
Main-Memory Requirements of Big Data Applications on Commodity Server
Platform

Hosein Mohammadi Makrani, Setareh Rafatirad, Amir Houmansadr*, Houman Homayoun
Electrical and Computer Engineering Department, George Mason University, Fairfax, USA

College of Information and Computer Sciences, University of Massachusetts Amherst, USA*

{hmohamm8, srafatir, hhmoayou}@gmu.edu, amir@cs.umass.edu*

Abstract—The emergence of big data frameworks requires

computational and memory resources that can naturally scale
to manage massive amounts of diverse data. It is currently
unclear whether big data frameworks such as Hadoop, Spark,
and MPI will require high bandwidth and large capacity
memory to cope with this change. The primary purpose of this
study is to answer this question through empirical analysis of
different memory configurations available for commodity
server and to assess the impact of these configurations on the
performance Hadoop and Spark frameworks, and MPI based
applications. Our results show that neither DRAM capacity,
frequency, nor the number of channels play a critical role on
the performance of all studied Hadoop as well as most studied
Spark applications. However, our results reveal that iterative
tasks (e.g. machine learning) in Spark and MPI are benefiting
from a high bandwidth and large capacity memory.

Keywords—big data, memory, Hadoop, Spark, performance

I. INTRODUCTION
Advances in various branches of technology – data

sensing, data communication, data computation, and data
storage – are driving an era of unprecedented innovation for
information retrieval. The world of big data is constantly
changing and producing substantial amounts of data that
creates challenges to process it using existing solutions. To
address this challenge, several frameworks such as Hadoop
and Spark, based on cluster computing, have been proposed.
The main characteristic of these new frameworks is their
ability to process large-scale data-intensive applications on
commodity hardware [1].

Big data analytics applications heavily rely on big-data-
specific deep machine learning and data mining algorithms.
They are running complex database software stack with
significant interaction with I/O and OS, and exhibit high
computational intensity and I/O intensity. In addition, unlike
conventional CPU applications, big data applications
combine a high data rate requirement with high
computational power requirement, in particular for real-time
and near-time performance constraints.

Three well-known parallel programming frameworks
used by community are Hadoop, Spark, and MPI. Hadoop
and Spark are two prominent frameworks for big data
analytics. Spark has been developed to overcome the
limitation of Hadoop on efficiently utilizing main memory.
Both Hadoop and Spark use clusters of commodity
hardware to process large datasets. MPI, a de facto industry

standard for parallel programming on distributed memory
systems, is also used for big data analytics [21].

While there are literatures on understanding the behavior
of big data applications by characterizing them, most of
prior works have focused on the CPU parameters such as
core counts, core frequency, cache parameters, and network
configuration or I/O implication with the assumption of the
demand for using the fastest and largest main memory in the
commodity hardware [3, 5, 12, 14, 15, 20, 24]. However,
none of the previous works have studied the main memory
subsystem parameters to characterize big data applications
and the underlying frameworks.

The objective of this paper is to evaluate the effect of the
memory subsystem on the performance of big data
frameworks. To perform the memory subsystem analysis,
we have investigated three configurable memory parameters
including memory capacity, memory frequency, and number
of memory channels, to determine how these parameters
affect the performance and power consumption of big data
applications. This analysis helps in making architectural
decision such as what memory architecture to use to build a
server for big data applications.

Our evaluation reveals that Hadoop applications do not
require a high bandwidth-capacity memory subsystem to
enhance the performance. Improving memory subsystem
parameters beyond 1333 MHz Frequency and a single
channel does not enhance Hadoop performance noticeably.
Moreover, Hadoop framework does not require large
capacity memory, since it stores all intermediates data on
the storage rather than in the main memory. On the other
hand, Spark and MPI applications can benefit from higher
memory frequency and number of channels if the
application is iterative such as machine learning algorithms.
However, increasing the number of memory channels
beyond two channels does not enhance the performance of
those applications. This is an indication for lack of efficient
memory allocation and management in both hardware
(memory controller) as well as software stack. Furthermore,
our results show that the memory usage of Spark framework
is predictable that helps to do not overprovision the memory
capacity for Spark based big data applications. On the other
hand, MPI framework shows that its memory capacity
requirement varies significantly across studied applications.
This therefore indicates that applications implemented with
MPI are requiring a large capacity memory to prevent from
becoming a performance bottleneck.

653

2018 18th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-5386-5815-4/18/$31.00 ©2018 IEEE
DOI 10.1109/CCGRID.2018.00097

These findings are important as they help server
designers to avoid over provisioning the memory subsystem
for many of big data applications. Moreover, we found that
the current storage systems are the main bottleneck for
studied big data applications hence any further improvement
of memory and CPU architecture without addressing the
storage problem is a waste of money and energy. To the best
of our knowledge this is the first work that looks beyond
just the memory capacity to understand Hadoop, Spark and
MPI based big data applications’ memory behavior by
analyzing the effect of memory frequency as well as number
of memory channels on the performance as well of power
consumption.

The remainder of this paper is organized as follows:
Section 2 provides technical overview of the investigated
workloads and the experimental setup. Results are presented
in Section 3. Section 4 presents detailed discussions on the
results. Section 5 describes related works. Finally, Section 6
concludes the paper.

II. EXPERIMENTAL SETUP
In this section, we present our experimental system

configurations and its setup. We describe our hardware
platform and present experimental methodology. In our
study, we used Hadoop MapReduce version 2.7.1, Spark
version 2.1.0 in conjunction with Scala 2.11, and MPICH2
version 3.2 installed on Linux Ubuntu 14.04.

A. Workloads
For this study, we target various domains of applications

namely that of microkernels, graph analytics, machine
learning, E-commerce, social networks, search engines, and
multimedia. We used BigDataBench [21] and HiBench [23]
for the choice of big data benchmarking. We selected a
diverse set of applications and frameworks to be
representative of big data domain. More details of these
workloads are provided in Table 1 and 2. The selected
workloads have different characteristics such as high-level
data graph and different input/output ratios. Some of them
have unstructured data type and some others are graph

based. Also, these workloads are popular in academia and
are widely used in various studies.

B. Hardware platform
We carefully selected our experimental platform to

investigate the micro-architectural effect on the performance
of big data frameworks to understand whether our
observations on memory subsystem behavior for big data
remains valid for future architectures with enhanced
microarchitecture parameters or not. This includes analyzing
the results when increasing the core count, cache size and
processor operating frequency. This is important, as the
results will shed light on whether in future architectures
larger number of cores, higher cache capacity and higher
operating frequency change memory behavior of big data
applications or not. Using the data collected from our
experimental test setup, we will drive architectural
conclusion on how these microarchitecture parameters are
changing DRAM memory behavior and therefore impacting
performance and energy-efficiency of big data applications.
For running the workloads and monitoring statistics, we
used a six-node standalone cluster with detailed
characteristics presented in Table 3. To have a
comprehensive experiment we used different SDRAM

Table 3: Hardware Platform
Hardware Type Parameter Value

Motherboard Model Intel S2600CP2

CPU

Model Intel Xeon E5-2650 v2
Core 8

Threads 16(disabled)
Base Frequency 2.6
Turbo Frequency 3.4

TDP 95
L1 Cache 32 * 2 KB
L2 Cache 256 KB
L3 Cache 20 MB

Memory Type
Support

DDR3
800/1000/1333/1600/1867

Maximum Memory
Bandwidth 59.7 GB/S

Max Memory
Channels supported 4

Disk
(SSD)

Model HyperX FURY
Capacity 480 GB

Speed 500 MB/S

Disk
(HDD)

Model Seagate
Capacity 500GB

Speed 7200 RPM
Network Interface

Card
Model ST1000SPEXD4
Speed 1000 Mbps

Table 4: Memory modules’ part numbers and parameters studied in this work
DDR3 4 GB 8 GB 16 GB 32 GB

1333 MHz D51264J90S KVR13R9D8/8 KVR13R9D4/16 ---
1600 MHz D51272K111S8 D1G72K111S D2G72K111 ---
1867 MHz KVR18R13S8/4 D1G72L131 D2G72L131 KVR18L13Q4/32

Table 1: Studied workloads
Workload wordcount sort grep terasort nweight bayes naïve bayes kmeans pagerank aggregation join scan

Domain micro kernel micro kernel micro kernel micro
kernel

graph
analytics

e-
commerce e-commerce machine

learning websearch analytical
query

analytical
query

analytical
query

Input type text data text data graph data data graph data data data data
Input size

(huge) 1.1 T 178.8G 1.1 T 178.8G 17.6G 30.6G 30.6G 112.2G 16.8G 10.8G 10.8G 10.8G

Input size
(large) 183.6G 29.8G 183.6G 29.8G 2.3G 5G 5G 18.7G 3.1G 1.8G 1.8G 1.8G

Input size
(medium) 30.6G 3G 30.6G 3G 1.2G 1.6G 1.6G 3.7G 1.3G 1G 1G 1G

Framework Hadoop,
Spark, MPI

Hadoop,
Spark, MPI

Hadoop,
Spark, MPI

Hadoop,
Spark Spark Hadoop,

Spark
Hadoop,

Spark, MPI
Hadoop,

Spark, MPI
Hadoop,

Spark Hadoop Hadoop Hadoop

Suite BigDataBench BigDataBench BigDataBench HiBench HiBench HiBench BigDataBench BigDataBench HiBench HiBench HiBench HiBench

Table 2: MPI based Multimedia workloads from BigDataBench
Workload BasicMPEG DBN Speech

recognition
Image

Segmentation SIFT Face
Detection

Input type DVD stream Images Audio Images Images Images
Input size

(huge) 24G MNIST
dataset 59G 62G 62G 62G

654

memory modules, shown in Table 4. All modules are
provided from the same vendor. While network overhead in
general is influencing the performance of studied
applications and therefore the characterization results, for
big data applications, as shown in a recent work [27], a
modern high speed network introduces only a small 2%
performance beneefit. We therefore used a high speed 1
Gbit/s network to avoid making it a performance bottleneck
for this study. Our NICs have two ports and we used one of
them per node for this study. Throughout this paper we will
present the results based on high speed SSD disk.

C. Methodology
The experimental methodology of this paper is focused

on understanding how big data frameworks are utilizing
main memory.

1) Data collection: We used Intel Performance Counter
Monitor tool (PCM) [22] to understand hardware (memory
and processor) behavior. The performance counter data are
collected for the entire run of each application, those
counters were used to get the number of Bytes read or
written by memory controller to calculate the memory
bandwidth. We collect OS-level performance information
with DSTAT tool—a profiling tool for Linux based systems
by specifying the event under study. Some of the metrics
that we used for this study are memory footprint, L2, and
Last Level Cache (LLC) hits ratio, instruction per cycle
(IPC), core C0 state residency, and power consumption. For
power measurement, we used PCM-power utility [22],
which provides the detailed power consumption of each
socket and DRAM.

2) Parameter tuning: For both Hadoop and Spark
frameworks, it is important to set the number of mapper and
reducer slots appropriately to maximize the performance.
Based on the result of [26], the maximum number of
mappers running concurrently on the system to maximize
performance should be equal to the total number of
available CPU cores in the system. Therefore, for each
experiment, we set the number of mappers equal to the total
number of cores. We also follow same approach for the
number of parallel tasks in MPI.

A recent work has shown that among all tuning
parameters in a MapReduce framework, HDFS block size is
most influential on the performance [25]. HDFS Block size
has a direct relation to the number of parallel tasks (in Spark
and Hadoop), as shown in EQ. (1).

Number of Tasks = Input Size / Block Size EQ. (1)

In the above equation, the input size is the size of data
that is distributed among nodes. The block size is the

amount of data that is transferred among nodes. Hence,
block size has impact on the network traffic and its usage.
Therefore, we first evaluate how changing this parameter
affects the performance of the system. We studied a broad
range of HDFS block sizes varying from 32 MB to 1GB
when the main memory capacity is 64 GB and it has the
highest frequency and number of channels. Table 5
demonstrates the best HDFS configuration for maximizing
the performance in both Hadoop and Spark frameworks
based on the ratio of Input data size to the total number of
available processing cores, and the application class. The
rest of the experiments presented in this paper are based on
Table 5 configuration. We will present the classification of
applications into CPU-intensive, I/O-intensive, and iterative
tasks in next section. Our tuning methodology guarantees to
put the highest pressure on memory subsystem.

III. RESULTS
Our experimental results are presented in this section.

First, we present the memory analysis of the studied
workloads. We present how performance of studied
workloads is sensitive to memory capacity, frequency and
number of channels. Then, we provide results of
architectural implication of processor parameters on big data
frameworks and memory requirements. All performance
metrics such as execution time, CPU active state residency,
LLC and L2 hit ratio are discussed in this section. We also
discuss the impact of storage system, size of input data, and
cluster size on memory subsystem. In addition, we present
the power analysis results. This is to help finding out which
memory configuration is a better choice for energy-efficient
big data processing.

A. Memory analysis
In this section, we present a comprehensive discussion

on memory analysis results to help better understanding the
memory requirements of big data frameworks.

1) Memory channels implication: The off-chip peak
memory bandwidth equation is shown in EQ. (2).

Bandwidth = Channels × Frequency × Width EQ. (2)

We observe in Figure 1 that increasing the number of
channels does not have significant effect on the execution
time (on average 9%), except for K-means and Nweight in
Spark, and for Image segmentation in MPI framework (All
of them are iterative tasks). Figure 2 provides more insights
to explain this exceptional behavior. This figure
demonstrates the memory bandwidth usage of each
workload. K-means, Image Segmentation, and Nweight
bandwidth usages are shown to be substantially higher than
other workloads. Hence providing more bandwidth
decreases their execution time. By increasing the number of
channels from 1 to 4, the gain is found to be 38%.

2) Memory frequency implication: As results in Figure 3
shows, similarly we don’t observe any improvement of
bandwidth usage or execution time by increasing memory
frequency (from 1333 MHz to 1866 MHz) for most of
applications. Note that increasing the frequency from 1333
MHz to 1866 MHz translates to almost 40% increase in the

Table 5: HDFS block size tuning
Application

class
����� ��	

���
� �� ���
� × ���
� �� ���
� �
� ���
�

< 64 MB < 512 MB < 4 GB > 4 GB
CPU

intensive 32 MB 64 MB 128 MB 256 MB

I/O
intensive 64 MB 256 MB 512 MB 1 GB

Iterative
tasks 64 MB 128 MB 256 MB 512 MB

655

bandwidth. Previous section showed that 400% (4X)
increase in the bandwidth resulted by increasing the number
of channels from 1 to 4 can gain only 9% performance
benefit. Therefore, it is clear why a 40% increase in the
bandwidth, because of increasing the memory frequency,
cannot increase the performance noticeably. This finding
may mislead to use the lowest memory frequency for big
data applications. Based on EQ. (3), read latency of DRAM
depends on the memory frequency.

Read latency = 2 × (CL / Frequency) EQ. (3)

However, for DDRx (e.g. DDR3), this latency is set
fixed by the manufacturer with controlling CAS latency
(CL). This means two memory modules with different
frequency (1333 MHz and 1866 MHz) and different CAS
Latency (9 and 13) can have the same read latency of 13.5
ns, but provide different bandwidth per channel (10.66 GB/s
and 14.93 GB/s). Hence, as along as reduction of frequency
does not change the read latency, it is recommended to
reduce DRAM frequency for most of big data applications
unless the application is memory intensive. Later in this
paper we will discuss memory sensitivity of studied
applications.

3) DRAM capacity implication: To investigate the effect
of memory capacity on the performance of big data
applications, we run all workloads with 7 different memory
capacities per node. During our experiments, Spark
workloads encountered an error when running on a 4GB
memory capacity per node due to lack of memory space for
the Java heap. Hence, the experiment of Spark workloads is
performed with at least 8 GB of memory. Based on our
observation, we found that only MPI workloads have an
unpredictable memory capacity usage. In fact, a large
memory capacity has no significant effect on the
performance of studied Hadoop and Spark workloads. In our
experiments, the memory capacity usage of studied Hadoop
and Spark never exceeded 4 GB, and 8 GB on each node
respectively. Moreover, most of studied applications
showed similar memory capacity usage. However, MPI
based applications show different behavior. Hadoop

applications do not require high capacity memory because
Hadoop stores all intermediate values generated by map
tasks on the storage. Hence, regardless of the number of
map tasks or input size, the memory usage remains almost
the same. Spark uses RDD to cache intermediate values in
memory. Hence, by increasing the number of map tasks to
run on a node, the memory usage increases. Therefore, by
knowing the number of map tasks assigned to a node and
the amount of intermediate values generated by each task,
the maximum memory usage per node of Spark applications
is predictable. To better understand the impact of memory
capacity on the performance, we have provided the average
normalized execution time of these three big data
frameworks in Figure 4 (Normalized to 64 GB). To
illustrate how these frameworks utilize DRAM capacity we
present K-means memory usage on 3 different frameworks
in Figure 5.

To explain the behavior of MPI, Hadoop, and Spark with
respect to the memory capacity, we need to first understand
how the operating system works when running these
frameworks. Modern operating systems like Linux cache
disk accesses by default when there is enough free space in
RAM. The user cannot disable this mechanism manually in
Linux. When the memory capacity is small, the available
space for caching is low. Therefore, the system needs to
frequently drop the old accesses and cache new ones. This
process demands intensive memory management. However,
increasing the memory capacity reduces the number of
cache content droppings and reduces the intensity of
memory management. Therefore, we observe that by
increasing the memory capacity, the overhead of memory
management of Linux is reduced.

As we can see in Spark workloads, the problem of disk
caching is magnified when the memory footprint of
workloads increases. For Spark workloads, when the
memory capacity is 8 GB, due to large footprint of
workloads, there is not enough free space and Linux
therefore does not cache disk accesses. Hence, we don’t
observe caching overhead. Despite the reduced caching
overhead, the memory capacity is still not big enough to

0.8
0.9

1
1.1
1.2
1.3
1.4

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark Spark Hadoop Spark Hadoop Spark Hadoop Spark MPI Hadoop Hadoop Hadoop Hadoop Spark MPI B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa.
Detc.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayes Aggre. Join Scan Kmeans Multimedia

N
or

m
al

ize
d

ex
e

tim
e

Figure 1: Effect of memory channel on the execution time (Normalized to 4CH)

0
2000
4000
6000
8000

10000
12000
14000

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark Spark Hadoop Spark Hadoop Spark Hadoop Spark MPI Hadoop Hadoop Hadoop Hadoop Spark MPI B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa.
Detc.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayes Agre. Join Scan Kmeans Multimedia

Ba
nd

w
id

th
 (M

Bp
s)

Figure 2: Impact of memory channel on bandwidth usage

656

contain workload’s footprint and other applications’ space
(OS kernel and Spark services); therefore, this results in
increased execution time. When the memory capacity is
increased Linux starts to cache disk accesses. Therefore, due
to caching overhead the average normalized execution time
of Spark’s workloads remains higher than when memory
capacity is 8 GB. When memory capacity increases to 24
GB, the caching overhead of Spark workload is reduced.
This is also the case for Hadoop and MPI applications.

4) Input size implication on memory capacity usage:
Today the paradigm has been shifted and new

MapReduce processing frameworks such as Hadoop and
Spark are emerging that use disk as storage and rely on a
cluster of servers to process data in a distributed manner.
The ability of MapReduce frameworks is that each map task
processes one block of data on HDFS at a time. Hence, this
relieves the pressure of large input data on the memory
subsystem. Therefore, regardless of input size, the memory
subsystem usage remains almost constant in these
frameworks. We have performed experiments with 3 sets of
input data (medium, large, huge). However, all results
presented in this paper are based on huge data size. Table 6
shows the memory usage of big data frameworks with
varied sizes of input data. As it shows, the standard
deviations of Hadoop and Spark memory usage are very low
(less than 250 MB) and regardless of input data size, the
average memory usages and maximum memory usages are
close. However, this is different for MPI applications.
Because MPI is not MapReduce based and does not use
HDFS, the standard deviations are large and maximum
memory usage is varied by input size and application type.

5) Input size implication on memory bandwidth usage:

Another parameter that can be affected by the size of input
data is the memory bandwidth usage. Our results presented
in table 6 reveal that the size of input data does not
noticeably change the memory behavior of big data
frameworks. Because the memory bandwidth usage depends
to the cache miss ratio of application (further we will
discuss it in detail). Also cache behavior of application
mostly depends to the application algorithm. Consequently,
by increasing the size of input, the cache hit ratio remains
almost the same. Therefore, while increasing the input size
increases the job completion time, the DRAM bandwidth
requirements of applications do not change noticeably.
B. Architectural analysis

As we discussed, several parameters, such as CPU
frequency, number of cores per CPU, and cache hierarchy
are studied in this paper to characterize big data
frameworks. The micro-architectural analysis helps us to
understand whether in future architectures with higher
number of cores, larger cache capacity running at higher
operating frequency, the observations regarding big data
applications requirements remain valid or not.

1) Core frequency implication: Figure 6 shows that big
data workloads behave in two distinct ways. The execution
time of the first group is decreased linearly by increasing the
core frequency. The second group’s execution time does not
drop significantly by increasing the CPU frequency,
particularly when changing frequency from 1.9 GHz to 2.6
GHz. These two trends indicate that big data workloads
have distinct behaviors of being either CPU bound or I/O
bound. This conclusion further advocated by the results in
Figure 7. This Figure proves sort, grep, PageRank, and scan

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

13
33

M
16

00
M

18
66

M

Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark Spark Hadoop Spark Hadoop Spark Hadoop Spark MPI Hadoop Hadoop Hadoop Hadoop Spark MPI B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa.
Detc.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayes Aggre. Join Scan Kmeans Multimedia

N
or

m
al

ize
d

ex
e

tim
e

Figure 3: Effect of memory frequency on the execution time (Normalized to 1866M)

0.9

1

1.1

1.2

1.3

4 G B 8 G B 1 6 G B 2 4 G B 3 2 G B 4 8 G B 6 4 G B

N
or

m
al

ize
d

ex
e

tim
e

Hadoop Spark MPI

Figure 4: Impact of memory capacity per node on performance Figure 5: K-means memory usage on various frameworks

Table 6: Impact of the size of input data on memory usage
Framework Hadoop Spark MPI
Input size medium large huge medium large huge medium large huge

Average memory capacity
usage (MB) 3535 3486 3549 7365 7570 7662 2970 3168 6572

Standard deviation 217 224 236 54 62 71 1926 2178 4346
Max. memory Capacity

usage (MB) 3843 3887 3860 7520 7691 7734 7405 7729 12650

Ave. Memory Bandwidth
usage (MBpS) 2569 2683 2419 3508 3374 3288 713 680 523

657

from Hadoop, wordcount, grep, PageRank, Bayes, and
nBayes from Spark, and sort, BasicMPEG, and grep from
MPI to be Disk-intensive while others to be CPU-intensive.
This can be explained as follows: If increasing the
processor’s frequency reduces the active state residency
(C0) of the processor, the application is I/O bound, as when
a core is waiting for I/O, the core changes its state to save
power. Similarly, if active state residency does not change
the workload is CPU bound.

2) Disk implication on application behavior: To show
how low speed disks can change the memory bandwidth
usage of big data frameworks, we also performed same
experiments using HDD. Figure 8 shows that changing the
disk from HDD to SSD improves the performance of
Hadoop, Spark, and MPI by 40%, 105%, and 183%
respectively. The reason that MPI applications take more
advantage from faster disk is that our studied MPI based
applications are written in C++. While Hadoop and Spark
are Java based frameworks and they use HDFS as an
intermediate layer to access and manage storage.
Consequently, MapReduce based frameworks are not as
quick as MPI; hence faster storage or memory cannot bring
a noticeable performance benefit for Hadoop and Spark
compared to MPI framework.

Using one of the fastest SSD disk in the market did not
help putting high pressure on memory subsystem (Our result
has shown that the average memory bandwidth utilization is
18.8% when we use the minimum available memory
bandwidth). Another point regarding the storage is to use
multiple disks per node to alleviate IO bottleneck. We
performed a new set of experiments with two SSD storages
per node. We found that HDFS is not aware of multiple
disks on the node and all data is written or read from one
disk. Therefore, using multiple disks per node does not
guarantee the parallel access to the data blocks of HDFS to
reduce the IO bottleneck.

Also, we have increased aggregate storage by increasing
the number of nodes (from 6 nodes to 12 nodes). We present
the results in section 3.B.4. The result reveals that
increasing the number of nodes not only reduces IO
requests’ pressure on each node, but also it reduces pressure
on memory subsystem of each node. This is another reason
that in real situation where there are thousands of nodes,
emerging memory technologies do not bring noticeable
performance benefit for studied big data applications. This
is due to the fact that off-chip memory bandwidth demands
of big data applications is low compared to the available
bandwidth of current memory technologies.

It is important to note that SSD increases the read and

write bandwidth of disk and substantially reduces the
latency of access to disk compared to HDD. However,
accessing to I/O means loosing of millions of CPU cycles,
which is large enough to vanish any noticeable advantage of
using a high-performance DRAM. Hence, a high bandwidth
DRAM is not required to accelerate the performance of
MapReduce frameworks in presence of a slow HDD or even
a fast SSD.

3) Core count implication: In the previous section, we
classified big data applications into two groups of CPU
intensive and I/O intensive. Figure 9 demonstrates the effect
of increasing the number of cores per node on the
performance of these two groups. The expectation is that
performance of the system improves linearly by adding
cores because big data applications are heavily parallel.
However, we observe a different trend. For CPU intensive
applications and when the core count is less than 6 cores per
node, the performance improvement is close to the ideal

0

20

40

60

80

100

120

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

Wordcount Sort Grep TerasortNweightPageRank Bayes nBayes Aggre. Join Scan Kmeans B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa. Detc.

C0
 re

sid
en

cy
 (p

er
ce

nt
ag

e)

Hadoop Spark MPI

Figure 7: C0 residency of processor

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

w
or

dc
ou

nt

so
rt

gr
ep

pa
ge

ra
nk

nB
ay

es

w
or

dc
ou

nt

so
rt

gr
ep

pa
ge

ra
nk

nB
ay

es

km
ea

ns

w
or

dc
ou

nt

so
rt

gr
ep

nB
ay

es

km
ea

ns

Hadoop Spark MPI

In
cr

em
en

t

Performance Bandwidth usage Average

Figure 8: Effect of changing disk from HDD to SSD on execution time
and memory bandwidth usage

0

5

10

15

20

0 5 10 15 20Pe
rfo

rm
an

ce
Number of cores

CPU intensive I/O intensive Expectation

Figure 9: Effect of core count on performance

0
1000
2000
3000
4000
5000
6000
7000
8000

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

1.
2G

1.
9G

2.
6G

Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark Spark Hadoop Spark Hadoop Spark Hadoop Spark MPI Hadoop Hadoop Hadoop Hadoop Spark MPI B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa.
Detc.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayes Aggre. Join Scan Kmeans Multimedia

Ex
ec

ut
io

n
tim

e
(s

)

Figure 6: Impact of CPU frequency on the execution time

658

case. The interesting trend is that increasing the number of
cores per node does not improve the performance of big
data applications noticeably beyond 6 cores. As the increase
in the number of cores increases the number of accesses to
the disk, the disk becomes the bottleneck of the system. At 8
cores, the CPU utilization is dropped to 15% for I/O
intensive applications, which proves that increasing the
number of CPU’s cores per node (scale-up approach) is not
an effective solution to improve the performance of I/O
intensive applications such as MapReduce frameworks.

It is important to note that our disk is SSD (Solid State
Drive) and the performance benefit could have diminished
at even lower number of cores if a HDD (Hard Disk Drive)
was used. We also projected the performance of 12 and 16
cores by regression model derived from our experimental
results which shows that increasing core count is not an
effective solution to bring noticeable performance benefits
for big data applications as it increases the Disk accesses
and making it a bottleneck.

4) Cluster size implication: Our cluster size (6 nodes) is
small compared to a real-world big data server cluster. It is
therefore important to understand the impact of cluster size
on the memory characterization results. To achieve this, we
performed three additional experiments with a single node, a
three-node, as well as a twelve-node cluster to study the
effect of cluster size on memory subsystem performance.
Figure 10 shows the result of our experiments. These results
show that increasing the size of cluster from 1 to 12 changes
the memory behavior; it slightly reduces the pressure on
memory subsystem. Increasing the cluster size reduces both
memory usage and memory bandwidth utilization on each
node, on average. We anticipate that the memory subsystem
mostly will not be under pressure in a large cluster.

5) Cache implication: Modern processor has a 3-level
cache hierarchy. Figure 11 shows big data applications’
cache hit ratio of level 2 (L2) and last level caches (LLC).
The results reveal an important characteristic of big data
applications. Contrary to the simulation’s results in recent
work reporting cache hit ratio to be below 10% for big data
applications [3], our experimental result shows big data
applications have a much higher cache hit ratio, which helps
reducing the number of accesses to the main memory. The
average cache hit ratio for big data applications implies that
these applications are cache friendly. Consequently, CPUs
with Larger LLC will show similar characteristic. Therefore,
we can conclude that due to cache behavior, big data
applications are not memory intensive unless they are
iterative tasks.

This explains why increasing the memory frequency and
increasing the number of channels does not improve the
performance of most of big data applications except for
iterative tasks such as K-means, Nweight, and Image
Segmentation. The reason of high cache hit ratio is that each
parallel task of big data frameworks processes data in a
sequential manner. This behavior increases the cache hits;
therefore it prevents excessive access to DRAM and
eliminates the necessity of high bandwidth memory. This
finding helps the server designers to avoid over provisioning
the memory subsystem for big data applications.

IV. REALATED WORK

A. Memory
A recent work on big data [3] profiles the memory

access patterns of Hadoop and noSQL workloads by
collecting memory DIMM traces using special hardware. A
more recent work [4] provides a performance model that
considers the impact of memory bandwidth and latency for
big data, high performance, and enterprise workloads. The
work in [5] shows how Hadoop workload demands different
hardware resources. In [6] the authors evaluate
contemporary multi-channel DDR SDRAM and Rambus
DRAM systems in SMT architectures. The work in [11]
mainly focuses on page table and virtual memory
optimization of big data and [12] presents the
characterization of cache hierarchy for a Hadoop cluster.
Those works do not analyze the DRAM memory subsystem.
The results of the latest work on memory characterization of
Hadoop applications is in-line with our findings [28].
Moreover, [29] studied the impact of memory parameters on
the power and energy efficiency of big data frameworks but
did not study the effect of input size and processor
configuration on memory behavior. Another recent work
studied the effect of memory bandwidth on the performance
of MapReduce frameworks and presented a memory
navigator for modern hardware [30]. In addition, several
studies have focused on memory system characterization of
various non-big data workloads such as SPEC CPU or
parallel benchmark suites [7, 8, 9, 10].

B. Big Data
A recent work on big data benchmarking [13] analyzes

the redundancy among different big data benchmarks such
as ICTBench, HiBench and traditional CPU workloads and
introduces a new big data benchmark suite for spatio-
temporal data. The work in [14] selects four big data
workloads from the BigDataBench [21] to study I/O
characteristics, such as disk read/write bandwidth, I/O

0

2000

4000

6000

8000

10000

1N 3N 6N12N 1N 3N 6N12N 1N 3N 6N12N

Hadoop Spark MPI

Average memory capacity usage (MB)

Average memory bandwidth usage (MBps)

Figure 10: Impact of cluster size on memory capacity and bandwidth

usage

0
0.2
0.4
0.6
0.8

1
1.2

Ha
do

op
Sp

ar
k

M
PI

Ha
do

op
Sp

ar
k

M
PI

Ha
do

op
Sp

ar
k

M
PI

Ha
do

op

Sp
ar

k

Sp
ar

k

Ha
do

op

Sp
ar

k

Ha
do

op

Sp
ar

k
Ha

do
op

Sp
ar

k
M

PI
Ha

do
op

Ha
do

op

Ha
do

op

Ha
do

op
Sp

ar
k

M
PI

B.
 M

PE
G

DB
N

Sp
. R

ec
.

Im
. S

eg
.

SI
FT

Fa
. D

et
c.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayesAggre.Join Scan Kmeans Multimedia

L3 L2

Figure 11: LLC and L2 hit rate

659

devices utilization, average waiting time of I/O requests,
and average size of I/O requests. Another work [15] studies
the performance characterization of Hadoop and DataMPI,
using Amdahl’s second law. This study shows that a
DataMPI is more balanced than a Hadoop system. In a more
recent work [16] the authors analyze three SPEC CPU2006
benchmarks (libquantum, h264ref, and hmmer) to determine
their potential as big data computation workloads. The work
in [17] examines the performance characteristics of three
high performance graph analytics. One of their findings is
that graph workloads fail to fully utilize the platform’s
memory bandwidth. In a recent work [18], Principle
Component Analysis is used to detect the most important
characteristics of big data workloads from BigDataBench.
To understand Spark’s architectural and micro-architectural
behaviors, a recent work evaluates the benchmark on a 17-
node Xeon cluster [19]. Again, this study does not consider
the effect of memory subsystems on big data. The work in
[20] performs performance analysis and characterizations
only for Hadoop K-means iterations.

V. CONCLUSION

Characterizing memory behavior of big data frameworks
is important as it helps guiding scheduling decision in cloud
scale architectures as well as helping making decisions in
designing server cluster for big data computing. While latest
works have performed a limited study on memory
characterization of big data applications, this work performs
a comprehensive analysis of memory requirements through
an experimental evaluation setup. We study diverse domains
of applications from microkernels, graph analytics, machine
learning, E-commerce, social networks, search engines, and
multimedia in Hadoop, Spark, and MPI. This gives us
several insights into understanding the memory role for
these important frameworks. We observe that most of
studied big data applications in MapReduce based
frameworks such as Hadoop and Spark do not require a
high-end memory. On the other hand, MPI applications, as
well as iterative tasks in Spark (e.g. machine learning)
benefit from a high-end memory.

REFERENCES

[1] Bertino et al., “big data-Opportunities and Challenges,”
in IEEE 37th Annual Computer Software and Applications
Conf., pp. 479-480. 2013.

[2] The Apache Software Foundation, “What is Apache
Hadoop?” Available at: https://hadoop.apache.org/

[3] M. Dimitrov et al., “Memory system characterization of big
data workloads,” in IEEE Conf. on big data, pp. 15-22,
October 2013.

[4] R. Clapp et al., “Quantifying the Performance Impact of
Memory Latency and Bandwidth for big data Workloads,”
in IEEE Symp. on Workload Characterization (IISWC) , pp.
213-224, October 2015.

[5] I. Alzuru et al., “Hadoop Characterization,”
in Trustcom/BigDataSE/ISPA 2015, Vol. 2, pp. 96-103,
August 2015.

[6] Z. Zhu, and Z. Zhang, “A performance comparison of DRAM
memory system optimizations for SMT processors,” in the
11th HPCA, pp. 213-224, February 2005.

[7] Barroso et al., “Memory system characterization of
commercial workloads,” ACM SIGARCH Computer
Architecture News 26, no. 3, pp. 3-14, 1998.

[8] A. Jaleel et al., “Memory characterization of workloads using
instrumentation-driven simulation–a pin-based memory
characterization of the SPEC CPU2000 and SPEC CPU2006
benchmark suites,” Intel Corporation, VSSAD, 2007.

[9] F. Zeng et al., “Memory performance characterization of spec
cpu2006 benchmarks using tsim,” Physics Procedia 33, pp.
1029-1035, 2012.

[10] Shao et al., “ISA-independent workload characterization and
its implications for specialized architectures,” in ISPASS, pp.
245-255, 2013.

[11] Basu et al., “Efficient virtual memory for big memory
servers,” ACM SIGARCH Computer Architecture News, vol.
41, no. 3, pp. 237-248, 2013.

[12] Jia et al., “Characterizing data analysis workloads in data
centers,” in IEEE IISWC, pp. 66-76, 2013.

[13] W. Xiong et al., “A characterization of big data benchmarks,”
in IEEE Conf. on big data, pp. 118-125, October 2013.

[14] F. Pan et al., “I/O characterization of big data workloads in
data centers,” in BPOE, pp. 85-97, 2014.

[15] F. Liang et al., “Performance characterization of hadoop and
data mpi based on amdahl's second law,” in NAS, pp. 207-
215, August 2014.

[16] K. Hurt, and E. John, “Analysis of Memory Sensitive SPEC
CPU2006 Integer Benchmarks for big data Benchmarking,”
in Proc. PABS, pp. 11-16, February 2015

[17] S. Beamer et al., “Locality exists in graph processing:
Workload characterization on an Ivy Bridge server,” in the
IEEE IISWC, pp. 56-65, October 2015.

[18] Z. Jia et al., “Characterizing and subsetting big data
workloads,” in IEEE IISWC, pp. 191-201, October 2014.

[19] T. Jiang et al., “Understanding the behavior of in-memory
computing workloads,” in the IEEE IISWC, pp. 22-30, 2014.

[20] Issa, J. “Performance characterization and analysis for
Hadoop K-means iteration” Journal of Cloud
Computing, 5(1), 1, 2015.

[21] Lei et al. “Bigdatabench: A big data benchmark suite from
internet services,” in IEEE 20th HPCA, pp. 488-499, 2014.

[22] Available at: https://software.intel.com/en-us/articles/intel-
performance-counter-monitor

[23] S. Huang et al., “The hibench benchmark suite:
Characterization of the mapreducebased data analysis,” in
IEEE ICDE, pp. 41–51, 2010.

[24] M. Malik et al., “Characterizing Hadoop applications on
microservers for performance and energy efficiency
optimizations,” in ISPASS, pp. 153-154, 2016.

[25] Ch. Bienia et al., “The PARSEC benchmark suite:
characterization and architectural implications,” Proc. PACT,
pp. 72-81, 2008.

[26] Ferdman, Michael, et al. "Clearing the clouds: a study of
emerging scale-out workloads on modern hardware." ACM
SIGPLAN Notices. Vol. 47. No. 4. ACM, 2012.

[27] Ousterhout, Kay, et al. "Making Sense of Performance in
Data Analytics Frameworks." NSDI. Vol. 15. 2015.

[28] H. M. Makrani, et al. “Understanding the Role of Memory
Subsystem on Performance and Energy-Efficiency of Hadoop
Applications.” Proc. International Green and Sustainable
Computing Conference (IGSC), 2017.

[29] H.M. Makrani, and H. Homayoun, "Memory requirements of
hadoop, spark, and MPI based big data applications on
commodity server class architectures." Proc. IEEE IISWC, pp.
112-113, 2017.

[30] H.M. Makrani, and H. Homayoun, "MeNa: A Memory
Navigator for Modern Hardware in a Scale-out Environment."
Proc. IEEE IISWC, pp. 2-11, 2017.

660

