further to 490 MHz. The final configuration (Conf. 4
column) presents an upper bound architecture for which the
resource sizes may not be achievable in the design due to
power/area and timing constraints.

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

ap
pl

u ar
t

fa
ce

re
c

ga
lg

el

lu
ca

s

sw
im

w
up

w
is

e

A
VE

R
A

G
E

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

conf_1 conf_2 conf_3 conf_4
Figure 4. Normalized execution time for different
configuration with reduced operating frequency compared to
the baseline architecture.

Figure 4 shows the performance for the different configurations
described above (normalized to the baseline configuration), while
operating at their maximum achievable operating frequency. Figure
5 provides more insight on the frequency of ROB completely filling
up during execution, for the different configurations.
For the INT benchmarks, it can be seen from Figure 5 that although
increasing the ROB, RF and IQ sizes in configurations 2, 3 and 4
reduces the frequency of resource saturation (i.e., complete fill up)

during execution, lowering the operating frequency impacts the
performance negatively, as can be seen in Figure 4. In other words,
for the trade-off between resource upsizing (and hence reducing
their saturation rate) and lowering the clock frequency, the latter
becomes more important and plays a major role in deciding the
performance of the INT benchmarks. An exception is mcf for which
upsizing the resources results in performance increase. Interestingly
such increase exists only for intermediate and aggressive
configuration (conf_2 and conf_3) but as we move to upper bound
configuration (conf_4) we witness a performance impact.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

ap
pl

u

ar
t

fa
ce

re
c

ga
lg

el

lu
ca

s

sw
im

w
up

w
is

e

A
VE

R
A

G
E

Sa
tu

ra
tio

n
Fr

eq
ue

nc
y

conf_1 conf_2 conf_3 conf_4
Figure 5. Case Study: Frequency of ROB saturation during
execution, for different configurations.

To provide better insight we refer to how frequently ROB
saturates across different configurations for mcf as reported in
figure 5. As shown the ROB saturation rate drop significantly
when moving from baseline configuration to aggressive
configuration, but this decrease slows down significantly when
moving to upperbound configuration. This in fact indicates a clear
trade-off between the benefit of resource resizing on reducing
resource saturation frequency and the impact it has on operating
frequency.

Table 2. Configurations with pipelined resource access
Processor

Configuration
Conf. 1
baseline

Conf. 2
intermediate

Conf. 3
aggressive

Conf. 4
upper bound

RF size 32 48 64 96
ROB size 24 32 48 64
IQ size 12 24 32 48

RF access
time (ns)

1.76 1.92 2.03 2.19

ROB access
time (ns)

1.43 1.58 1.83 1.91

Operating
Freq (MHz)

560 560 560 560

Pipeline
Depth

5 RF: 2 cycle;
Bypass: 2

cycle

RF, ROB:
2 cycle;

Bypass: 2
cycle

RF , ROB: 2
cycle;

Bypass: 2
cycle;

wakeup: 2
cycle

For the FP benchmarks shown in Figure 4, it can be seen that
there is a performance improvement for some benchmarks, and
performance degradation for others, as resources are upsized and
operating frequency reduced. applu is similar to mcf with a
performance improvement when going from conf_1 to conf_2 and
conf_3, but performance degrades when we further increase the

74

size of resources at the cost of lowering the operating frequency.
The maximum performance benefit is achieved for art which is
consistent with the results in figure 5, with a significant saturation
frequency reduction across different configurations. On average
there is less than 0.5% performance improvement for intermediate
configuration compare to our baseline. The aggressive and upper
bound configuration results in performance degradation by up to
13% and 21%, and 0.7% and 2.8% on an average, compared to
our baseline.

3.3 Impact of Pipelining Resource Access
In this section, we study the same scaled configurations presented
in the previous section, but with the difference that this time we
try to achieve the same operating clock frequency as the baseline
architecture for all configurations. We refer to the RF access time
of 1.76 ns for the baseline (or target) clock frequency as the worse
pass delay (WPD). We pipelined resources with access times
greater than the baseline WPD. This was the case for the RF in the
intermediate configuration (as shown in Table 2). After
pipelining, any access to the RF would require two processor
cycles. To model this, it becomes necessary to modify several
processor pipeline stages in which the RF is accessed. These
include the (i) register rename logic, (ii) issue stage, and (iii)
bypass logic. The bypass logic in particular requires an extra
level. As previous studies [2] have shown, such an extra level
leads to significant complexity in the pipeline. In this case, the
data is available at the time of data bypass, then they are
disappearing in the next cycle and finally they will be available
the next cycle from register files. Using one level of bypass
creates holes which as explained in [2] are undesirable and would
lead to significant complexity to the issue logic. To avoid such
complexity, an alternative is to just have two levels of bypass. In
such a case only the last level of bypass is kept to avoid “holes”
when there is an access to register file. We modify the pipeline
according to this latter approach. For the aggressive configuration,
in addition to pipelining the RF access, ROB access is also
pipelined since its access delay is greater than the WPD, as shown
in table 2. As such we need to modify the following additional
pipeline stages (in addition to the changes described above for the
intermediate configuration): (i) dispatch stage, and (ii) commit
stage. For the upper bound configuration, in addition to pipelining
the RF and ROB, we assume that the wakeup stage also required
to be pipelined since its access delay goes above WPD. In other
words, if the produced source operand tags are available in a
given cycle,

0.4

0.6

0.8

1.0

1.2

1.4

1.6

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

ap
pl

u ar
t

fa
ce

re
c

ga
lg

el

lu
ca

s

sw
im

w
up

w
is

e

A
ve

ra
ge

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

conf_1 conf_2 pipelined conf_3 pipelined conf_4 pipelined
Figure 6. Normalized execution time for different
configurations with additional pipelining while operating at
the same frequency.

they will be broadcast in the next cycle. It should be noted that
this is different from bypassing the data which has already been
pipelined in the intermediate, aggressive and upper bound
configurations.
Figure 6 shows the results for the pipelined configurations with
the same operating frequency as the baseline configuration (target
frequency) for all the scaled up configurations (i.e., conf_2,
conf_3 and conf_4).
As can be seen, a performance degradation is observed across
most INT benchmarks. For all these configurations, introducing
additional pipelining increases the branch miss prediction
penalties. This is more visible in the INT benchmarks as their
performance is more susceptible to branch penalties, compared to
the FP benchmarks. For FP benchmarks there is a significant
variation in performance impact. In applu, art, facerec, and swim
there is a notable performance improvement. For these
benchmarks, the benefit of increasing the resource sizes
(ROB/IQ/RF) overcomes the negative impact of additional
pipelining. This is not the case for lucas and wupwise.
Interestingly these are the benchmarks with lowest resource
saturation among all FP benchmarks, as reported in figure 5. As
such, the negative impact of additional pipelining would be
dominant in their overall performance. On average the
performance degradation is 2.9%, 8.1% and 14.3% for the
intermediate, aggressive, and upper bound configurations
respectively, compared to the baseline configuration.
As the results in this and the previous subsection show, neither of
these two techniques result in a noticeable performance
improvement (in most cases there is actually a performance
degradation). We conclude that the negative impact of pipelining
and frequency scaling on the performance becomes dominant over
the positive impact of resource upsizing. In the next section we
describe a different approach that actually improves overall
performance significantly during resource upsizing.

4. Proposed Approach
The results in figure 2 suggest that there is no need for aggressive
resource upsizing during the normal period. Based on our
observations in subsections 3.2 and 3.3, we realized the need for
an adaptive resource scaling technique based on cache misses, that
allows the processor to use smaller resources (having a lower
access time) during the normal period and larger resources
(having a higher access time) during the cache miss period.
Our proposed approach thus applies resource scaling and uses
aggressively upsized resources only during the cache miss period.
During the normal period, resources are kept at their typical size
and as such they can operate at the target operating frequency
(WPD of 1.76 ns for the RF from table 2, which determines the
processor operating frequency). During the cache miss period we
scale up the resource sizes, which results in an increase in their
access time.
For the resources with access time greater than the typical WPD,
we propose pipelining, as discussed in section 3.3. It should be
noted that while the goal of our work is to increase performance,
the power and complexity overhead should also be taken into
consideration while implementing our approach. Pipelining the
ROB and wakeup logic for instance significantly increases design
complexity. As such we only consider a more realistic scenario,

75

which is scaling up resources to configuration 2 (intermediate), in
which only the access to the RF needs to be pipelined.
Note that while it is also possible to increase resource sizes
further, we avoid doing so due to the extra power overhead of a
larger ROB, RF and particularly the IQ.
As part of our approach, we propose two techniques for scaling
resources.
In the first technique, we start with resources at their typical size
and only increase their size when we encounter an L2 cache miss.
We refer to this technique as L2 miss driven resource scaling
(L2RS).
In the second technique, we perform scaling on a single L2 cache
miss or when at least two DL1 cache misses are pending. We refer
to this algorithm as L2 and multi-DL1 miss driven resource
scaling (L2ML1RS). In both techniques, the resource size is
returned to its normal size once all of the cache misses have been
serviced and the scaled up part has no more data.
It should be noted that both these techniques have a fairly simple
implementation and do not add significant complexity to the
embedded processor pipeline, since the scheduler in embedded
processors already keeps track of miss load instructions in DL1
and L2 caches. Though, L2ML1RS is slightly more complex than
L2RS since it requires counting the number of pending L1 cache
misses. We now describe the circuit level modifications required
to implement these techniques.

4.1 Circuit Modification
Table 2 indicates that increasing ROB size from 24 to 48 does not
increase its access time beyond the baseline WPD. Consequently,
the ROB can be designed with 48 entries without needing extra
pipelining and still be accessed at the target clock frequency. We
use the same reasoning to design the IQ with 24 entries (instead of
12 in the baseline configuration). For our adaptive resizing
scheme, we divided the ROB into two partitions of 32 and 16
entries each. For power conservation we used gated Vdd
technique to power gate the part with 16 entries always, except
during cache miss period. Similarly, we divided the IQ into two
equal partitions of 12 entries and power gated one partition
always, except during a cache miss period. For the RF however,
increasing its size results in an access time greater than the
baseline WPD (table 2). The challenge here is to design the RF in
such a way that its access requires only a single processor cycle
when its size is 32 entries and a two cycle access time only when
we increase its size.
Figure 7 shows our proposed solution which requires a minimal
modification to a unified register file (unlike more complex
banking schemes). As the results in figure 3 reported, among all
RF components, the bitline delay increase is responsible for more
than 90% of access time increase for a 64 entry RF compare to
32 entries one. This is due to the fact that bitline delay is decided
by its equivalent capacitance which in turn is proportional to the
number of RF entries (rows).
Accordingly, to be able to achieve an access delay close to the
baseline WPD for a 64 entry RF when only 32 of its entries are
being used, we need to reduce the equivalent capacitance on the
bitline by eliminating the diffusion capacitance of the 32 unused
entries.

Figure 7. Proposed circuit modification for RF

For this purpose, the RF is divided into two segments of 32 entries
each which are connected through pass transmission gates as
shown in figure 7. This allows the upper segment bitline to
become isolated from the lower segment bitline if the pass gate is
off. It should be noted that all other components such as the
bitline, sense-amp, etc. are shared for both structures. During the
normal period the upper segment is power gated and the
transmission gate is turned off to isolate the lower bitline segment
from the upper bitline segment. Only the lower segment bitline is
pre-charged during this period. Since the upper bitline segment is
floating, the bitline capacitance during normal period is decided
by the lower segment bitline. As such, the bitline delay in this
case remain close to the bitline delay of a 32-row register file (the
only difference is the delay added by the source capacitance of the
pass gate, which is negligible). It should be noted that in our
baseline RF configuration, the sense amp is used for pre-charging
the bitline in addition to sensing the difference of voltage on the
bitline and its complement during a read operation, as shown in
figure 7. If the baseline architecture has a separate pre-charge
circuitry, then such pre-charge circuitry has to be duplicated for
both the top and bottom segments in our proposed architecture.
In addition, we need to be able to detect when the upper segment
is empty (for downsizing at the end of cache miss period when the
added segment is empty). To do that we have augmented the
upper segment with one extra bit per entry. This bit is set when an
entry (register) is taken and is being reset when the entry is
committed. By ORing these bits we can detect when the segment
is empty.
Since the remaining components of RF delay change very slightly,
the RF access delay remains close to that for a 32-row RF when
the upper segment is isolated. The delay of accessing the RF while
the upper segment is isolated is 1.79 ns, which is only slightly
larger than for a baseline 32-row register file (1.76 ns). When the
upper segment is active and the RF has its full size, its access
requires 1.93 ns, which can be completed in two processor cycles.

76

5. Experimental Results
In this section we present experimental results to show how our
adaptive resource resizing approach impacts processor
performance. First we describe our simulation framework. Table
3, describes the base processor architecture in detail, which
operates at 560 MHz frequency and is similar to IBMPowerPC
750FX embedded microprocessor [11]. We use SPEC2K
benchmarks executed with reference data sets, and compiled with
the O4 flag using the Compaq compiler. The architecture was
simulated using an extensively modified version of MASE
(SimpleScalar 4.0) [20]. The benchmarks were fast–forwarded for
1 billion instructions, then fully simulated for 1 billion
instructions. We used a modified version of CACTI4 [19] for
estimating access time of the ROB and RF. For estimating energy
consumption of our adaptive technique we integrate Wattch [21]
into our simulator infrastructure. We used process parameters for
a 65nm process at 560MHz with 1V supply voltage.
In figure 8(a) and (b) we report the results for both our proposed
L2RS and L2ML1RS techniques. In figure 8(a) we report the
performance improvement in terms of IPC and in figure 8 (b) we
report the energy-delay product of adaptive technique compare to
the non-adaptive architecture (conf_1). As can be seen from figure
8 (a), the performance improvement is significant across most
benchmarks for L2RS, up to 24% for art and an average of 6.8%.
The performance improvement for L2ML1RS is even more, up to
34% for swim and an average of 9.2%. The performance
improvement for L2ML1RS is more in this case compared to
L2RS because it presents more opportunities for upsizing the
resources.

Table 3. Processor organization
L1 I-cache 32KB, 2

cycles
Instruction
queue

12 entry

L1 D-cache 32KB, 2
cycles

Register file 32 entry

L2 cache 256KB, 8
way, 12
cycles

Load/store
queue

12 entry

Fetch and
dispatch

2 wide Branch
predictor

g-share,256-
entry BTB

Issue 2 way out of
order

Arithmetic
unit

2 integer, 2
floating-point
units

Memory 60 cycles Complex unit 1 INT, 1 FP
multiply/divide
units

Reorder
buffer

24 entry Pipeline 5 cycles

The exception in the overall observations is gzip which degrades
in performance by 1.36% for L2ML1RS. As can be seen in figure
8(a), the performance improvement for gzip when applying the
L2RS technique is negligible while there is not much opportunity
for resource scaling for this benchmarks (figure 2). As such
applying L2ML1RS which comes with more resizing frequency
resulted in performance degradation. Another trend seen in figure
8 is for the INT benchmarks, for which the upsizing frequency
and as such the performance benefit is lower for the FP
benchmarks.

(a)

-2%

3%

8%

13%

18%

23%

28%

33%

38%

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

ap
pl

u

ar
t

fa
ce

re
c

ga
lg

el

lu
ca

s

sw
im

w
up

w
is

e

A
ve

ra
ge

Resize after L2 miss Resize after L2 miss or more than 1 L1 misses
(INT) (FP)

(b)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

ap
pl

u ar
t

fa
ce

re
c

ga
lg

el

lu
ca

s

sw
im

w
up

w
is

e

A
ve

ra
ge

Resize after L2 miss Resize after L2 miss or more than 1 L1 misses
Figure 8. Experimental results: (a) performance improvement
with L2RS and L2ML1RS compare to conf_1 (b) Normalized
energy-delay product compare to conf_1.

Recalling from results of experiments presented in section 3, in
the same benchmarks the performance for INT benchmarks
degraded more compared to the FP benchmarks.
Finally, the energy-delay product of our adaptive architecture
compared to the non-adaptive architecture (conf_1) is shown in
figure 8(b). As can be seen for most benchmarks our technique
results in overall reduction in energy-delay product. Exceptions
are gcc, gzip and parser for which the energy-delay increased in
both L2RS and L2ML1RS. Interestingly in the same benchmarks
our technique did not result in performance improvements and as
such the resizing would only result in increasing processor energy.
The average energy-delay is reduced by 4.6% and 3.8%
respectively for L2RS and L2ML1RS compared to the baseline
configuration.

6. Conclusion and Future Work
In this work we presented the results of an architectural study
which shows that the ROB, RF and IQ size are a performance
bottleneck in embedded processor. We further studied the effect
of increasing size of ROB/IQ and RF on processor performance.
As our results demonstrate, increasing the size of these units
(upsizing) would increase their access time and as such the
processor cannot operate at its target clock frequency. We study
two possible approaches to overcome this problem; either
lowering the processor operating clock frequency or pipelining
access to these units. Our result show that none of these
techniques resulted in a noticeable performance improvement and
in fact results in performance degradation for most of the studied
cases. In response we propose two adaptive resource resizing
techniques; L2RS and L2ML1RS. In L2RS the resources are
increased during L2 cache miss service time. In L2ML1RS we
increase the resources during L2 cache miss service time or when

77

at least two DL1 cache misses are pending. Our results show a
significant performance improvement and overall energy-delay
reduction of on average 9.2% (upto 34%) and 3.8% respectively
across SPEC2K benchmarks for L2ML1RS. Applying L2RS
resulted in 6.8% (24%) performance improvement and 4.6%
energy-delay reduction. We also present the circuit modification
to realize these techniques, which is shown to be minimal.

7. REFERENCES
 [1] A. Terechko, M. Garg, H. Corporaal, "Evaluation of speed

and area of clustered VLIW processors," VLSI Design,
2005. 18th International Conference on , vol., no., pp. 557-
563, 3-7 Jan. 2005.

 [2] J.L. Cruz, A. González, et al., “Multiple-banked register file
architectures”, International Symposium on Computer
Architecture, pp. 316-325, Vancouver, Canada, June 2000.

 [3] J.H. Tseng, K. Asanovic, et al., “Banked Multiported
Register Files for High-Frequency Superscalar
Microprocessors”, International Symposium on Computer
Architecture, San Diego, California, USA, 9–11 June 2003.

 [4] Stijn Eyerman, Lieven Eeckhout, Koen De Bosschere,
“Efficient Design Space Exploration of High Performance
Embedded Out-of-Order Processors”, DATE 2006.

 [5] Joseph Sharkey, Dmitry Ponomarev, “An L2-Miss-Driven
Early Register Deallocation for SMT Processors”, ICS
2007.

 [6] O. Ergin, et al.,, “Increasing Processor Performance through
Early Register Release”, Int’l Conference on Computer
Design, 2004.

 [7] S. Rixner,W. Dally, B. Khailany, P. Mattson, U. Kapasi,
and J. Owens. “Register organization for media processing.”
In Proc. of the 6th Intl. Symp. on High-Performance
Computer Architecture, pages 375–386, 1999.

 [8] Keith I. Farkas, Paul Chow, Norman P. Jouppi, and Zvonko
G. Vranesic. “The Multicluster architecture: Reducing cycle
time through partitioning.” In MICRO-30, pages 149–159,
1997.

 [9] A. Seznec, E. Toullec, and O. Rochecouste. “Register write
specialization register read specialization: A path to
complexity-effective wide-issue superscalar processors.” In
MICRO-35, Turkey, November 2002.

[10] R. Balasubramonian, S. Dwarkadas, and D.H. Albonesi.
“Reducing the complexity of the register file in dynamic
superscalar processors.” In MICRO-34, December 2001.

[11] IBM Corporation. PowerPC 750 RISC Microprocessor
Technical Summary. www.ibm.com.

[12] G. Kucuk, D. Ponomarev, and K. Ghose. “Low-complexity
reorder buffer architecture.” Proceedings of the 16th ACM
International Conference on Supercomputing, 2002.

[13] Goto, M. and Sato, T., “Leakage Energy Reduction in
Register Renaming”, in Proc. 1st Int'l Workshop on
Embedded Computing Systems (ECS) held in conjunction
with 24th ICDCS, pp.890-895, March 2004.

[14] A. Buyuktosunoglu, D. Albonesi, S. Schuster, D. Brooks, P.
Bose, and P. Cook, “A Circuit Level Implementation of an
Adaptive Issue Queue for Power-Aware Microprocessors,”
Proc. Great Lakes Symp. VLSI Design, 2001.

[15] D. Folegnani and A. Gonzalez, “Energy-Effective Issue
Logic,” Proc. Int’l Symp. Computer Architecture, pp. 230-
239, 2001.

[16] D. Ponomarev, G. Kucuk, K. Ghose, “Dynamic Resizing of
Superscalar Datapath Components for Energy Efficiency,”
IEEE Transactions on Computers ,vol. 55, no. 2, pp. 199-
213, February, 2006.

[17] Steven E. Raasch, Nathan L. Binkert and Steven K.
Reinhardt, “A Scalable Instruction Queue Design Using
Dependence Chains”, Proceedings of 29th Annual of
International Symposium on Computer Architecture, 2002
Page(s): 318-329.

[18] S. Palacharla, N. Jouppi, and J. E. Smith. “Complexity
effective superscalar processors.” In ISCA-24, pages 206–
218, June 1997.

[19] “Cacti4,” http://quid.hpl.hp.com:9081/cacti/.
[20] SimpleScalar4 tutorial, SimpleScalar LLC.

http://www.simplescalar.com/tutorial.html
[21] D. Brooks, V. Tiwari, and M. Martonosi. “Wattch: A

framework for architectural-level power analysis and
optimizations.” In 27th Annual International Symposium on
Computer Architecture, June 2000.

[22] S. Geissler et al., “A low-power RISC microprocessor using
dual PLLs in a 0.13/spl mu/m SOI technology with copper
interconnect and low-k BEOL dielectric”, in ISSCC 2002.

78

