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Abstract—Emerging big data frameworks requires 
computational resources and memory subsystems that can 
naturally scale to manage massive amounts of diverse data. 
Given the large size and heterogeneity of the data, it is currently 
unclear whether big data frameworks such as Hadoop, Spark, 
and MPI will require high performance and large capacity 
memory to cope with this change and exactly what role main 
memory subsystems will play; particularly in terms of energy 
efficiency. The primary purpose of this study is to answer these 
questions through empirical analysis of different memory 
configurations available on commodity hardware and to assess 
the impact of these configurations on the performance and power 
of these well-established frameworks. Our results reveal that 
while for Hadoop there is no major demand for high-end DRAM, 
Spark and MPI iterative tasks (e.g. machine learning) are 
benefiting from a high-end DRAM; in particular high frequency 
and large numbers of channels. Among the configurable 
parameters, our results indicate that increasing the number of 
DRAM channels reduces DRAM power and improves the 
energy-efficiency across all three frameworks. 

I. INTRODUCTION 

Three well-known parallel programming frameworks used 
by big data community are Hadoop, Spark, and MPI. Hadoop 
and Spark are two prominent frameworks for big data 
analytics. Spark has been developed to overcome the 
limitation of Hadoop on efficiently utilizing main memory. 
MPI, a de facto industry standard for parallel programming on 
distributed memory systems, is also used for big data 
analytics.  

While there are literatures on understanding the behavior 
of big data applications by characterizing them, most of prior 
works have focused on the CPU parameters such as core 
counts, core frequency, cache parameters, and network 
configuration or I/O implication with the assumption of the 
demand for using the fastest and largest main memory in the 
commodity hardware [1, 2]. However, none of the previous 
works have studied the main memory subsystem parameters to 
characterize big data applications and the underlying 
frameworks.  

The objective of this paper is to evaluate the effect of the 
memory subsystem on the performance of big data 
frameworks.  To perform the memory subsystem analysis, we 
have investigated two configurable memory parameters 
including memory frequency and number of memory 
channels, to determine how these parameters affect the 

performance and power consumption of big data applications.  
Our evaluation reveals that Hadoop applications do not 

require a high bandwidth memory subsystem to enhance the 
performance. Improving memory subsystem parameters 
beyond 1333 MHz Frequency and a single channel does not 
enhance Hadoop performance noticeably. On the other hand, 
Spark and MPI applications can benefit from higher memory 
frequency and number of channels if the application is 
iterative such as machine learning algorithms. However, 
increasing the number of memory channels beyond two 
channels does not enhance the performance of those 
applications. This is an indication for lack of efficient memory 
allocation and management in both hardware (memory 
controller) as well as software stack.  

To the best of our knowledge this is the first work that 
looks beyond just the memory capacity to understand Hadoop, 
Spark and MPI based big data applications’ memory behavior 
by analyzing the effect of memory frequency as well as 
number of memory channels on the performance as well of 
power consumption.  

II. EXPERIMENTAL SETUP 

In our study, we used Hadoop MapReduce version 2.7.1, 
Spark version 2.1.0 in conjunction with Scala 2.11, and 
MPICH2 version 3.2 installed on Linux Ubuntu 14.04. We 
used BigDataBench [3] and HiBench [4] for the choice of big 
data benchmarking. We selected a diverse set of applications 
and frameworks to be representative of big data domain. More 
details of these workloads are provided in Table 1 and 2.  

For running the workloads and monitoring statistics, we 
used a six-node standalone cluster (Xeon 2650 V2). To have a 
comprehensive experiment we used different SDRAM 
memory modules.  All modules are provided from the same 
vendor. We used Intel Performance Counter Monitor tool 
(PCM) to understand hardware behavior. We collect OS-level 
performance information with DSTAT tool.  

III. RESULTS 

In this section, we present a discussion on memory 
analysis results to help better understanding the memory 
requirements of big data frameworks.   

1) Memory channels implication: The off-chip peak 
memory bandwidth equation is shown in EQ. (1).  
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Table 1: Studied workloads 
Workload wordcount sort grep terasort nweight bayes naïve bayes kmeans pagerank aggregation join scan 

Input size  1.1 T 178.8G 1.1 T 178.8G 17.6G 30.6G 30.6G 112.2G 16.8G 10.8G 10.8G 10.8G 

Framework 
Hadoop, 

Spark, MPI 
Hadoop, 

Spark, MPI 
Hadoop, 

Spark, MPI 
Hadoop, 

Spark 
Spark 

Hadoop, 
Spark 

Hadoop, 
Spark, MPI 

Hadoop, 
Spark, MPI 

Hadoop, 
Spark 

Hadoop Hadoop Hadoop 

Suite BigDataBench BigDataBench BigDataBench HiBench HiBench HiBench BigDataBench BigDataBench HiBench HiBench HiBench HiBench 

 



Bandwidth = Channels × Frequency × Width     EQ. (1) 

Our system supports four memory channels with the 
maximum memory frequency of 1866MHz. The maximum 
and minimum available memory bandwidth are 59.7 GB/S and 
10.7 GB/S respectively. We observe in Figure 1 that 
increasing the number of channels does not have significant 
effect on the execution time (on average 9%), except for K-
means and Nweight in Spark, and for Image segmentation in 
MPI framework (All of them are iterative tasks). The results 
show that Spark and MPI based machine learning applications 
are gaining performance from increased number of channels.  

2) Memory frequency implication: Figure 2 shows the 
effect of memory frequency on the execution time. Note that 
increasing the frequency from 1333 MHz to 1866 MHz 
translates to almost 40% increase in the bandwidth. Previous 
section showed that 400% (4X) increase in the bandwidth 
resulted by increasing the number of channels from 1 to 4 can 
gain only 9% performance benefit. Like memory channel, 
only iterative tasks on Spark and MPI take advantage from 
high frequency memory. 

  3) Power analysis: Figure 3 reports the DRAM power 
consumption. The first observation is that by increasing the 
frequency of DRAM by about 40% (1333 MHz to 1866 
MHz), the power increases by almost 15%. It shows the static 
power is the major component of DRAM power. However, the 

DRAM power consumption is reduced when we increase the 
number of channels. An interesting observation is that a 
memory with 4 channels consumes 42% less power than a 
memory with 1 channel. Because with more channels, the 
memory controller can manage accesses more efficiently. 

IV. CONCLUSION 

This work performs a comprehensive analysis of memory 
requirements of big data applications through an experimental 
evaluation setup. We study diverse range of applications from 
microkernels, graph analytics, machine learning, E-commerce, 
social networks, search engines, and multimedia in Hadoop, 
Spark, and MPI. This gives us several insights into 
understanding the memory role for these important 
frameworks. We observe that most of studied big data 
applications in MapReduce based frameworks such as Hadoop 
do not require a high-end memory. On the other hand MPI 
applications, as well as iterative tasks in Spark (e.g. machine 
learning) benefit from a high-end memory. Moreover, we 
show that increasing the number of memory channels reduces 
memory power noticeably across all studied applications and 
improves the energy-efficiency. 
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Table 2: MPI based Multimedia workloads from BigDataBench 

Workload 
BasicMPE

G 
DBN 

Speech 
recognitio

n 

Image 
Segmentati

on 
SIFT 

Face 
Detection 

Input size 
(huge) 

24G 
MNIST 
dataset 

59G 62G 62G 62G 
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Figure 1: Effect of memory channel on the execution time (Normalized to 4CH) 
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Figure 2: Effect of memory frequency on the execution time (Normalized to 1866M) 
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Figure 3: DRAM power consumption 

 


