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Abstract—The emergence of big data frameworks requires 

computational and memory resources that can naturally scale 
to manage massive amounts of diverse data. It is currently 
unclear whether big data frameworks such as Hadoop, Spark, 
and MPI will require high bandwidth and large capacity 
memory to cope with this change. The primary purpose of this 
study is to answer this question through empirical analysis of 
different memory configurations available for commodity 
server and to assess the impact of these configurations on the 
performance Hadoop and Spark frameworks, and MPI based 
applications.  Our results show that neither DRAM capacity, 
frequency, nor the number of channels play a critical role on 
the performance of all studied Hadoop as well as most studied 
Spark applications. However, our results reveal that iterative 
tasks (e.g. machine learning) in Spark and MPI are benefiting 
from a high bandwidth and large capacity memory. 
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I. INTRODUCTION 
Advances in various branches of technology – data 

sensing, data communication, data computation, and data 
storage – are driving an era of unprecedented innovation for 
information retrieval. The world of big data is constantly 
changing and producing substantial amounts of data that 
creates challenges to process it using existing solutions. To 
address this challenge, several frameworks such as Hadoop 
and Spark, based on cluster computing, have been proposed. 
The main characteristic of these new frameworks is their 
ability to process large-scale data-intensive applications on 
commodity hardware [1]. 

Big data analytics applications heavily rely on big-data-
specific deep machine learning and data mining algorithms. 
They are running complex database software stack with 
significant interaction with I/O and OS, and exhibit high 
computational intensity and I/O intensity. In addition, unlike 
conventional CPU applications, big data applications 
combine a high data rate requirement with high 
computational power requirement, in particular for real-time 
and near-time performance constraints.  

Three well-known parallel programming frameworks 
used by community are Hadoop, Spark, and MPI. Hadoop 
and Spark are two prominent frameworks for big data 
analytics. Spark has been developed to overcome the 
limitation of Hadoop on efficiently utilizing main memory. 
Both Hadoop and Spark use clusters of commodity 
hardware to process large datasets. MPI, a de facto industry 

standard for parallel programming on distributed memory 
systems, is also used for big data analytics [21]. 

While there are literatures on understanding the behavior 
of big data applications by characterizing them, most of 
prior works have focused on the CPU parameters such as 
core counts, core frequency, cache parameters, and network 
configuration or I/O implication with the assumption of the 
demand for using the fastest and largest main memory in the 
commodity hardware [3, 5, 12, 14, 15, 20, 24]. However, 
none of the previous works have studied the main memory 
subsystem parameters to characterize big data applications 
and the underlying frameworks.  

The objective of this paper is to evaluate the effect of the 
memory subsystem on the performance of big data 
frameworks.  To perform the memory subsystem analysis, 
we have investigated three configurable memory parameters 
including memory capacity, memory frequency, and number 
of memory channels, to determine how these parameters 
affect the performance and power consumption of big data 
applications. This analysis helps in making architectural 
decision such as what memory architecture to use to build a 
server for big data applications.  

Our evaluation reveals that Hadoop applications do not 
require a high bandwidth-capacity memory subsystem to 
enhance the performance. Improving memory subsystem 
parameters beyond 1333 MHz Frequency and a single 
channel does not enhance Hadoop performance noticeably. 
Moreover, Hadoop framework does not require large 
capacity memory, since it stores all intermediates data on 
the storage rather than in the main memory. On the other 
hand, Spark and MPI applications can benefit from higher 
memory frequency and number of channels if the 
application is iterative such as machine learning algorithms. 
However, increasing the number of memory channels 
beyond two channels does not enhance the performance of 
those applications. This is an indication for lack of efficient 
memory allocation and management in both hardware 
(memory controller) as well as software stack. Furthermore, 
our results show that the memory usage of Spark framework 
is predictable that helps to do not overprovision the memory 
capacity for Spark based big data applications.  On the other 
hand, MPI framework shows that its memory capacity 
requirement varies significantly across studied applications. 
This therefore indicates that applications implemented with 
MPI are requiring a large capacity memory to prevent from 
becoming a performance bottleneck.     
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These findings are important as they help server 
designers to avoid over provisioning the memory subsystem 
for many of big data applications. Moreover, we found that 
the current storage systems are the main bottleneck for 
studied big data applications hence any further improvement 
of memory and CPU architecture without addressing the 
storage problem is a waste of money and energy. To the best 
of our knowledge this is the first work that looks beyond 
just the memory capacity to understand Hadoop, Spark and 
MPI based big data applications’ memory behavior by 
analyzing the effect of memory frequency as well as number 
of memory channels on the performance as well of power 
consumption. 

The remainder of this paper is organized as follows: 
Section 2 provides technical overview of the investigated 
workloads and the experimental setup. Results are presented 
in Section 3. Section 4 presents detailed discussions on the 
results. Section 5 describes related works. Finally, Section 6 
concludes the paper.     

II. EXPERIMENTAL SETUP 
In this section, we present our experimental system 

configurations and its setup. We describe our hardware 
platform and present experimental methodology. In our 
study, we used Hadoop MapReduce version 2.7.1, Spark 
version 2.1.0 in conjunction with Scala 2.11, and MPICH2 
version 3.2 installed on Linux Ubuntu 14.04. 

A. Workloads 
For this study, we target various domains of applications 

namely that of microkernels, graph analytics, machine 
learning, E-commerce, social networks, search engines, and 
multimedia. We used BigDataBench [21] and HiBench [23] 
for the choice of big data benchmarking. We selected a 
diverse set of applications and frameworks to be 
representative of big data domain. More details of these 
workloads are provided in Table 1 and 2. The selected 
workloads have different characteristics such as high-level 
data graph and different input/output ratios. Some of them 
have unstructured data type and some others are graph 

based. Also, these workloads are popular in academia and 
are widely used in various studies.     

B. Hardware platform 
We carefully selected our experimental platform to 

investigate the micro-architectural effect on the performance 
of big data frameworks to understand whether our 
observations on memory subsystem behavior for big data 
remains valid for future architectures with enhanced 
microarchitecture parameters or not. This includes analyzing 
the results when increasing the core count, cache size and 
processor operating frequency. This is important, as the 
results will shed light on whether in future architectures 
larger number of cores, higher cache capacity and higher 
operating frequency change memory behavior of big data 
applications or not. Using the data collected from our 
experimental test setup, we will drive architectural 
conclusion on how these microarchitecture parameters are 
changing DRAM memory behavior and therefore impacting 
performance and energy-efficiency of big data applications. 
For running the workloads and monitoring statistics, we 
used a six-node standalone cluster with detailed 
characteristics presented in Table 3. To have a 
comprehensive experiment we used different SDRAM 

Table 3: Hardware Platform 
Hardware Type Parameter Value 

Motherboard Model Intel S2600CP2 

CPU 

Model Intel Xeon E5-2650 v2 
# Core 8 

# Threads 16(disabled) 
Base Frequency 2.6 
Turbo Frequency 3.4 

TDP 95 
L1 Cache 32 * 2 KB 
L2 Cache 256 KB 
L3 Cache 20 MB 

Memory Type 
Support 

DDR3 
800/1000/1333/1600/1867 

Maximum Memory 
Bandwidth 59.7 GB/S 

Max Memory 
Channels supported 4 

Disk 
(SSD) 

Model HyperX FURY 
Capacity 480 GB 

Speed 500 MB/S 

Disk 
(HDD) 

Model Seagate 
Capacity 500GB 

Speed 7200 RPM 
Network Interface 

Card 
Model ST1000SPEXD4 
Speed 1000 Mbps 

Table 4: Memory modules’ part numbers and parameters studied in this work 
DDR3 4 GB 8 GB 16 GB 32 GB 

1333 MHz D51264J90S KVR13R9D8/8 KVR13R9D4/16 --- 
1600 MHz D51272K111S8 D1G72K111S D2G72K111 --- 
1867 MHz KVR18R13S8/4 D1G72L131 D2G72L131 KVR18L13Q4/32 

Table 1: Studied workloads 
Workload wordcount sort grep terasort nweight bayes naïve bayes kmeans pagerank aggregation join scan 

Domain micro kernel micro kernel micro kernel micro 
kernel 

graph 
analytics 

e-
commerce e-commerce machine 

learning websearch analytical 
query 

analytical 
query 

analytical 
query 

Input type text data text data graph data data graph data data data data 
Input size 

(huge) 1.1 T 178.8G 1.1 T 178.8G 17.6G 30.6G 30.6G 112.2G 16.8G 10.8G 10.8G 10.8G 

Input size 
(large) 183.6G 29.8G 183.6G 29.8G 2.3G 5G 5G 18.7G 3.1G 1.8G 1.8G 1.8G 

Input size 
(medium) 30.6G 3G 30.6G 3G 1.2G 1.6G 1.6G 3.7G 1.3G 1G 1G 1G 

Framework Hadoop, 
Spark, MPI 

Hadoop, 
Spark, MPI 

Hadoop, 
Spark, MPI 

Hadoop, 
Spark Spark Hadoop, 

Spark 
Hadoop, 

Spark, MPI 
Hadoop, 

Spark, MPI 
Hadoop, 

Spark Hadoop Hadoop Hadoop 

Suite BigDataBench BigDataBench BigDataBench HiBench HiBench HiBench BigDataBench BigDataBench HiBench HiBench HiBench HiBench 
 

Table 2: MPI based Multimedia workloads from BigDataBench 
Workload BasicMPEG DBN Speech 

recognition 
Image 

Segmentation SIFT Face 
Detection 

Input type DVD stream Images Audio Images Images Images 
Input size 

(huge) 24G MNIST 
dataset 59G 62G 62G 62G 
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memory modules, shown in Table 4.  All modules are 
provided from the same vendor. While network overhead in 
general is influencing the performance of studied 
applications and therefore the characterization results, for 
big data applications, as shown in a recent work [27], a 
modern high speed network introduces only a small 2% 
performance beneefit. We therefore used a high speed  1 
Gbit/s network to avoid making it a performance bottleneck 
for this study. Our NICs have two ports and we used one of 
them per node for this study. Throughout this paper we will 
present the results based on high speed SSD disk. 

C. Methodology 
The experimental methodology of this paper is focused 

on understanding how big data frameworks are utilizing 
main memory.  

1) Data collection: We used Intel Performance Counter 
Monitor tool (PCM) [22] to understand hardware (memory 
and processor) behavior. The performance counter data are 
collected for the entire run of each application, those 
counters were used to get the number of Bytes read or 
written by memory controller to calculate the memory 
bandwidth. We collect OS-level performance information 
with DSTAT tool—a profiling tool for Linux based systems 
by specifying the event under study. Some of the metrics 
that we used for this study are memory footprint, L2, and 
Last Level Cache (LLC) hits ratio, instruction per cycle 
(IPC), core C0 state residency, and power consumption. For 
power measurement, we used PCM-power utility [22], 
which provides the detailed power consumption of each 
socket and DRAM. 

2) Parameter tuning: For both Hadoop and Spark 
frameworks, it is important to set the number of mapper and 
reducer slots appropriately to maximize the performance. 
Based on the result of [26], the maximum number of 
mappers running concurrently on the system to maximize 
performance should be equal to the total number of 
available CPU cores in the system. Therefore, for each 
experiment, we set the number of mappers equal to the total 
number of cores. We also follow same approach for the 
number of parallel tasks in MPI. 

A recent work has shown that among all tuning 
parameters in a MapReduce framework, HDFS block size is 
most influential on the performance [25]. HDFS Block size 
has a direct relation to the number of parallel tasks (in Spark 
and Hadoop), as shown in EQ. (1).  

Number of Tasks = Input Size / Block Size       EQ. (1) 

In the above equation, the input size is the size of data 
that is distributed among nodes. The block size is the 

amount of data that is transferred among nodes. Hence, 
block size has impact on the network traffic and its usage. 
Therefore, we first evaluate how changing this parameter 
affects the performance of the system. We studied a broad 
range of HDFS block sizes varying from 32 MB to 1GB 
when the main memory capacity is 64 GB and it has the 
highest frequency and number of channels. Table 5 
demonstrates the best HDFS configuration for maximizing 
the performance in both Hadoop and Spark frameworks 
based on the ratio of Input data size to the total number of 
available processing cores, and the application class. The 
rest of the experiments presented in this paper are based on 
Table 5 configuration. We will present the classification of 
applications into CPU-intensive, I/O-intensive, and iterative 
tasks in next section. Our tuning methodology guarantees to 
put the highest pressure on memory subsystem.   

III. RESULTS 
Our experimental results are presented in this section. 

First, we present the memory analysis of the studied 
workloads. We present how performance of studied 
workloads is sensitive to memory capacity, frequency and 
number of channels. Then, we provide results of 
architectural implication of processor parameters on big data 
frameworks and memory requirements. All performance 
metrics such as execution time, CPU active state residency, 
LLC and L2 hit ratio are discussed in this section. We also 
discuss the impact of storage system, size of input data, and 
cluster size on memory subsystem. In addition, we present 
the power analysis results. This is to help finding out which 
memory configuration is a better choice for energy-efficient 
big data processing.  

A. Memory analysis 
In this section, we present a comprehensive discussion 

on memory analysis results to help better understanding the 
memory requirements of big data frameworks.   

1) Memory channels implication: The off-chip peak 
memory bandwidth equation is shown in EQ. (2). 

Bandwidth = Channels × Frequency × Width     EQ. (2) 

We observe in Figure 1 that increasing the number of 
channels does not have significant effect on the execution 
time (on average 9%), except for K-means and Nweight in 
Spark, and for Image segmentation in MPI framework (All 
of them are iterative tasks). Figure 2 provides more insights 
to explain this exceptional behavior. This figure 
demonstrates the memory bandwidth usage of each 
workload. K-means, Image Segmentation, and Nweight 
bandwidth usages are shown to be substantially higher than 
other workloads. Hence providing more bandwidth 
decreases their execution time. By increasing the number of 
channels from 1 to 4, the gain is found to be 38%.    

2) Memory frequency implication: As results in Figure 3 
shows, similarly we don’t observe any improvement of 
bandwidth usage or execution time by increasing memory 
frequency (from 1333 MHz to 1866 MHz) for most of 
applications. Note that increasing the frequency from 1333 
MHz to 1866 MHz translates to almost 40% increase in the 

Table 5: HDFS block size tuning 
Application 

class 
����� ��	


���
� �� ���
� × ���
� �� ���
� �
� ���
�  

< 64 MB < 512 MB < 4 GB > 4 GB 
CPU 

intensive 32 MB 64 MB 128 MB 256 MB 

I/O 
intensive 64 MB 256 MB 512 MB 1 GB 

Iterative 
tasks 64 MB 128 MB 256 MB 512 MB 
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bandwidth. Previous section showed that 400% (4X) 
increase in the bandwidth resulted by increasing the number 
of channels from 1 to 4 can gain only 9% performance 
benefit. Therefore, it is clear why a 40% increase in the 
bandwidth, because of increasing the memory frequency, 
cannot increase the performance noticeably. This finding 
may mislead to use the lowest memory frequency for big 
data applications. Based on EQ. (3), read latency of DRAM 
depends on the memory frequency.  

Read latency = 2 × (CL / Frequency)        EQ.  (3) 

However, for DDRx (e.g. DDR3), this latency is set 
fixed by the manufacturer with controlling CAS latency 
(CL). This means two memory modules with different 
frequency (1333 MHz and 1866 MHz) and different CAS 
Latency (9 and 13) can have the same read latency of 13.5 
ns, but provide different bandwidth per channel (10.66 GB/s 
and 14.93 GB/s). Hence, as along as reduction of frequency 
does not change the read latency, it is recommended to 
reduce DRAM frequency for most of big data applications 
unless the application is memory intensive. Later in this 
paper we will discuss memory sensitivity of studied 
applications.   

3) DRAM capacity implication: To investigate the effect 
of memory capacity on the performance of big data 
applications, we run all workloads with 7 different memory 
capacities per node. During our experiments, Spark 
workloads encountered an error when running on a 4GB 
memory capacity per node due to lack of memory space for 
the Java heap. Hence, the experiment of Spark workloads is 
performed with at least 8 GB of memory. Based on our 
observation, we found that only MPI workloads have an 
unpredictable memory capacity usage. In fact, a large 
memory capacity has no significant effect on the 
performance of studied Hadoop and Spark workloads. In our 
experiments, the memory capacity usage of studied Hadoop 
and Spark never exceeded 4 GB, and 8 GB on each node 
respectively. Moreover, most of studied applications 
showed similar memory capacity usage. However, MPI 
based applications show different behavior. Hadoop 

applications do not require high capacity memory because 
Hadoop stores all intermediate values generated by map 
tasks on the storage. Hence, regardless of the number of 
map tasks or input size, the memory usage remains almost 
the same. Spark uses RDD to cache intermediate values in 
memory. Hence, by increasing the number of map tasks to 
run on a node, the memory usage increases. Therefore, by 
knowing the number of map tasks assigned to a node and 
the amount of intermediate values generated by each task, 
the maximum memory usage per node of Spark applications 
is predictable. To better understand the impact of memory 
capacity on the performance, we have provided the average 
normalized execution time of these three big data 
frameworks in Figure 4 (Normalized to 64 GB). To 
illustrate how these frameworks utilize DRAM capacity we 
present K-means memory usage on 3 different frameworks 
in Figure 5.  

To explain the behavior of MPI, Hadoop, and Spark with 
respect to the memory capacity, we need to first understand 
how the operating system works when running these 
frameworks. Modern operating systems like Linux cache 
disk accesses by default when there is enough free space in 
RAM. The user cannot disable this mechanism manually in 
Linux. When the memory capacity is small, the available 
space for caching is low. Therefore, the system needs to 
frequently drop the old accesses and cache new ones. This 
process demands intensive memory management. However, 
increasing the memory capacity reduces the number of 
cache content droppings and reduces the intensity of 
memory management. Therefore, we observe that by 
increasing the memory capacity, the overhead of memory 
management of Linux is reduced.  

As we can see in Spark workloads, the problem of disk 
caching is magnified when the memory footprint of 
workloads increases. For Spark workloads, when the 
memory capacity is 8 GB, due to large footprint of 
workloads, there is not enough free space and Linux 
therefore does not cache disk accesses. Hence, we don’t 
observe caching overhead. Despite the reduced caching 
overhead, the memory capacity is still not big enough to 

0.8
0.9

1
1.1
1.2
1.3
1.4

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark Spark Hadoop Spark Hadoop Spark Hadoop Spark MPI Hadoop Hadoop Hadoop Hadoop Spark MPI B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa.
Detc.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayes Aggre. Join Scan Kmeans Multimedia

N
or

m
al

ize
d 

ex
e 

tim
e

Figure 1: Effect of memory channel on the execution time (Normalized to 4CH) 

0
2000
4000
6000
8000

10000
12000
14000

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

1C
H

2C
H

4C
H

Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark MPI Hadoop Spark Spark Hadoop Spark Hadoop Spark Hadoop Spark MPI Hadoop Hadoop Hadoop Hadoop Spark MPI B. MPEG DBN Sp. Rec. Im. Seg. SIFT Fa.
Detc.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayes Agre. Join Scan Kmeans Multimedia

Ba
nd

w
id

th
 (M

Bp
s)

Figure 2: Impact of memory channel on bandwidth usage 

656



contain workload’s footprint and other applications’ space 
(OS kernel and Spark services); therefore, this results in 
increased execution time. When the memory capacity is 
increased Linux starts to cache disk accesses. Therefore, due 
to caching overhead the average normalized execution time 
of Spark’s workloads remains higher than when memory 
capacity is 8 GB. When memory capacity increases to 24 
GB, the caching overhead of Spark workload is reduced. 
This is also the case for Hadoop and MPI applications.   

4) Input size implication on memory capacity usage:  
Today the paradigm has been shifted and new 

MapReduce processing frameworks such as Hadoop and 
Spark are emerging that use disk as storage and rely on a 
cluster of servers to process data in a distributed manner. 
The ability of MapReduce frameworks is that each map task 
processes one block of data on HDFS at a time. Hence, this 
relieves the pressure of large input data on the memory 
subsystem. Therefore, regardless of input size, the memory 
subsystem usage remains almost constant in these 
frameworks. We have performed experiments with 3 sets of 
input data (medium, large, huge). However, all results 
presented in this paper are based on huge data size. Table 6 
shows the memory usage of big data frameworks with 
varied sizes of input data. As it shows, the standard 
deviations of Hadoop and Spark memory usage are very low 
(less than 250 MB) and regardless of input data size, the 
average memory usages and maximum memory usages are 
close. However, this is different for MPI applications. 
Because MPI is not MapReduce based and does not use 
HDFS, the standard deviations are large and maximum 
memory usage is varied by input size and application type.    

5) Input size implication on memory bandwidth usage:  

Another parameter that can be affected by the size of input 
data is the memory bandwidth usage. Our results presented 
in table 6 reveal that the size of input data does not 
noticeably change the memory behavior of big data 
frameworks. Because the memory bandwidth usage depends 
to the cache miss ratio of application (further we will 
discuss it in detail). Also cache behavior of application 
mostly depends to the application algorithm. Consequently, 
by increasing the size of input, the cache hit ratio remains 
almost the same. Therefore, while increasing the input size 
increases the job completion time, the DRAM bandwidth 
requirements of applications do not change noticeably. 
B. Architectural analysis 

As we discussed, several parameters, such as CPU 
frequency, number of cores per CPU, and cache hierarchy 
are studied in this paper to characterize big data 
frameworks. The micro-architectural analysis helps us to 
understand whether in future architectures with higher 
number of cores, larger cache capacity running at higher 
operating frequency, the observations regarding big data 
applications requirements remain valid or not.   

1) Core frequency implication: Figure 6 shows that big 
data workloads behave in two distinct ways. The execution 
time of the first group is decreased linearly by increasing the 
core frequency. The second group’s execution time does not 
drop significantly by increasing the CPU frequency, 
particularly when changing frequency from 1.9 GHz to 2.6 
GHz. These two trends indicate that big data workloads 
have distinct behaviors of being either CPU bound or I/O 
bound. This conclusion further advocated by the results in 
Figure 7. This Figure proves sort, grep, PageRank, and scan 
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Figure 3: Effect of memory frequency on the execution time (Normalized to 1866M) 
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Figure 4: Impact of memory capacity per node on performance        Figure 5: K-means memory usage on various frameworks 

Table 6: Impact of the size of input data on memory usage 
Framework Hadoop Spark MPI 
Input size medium large huge medium large huge medium large huge 

Average memory capacity 
usage (MB) 3535 3486 3549 7365 7570 7662 2970 3168 6572 

Standard deviation 217 224 236 54 62 71 1926 2178 4346 
Max. memory Capacity 

usage (MB) 3843 3887 3860 7520 7691 7734 7405 7729 12650 

Ave. Memory Bandwidth 
usage (MBpS) 2569 2683 2419 3508 3374 3288 713 680 523 
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from Hadoop, wordcount, grep, PageRank, Bayes, and 
nBayes from Spark, and sort, BasicMPEG, and grep from 
MPI to be Disk-intensive while others to be CPU-intensive. 
This can be explained as follows: If increasing the 
processor’s frequency reduces the active state residency 
(C0) of the processor, the application is I/O bound, as when 
a core is waiting for I/O, the core changes its state to save 
power. Similarly, if active state residency does not change 
the workload is CPU bound.  

2) Disk implication on application behavior: To show 
how low speed disks can change the memory bandwidth 
usage of big data frameworks, we also performed same 
experiments using HDD. Figure 8 shows that changing the 
disk from HDD to SSD improves the performance of 
Hadoop, Spark, and MPI by 40%, 105%, and 183% 
respectively. The reason that MPI applications take more 
advantage from faster disk is that our studied MPI based 
applications are written in C++. While Hadoop and Spark 
are Java based frameworks and they use HDFS as an 
intermediate layer to access and manage storage. 
Consequently, MapReduce based frameworks are not as 
quick as MPI; hence faster storage or memory cannot bring 
a noticeable performance benefit for Hadoop and Spark 
compared to MPI framework.  

Using one of the fastest SSD disk in the market did not 
help putting high pressure on memory subsystem (Our result 
has shown that the average memory bandwidth utilization is 
18.8% when we use the minimum available memory 
bandwidth). Another point regarding the storage is to use 
multiple disks per node to alleviate IO bottleneck. We 
performed a new set of experiments with two SSD storages 
per node. We found that HDFS is not aware of multiple 
disks on the node and all data is written or read from one 
disk. Therefore, using multiple disks per node does not 
guarantee the parallel access to the data blocks of HDFS to 
reduce the IO bottleneck.  

Also, we have increased aggregate storage by increasing 
the number of nodes (from 6 nodes to 12 nodes). We present 
the results in section 3.B.4. The result reveals that 
increasing the number of nodes not only reduces IO 
requests’ pressure on each node, but also it reduces pressure 
on memory subsystem of each node. This is another reason 
that in real situation where there are thousands of nodes, 
emerging memory technologies do not bring noticeable 
performance benefit for studied big data applications. This 
is due to the fact that off-chip memory bandwidth demands 
of big data applications is low compared to the available 
bandwidth of current memory technologies.  

It is important to note that SSD increases the read and 

write bandwidth of disk and substantially reduces the 
latency of access to disk compared to HDD. However, 
accessing to I/O means loosing of millions of CPU cycles, 
which is large enough to vanish any noticeable advantage of 
using a high-performance DRAM.  Hence, a high bandwidth 
DRAM is not required to accelerate the performance of 
MapReduce frameworks in presence of a slow HDD or even 
a fast SSD.   

3) Core count implication: In the previous section, we 
classified big data applications into two groups of CPU 
intensive and I/O intensive. Figure 9 demonstrates the effect 
of increasing the number of cores per node on the 
performance of these two groups. The expectation is that 
performance of the system improves linearly by adding 
cores because big data applications are heavily parallel. 
However, we observe a different trend. For CPU intensive 
applications and when the core count is less than 6 cores per 
node, the performance improvement is close to the ideal 
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case. The interesting trend is that increasing the number of 
cores per node does not improve the performance of big 
data applications noticeably beyond 6 cores. As the increase 
in the number of cores increases the number of accesses to 
the disk, the disk becomes the bottleneck of the system. At 8 
cores, the CPU utilization is dropped to 15% for I/O 
intensive applications, which proves that increasing the 
number of CPU’s cores per node (scale-up approach) is not 
an effective solution to improve the performance of I/O 
intensive applications such as MapReduce frameworks. 

It is important to note that our disk is SSD (Solid State 
Drive) and the performance benefit could have diminished 
at even lower number of cores if a HDD (Hard Disk Drive) 
was used. We also projected the performance of 12 and 16 
cores by regression model derived from our experimental 
results which shows that increasing core count is not an 
effective solution to bring noticeable performance benefits 
for big data applications as it increases the Disk accesses 
and making it a bottleneck. 

4) Cluster size implication: Our cluster size (6 nodes) is 
small compared to a real-world big data server cluster. It is 
therefore important to understand the impact of cluster size 
on the memory characterization results. To achieve this, we 
performed three additional experiments with a single node, a 
three-node, as well as a twelve-node cluster to study the 
effect of cluster size on memory subsystem performance. 
Figure 10 shows the result of our experiments. These results 
show that increasing the size of cluster from 1 to 12 changes 
the memory behavior; it slightly reduces the pressure on 
memory subsystem. Increasing the cluster size reduces both 
memory usage and memory bandwidth utilization on each 
node, on average. We anticipate that the memory subsystem 
mostly will not be under pressure in a large cluster.  

5) Cache implication: Modern processor has a 3-level 
cache hierarchy.  Figure 11 shows big data applications’ 
cache hit ratio of level 2 (L2) and last level caches (LLC). 
The results reveal an important characteristic of big data 
applications. Contrary to the simulation’s results in recent 
work reporting cache hit ratio to be below 10% for big data 
applications [3], our experimental result shows big data 
applications have a much higher cache hit ratio, which helps 
reducing the number of accesses to the main memory. The 
average cache hit ratio for big data applications implies that 
these applications are cache friendly. Consequently, CPUs 
with Larger LLC will show similar characteristic. Therefore, 
we can conclude that due to cache behavior, big data 
applications are not memory intensive unless they are 
iterative tasks.   

This explains why increasing the memory frequency and 
increasing the number of channels does not improve the 
performance of most of big data applications except for 
iterative tasks such as K-means, Nweight, and Image 
Segmentation. The reason of high cache hit ratio is that each 
parallel task of big data frameworks processes data in a 
sequential manner. This behavior increases the cache hits; 
therefore it prevents excessive access to DRAM and 
eliminates the necessity of high bandwidth memory. This 
finding helps the server designers to avoid over provisioning 
the memory subsystem for big data applications.   

IV. REALATED WORK 

A. Memory 
A recent work on big data [3] profiles the memory 

access patterns of Hadoop and noSQL workloads by 
collecting memory DIMM traces using special hardware. A 
more recent work [4] provides a performance model that 
considers the impact of memory bandwidth and latency for 
big data, high performance, and enterprise workloads. The 
work in [5] shows how Hadoop workload demands different 
hardware resources. In [6] the authors evaluate 
contemporary multi-channel DDR SDRAM and Rambus 
DRAM systems in SMT architectures. The work in [11] 
mainly focuses on page table and virtual memory 
optimization of big data and [12] presents the 
characterization of cache hierarchy for a Hadoop cluster. 
Those works do not analyze the DRAM memory subsystem. 
The results of the latest work on memory characterization of 
Hadoop applications is in-line with our findings [28]. 
Moreover, [29] studied the impact of memory parameters on 
the power and energy efficiency of big data frameworks but 
did not study the effect of input size and processor 
configuration on memory behavior. Another recent work 
studied the effect of memory bandwidth on the performance 
of MapReduce frameworks and presented a memory 
navigator for modern hardware [30].  In addition, several 
studies have focused on memory system characterization of 
various non-big data workloads such as SPEC CPU or 
parallel benchmark suites [7, 8, 9, 10]. 

B. Big Data  
A recent work on big data benchmarking [13] analyzes 

the redundancy among different big data benchmarks such 
as ICTBench, HiBench and traditional CPU workloads and 
introduces a new big data benchmark suite for spatio-
temporal data. The work in [14] selects four big data 
workloads from the BigDataBench [21] to study I/O 
characteristics, such as disk read/write bandwidth, I/O 

0

2000

4000

6000

8000

10000

1N 3N 6N12N 1N 3N 6N12N 1N 3N 6N12N

Hadoop Spark MPI

Average memory capacity usage (MB)

Average memory bandwidth usage (MBps)

 
Figure 10: Impact of cluster size on memory capacity and bandwidth 

usage 

0
0.2
0.4
0.6
0.8

1
1.2

Ha
do

op
Sp

ar
k

M
PI

Ha
do

op
Sp

ar
k

M
PI

Ha
do

op
Sp

ar
k

M
PI

Ha
do

op

Sp
ar

k

Sp
ar

k

Ha
do

op

Sp
ar

k

Ha
do

op

Sp
ar

k
Ha

do
op

Sp
ar

k
M

PI
Ha

do
op

Ha
do

op

Ha
do

op

Ha
do

op
Sp

ar
k

M
PI

B.
 M

PE
G

DB
N

Sp
. R

ec
.

Im
. S

eg
.

SI
FT

Fa
. D

et
c.

Wordcount Sort Grep Terasort Nweight PageRank Bayes nBayesAggre.Join Scan Kmeans Multimedia

L3 L2

Figure 11: LLC and L2 hit rate 

659



devices utilization, average waiting time of I/O requests, 
and average size of I/O requests. Another work [15] studies 
the performance characterization of Hadoop and DataMPI, 
using Amdahl’s second law. This study shows that a 
DataMPI is more balanced than a Hadoop system. In a more 
recent work [16] the authors analyze three SPEC CPU2006 
benchmarks (libquantum, h264ref, and hmmer) to determine 
their potential as big data computation workloads. The work 
in [17] examines the performance characteristics of three 
high performance graph analytics. One of their findings is 
that graph workloads fail to fully utilize the platform’s 
memory bandwidth. In a recent work [18], Principle 
Component Analysis is used to detect the most important 
characteristics of big data workloads from BigDataBench. 
To understand Spark’s architectural and micro-architectural 
behaviors, a recent work evaluates the benchmark on a 17-
node Xeon cluster [19]. Again, this study does not consider 
the effect of memory subsystems on big data. The work in 
[20] performs performance analysis and characterizations 
only for Hadoop K-means iterations. 

V. CONCLUSION 

Characterizing memory behavior of big data frameworks 
is important as it helps guiding scheduling decision in cloud 
scale architectures as well as helping making decisions in 
designing server cluster for big data computing. While latest 
works have performed a limited study on memory 
characterization of big data applications, this work performs 
a comprehensive analysis of memory requirements through 
an experimental evaluation setup. We study diverse domains 
of applications from microkernels, graph analytics, machine 
learning, E-commerce, social networks, search engines, and 
multimedia in Hadoop, Spark, and MPI. This gives us 
several insights into understanding the memory role for 
these important frameworks. We observe that most of 
studied big data applications in MapReduce based 
frameworks such as Hadoop and Spark do not require a 
high-end memory. On the other hand, MPI applications, as 
well as iterative tasks in Spark (e.g. machine learning) 
benefit from a high-end memory.  
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