
cryptography

Article

Towards Accurate Run-Time Hardware-Assisted Stealthy
Malware Detection: A Lightweight, yet Effective Time Series
CNN-Based Approach †

Hossein Sayadi 1,*, Yifeng Gao 2, Hosein Mohammadi Makrani 3, Jessica Lin 4, Paulo Cesar Costa 5,
Setareh Rafatirad 6 and Houman Homayoun 3

����������
�������

Citation: Sayadi, H.; Gao, Y.;

Mohammadi Makrani, H.; Lin, J.;

Costa, P.C.; Rafatirad, S.; Homayoun,

H. Towards Accurate Run-Time

Hardware-Assisted Stealthy Malware

Detection: A Lightweight, yet

Effective Time Series CNN-Based

Approach. Cryptography 2021, 5, 28.

https://doi.org/10.3390/

cryptography5040028

Academic Editor: Jim Plusquellic

Received: 3 October 2021

Accepted: 13 October 2021

Published: 17 October 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Computer Engineering and Computer Science, California State University,
Long Beach, CA 90840, USA

2 Department of Computer Science, University of Texas Rio Grande Valley, McAllen, TX 78504, USA;
yifeng.gao@utrgv.edu

3 Department of Electrical and Computer Engineering, University of California, Davis, CA 95616, USA;
hmakrani@ucdavis.edu (H.M.M.); hhomayoun@ucdavis.edu (H.H.)

4 Department of Computer Science, George Mason University, Fairfax, VA 22030, USA; jessica@gmu.edu
5 Department of Systems Engineering and Operations Research, George Mason University,

Fairfax, VA 22030, USA; pcosta@gmu.edu
6 Department of Computer Science, University of California, Davis, CA 95616, USA; srafatirad@ucdavis.edu
* Correspondence: hossein.sayadi@csulb.edu
† This work is an extended version of our paper published in Great Lakes Symposium on VLSI (GLSVLSI 2020).

Abstract: According to recent security analysis reports, malicious software (a.k.a. malware) is rising
at an alarming rate in numbers, complexity, and harmful purposes to compromise the security of
modern computer systems. Recently, malware detection based on low-level hardware features (e.g.,
Hardware Performance Counters (HPCs) information) has emerged as an effective alternative solu-
tion to address the complexity and performance overheads of traditional software-based detection
methods. Hardware-assisted Malware Detection (HMD) techniques depend on standard Machine
Learning (ML) classifiers to detect signatures of malicious applications by monitoring built-in HPC
registers during execution at run-time. Prior HMD methods though effective have limited their
study on detecting malicious applications that are spawned as a separate thread during application
execution, hence detecting stealthy malware patterns at run-time remains a critical challenge. Stealthy
malware refers to harmful cyber attacks in which malicious code is hidden within benign applications
and remains undetected by traditional malware detection approaches. In this paper, we first present
a comprehensive review of recent advances in hardware-assisted malware detection studies that
have used standard ML techniques to detect the malware signatures. Next, to address the challenge
of stealthy malware detection at the processor’s hardware level, we propose StealthMiner, a novel
specialized time series machine learning-based approach to accurately detect stealthy malware trace
at run-time using branch instructions, the most prominent HPC feature. StealthMiner is based on
a lightweight time series Fully Convolutional Neural Network (FCN) model that automatically
identifies potentially contaminated samples in HPC-based time series data and utilizes them to accu-
rately recognize the trace of stealthy malware. Our analysis demonstrates that using state-of-the-art
ML-based malware detection methods is not effective in detecting stealthy malware samples since
the captured HPC data not only represents malware but also carries benign applications’ microar-
chitectural data. The experimental results demonstrate that with the aid of our novel intelligent
approach, stealthy malware can be detected at run-time with 94% detection performance on average
with only one HPC feature, outperforming the detection performance of state-of-the-art HMD and
general time series classification methods by up to 42% and 36%, respectively.

Keywords: machine learning; hardware-assisted malware detection; cybersecurity; stealthy malware;
hardware performance counter; deep learning; time series classification

Cryptography 2021, 5, 28. https://doi.org/10.3390/cryptography5040028 https://www.mdpi.com/journal/cryptography

https://www.mdpi.com/journal/cryptography
https://www.mdpi.com
https://doi.org/10.3390/cryptography5040028
https://doi.org/10.3390/cryptography5040028
https://doi.org/10.3390/cryptography5040028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryptography5040028
https://www.mdpi.com/journal/cryptography
https://www.mdpi.com/article/10.3390/cryptography5040028?type=check_update&version=3

Cryptography 2021, 5, 28 2 of 25

1. Introduction

Cybersecurity for the past decades has been in the front line of global attention as a
critical threat to the security of computer systems and information technology infrastruc-
ture. With the growth and pervasiveness of cyber infrastructure in modern society and
everyday life, secure computing has become critically important. Attackers are increasingly
motivated and enabled to compromise software and computing hardware infrastructure.
The increasing complexity of modern computing systems in different application domains
has resulted in the emergence of new security vulnerabilities [1–4]. Cyber attackers make
use of these vulnerabilities to compromise systems using sophisticated malicious activities.
Malware, a broad term for any type of malicious software, is a piece of code designed
by cyber attackers to infect the computing systems without the user consent serving for
harmful purposes such as stealing sensitive information, unauthorized data access, and
running intrusive programs on devices to perform Denial-of-Service (DoS) attack [5–7].

The rapid development of information technology has made malware a serious threat
to computer systems. According to a recent McAfee Labs threat report more than 67 million
new malware variants have been discovered in the first quarter of 2019 alone, a near 40%
increase when compared to the last quarter of 2018 [8]. Given the exceedingly challenging
task of detection of new variants of malicious applications, malware detection has become
more crucial in modern computing systems. The recent proliferation of modern computing
devices in mobile and Internet-of-Things (IoT) domains further exacerbates the impact of
this pressing issue calling for effective malware detection solutions.

Traditional software-based malware detection techniques such as signature-based and
semantic-based methods mostly impose significant computational overheads to the system
and more importantly do not scale well [6,9–13]. Furthermore, they are unable to detect
unknown threats making them unsuitable for devices with limited available computing
and memory resources. The emergence of new malware threats requires patching or
updating the software-based malware detection solutions (such as off-the-shelf anti-virus)
that needs a vast amount of memory and hardware resources, which is not feasible for
emerging computing systems especially in embedded mobile and IoT devices [3,14,15].
In addition, most of these advanced analysis techniques are architecture-dependent i.e.,
dependent on the underlying hardware, which makes the existing traditional malware
detection techniques hard to import onto emerging embedded computing devices [4,14].

The arm-race between security analysts and malware developers is a never-ending
battle with the complexity of malware changing as quickly as innovation grows. To address
the inefficiency of conventional malware detection methods, Hardware-based Malware
Detection (HMD) techniques, by employing low-level features captured by Hardware Per-
formance Counters (HPCs), have emerged as a promising solution [16–18]. HMD methods
reduce the latency of the detection process by order of magnitude with a small hardware
overhead. In particular, recent studies have shown that malware can be differentiated
from normal programs by classifying anomalies using Machine Learning (ML) techniques
in low-level microarchitectural feature spaces captured by Hardware Performance Coun-
ters (HPCs) [4,14–22] to appropriately represent the application behavior. The HPCs are
special-purpose registers implemented into modern microprocessors to capture the trace
of hardware-related events such as executed instructions, suffered cache-misses, or mispre-
dicted branches for a running program [16,18,23]. Current state-of-the-art HMD research
focuses on the development and application of ML techniques on HPCs information for
malware detection due to its ability to keep pace with malware evolution with less visi-
bility to the attacker. Such methods result in much lower computational overheads since
ML-based malware classifiers can be implemented in microprocessor hardware with signif-
icantly lower overhead as compared to the traditional software-based methods [14,18,24].

Malicious software attacks have continued to evolve in quantity and sophistication
during the past decade. Due to the ever-increasing complexity of malware attacks and the
financial motivations of attackers, malware trends are recently shifting towards stealthy
attacks. A stealthy attack is a type of cybersecurity attack in which the malicious code

Cryptography 2021, 5, 28 3 of 25

is hidden inside the benign application for performing harmful purposes [1,25–29]. An
example of deploying stealthy malware is in document files in which the malware is capable
of indirectly invoking other applications or libraries on the host as part of document editing.
The main purpose of stealthy attacks is to remain undetected for a longer period of time in
the computing system. The longer the threat remains undiscovered in the system, the more
opportunity it has to compromise computers and/or steal information before a suitable
detection mechanism can be deployed to protect against it. Stolfo et al. discovered a
new type of stealthy threat referred to as embedded malware [25]. Under this threat,
the attacker embeds the malicious code or file inside a benign file on the target host such
that the benign and malicious applications are executed as a single thread on the system.
It has been shown that traditional signature-based antivirus applications are unable to
detect embedded malware even when the exact signature of malware is available in the
detector database [1,25,28]. Embedded malicious software is potentially a serious and
emerging security threat in which accurate and intelligent security countermeasures need
to be developed to secure the computing systems against such attacks. In this paper,
we primarily focus on detecting stealthy attacks where malicious code is hidden inside
the benign program, both executed as a single thread on the target system, making the
detection process more challenging.

Existing hardware-assisted malware detection methods have primarily assumed that
the malware is spawned as a separate thread while executing on the target
host [16–18,23,30–32]. However, in real-world scenarios malicious programs attempt
to hide within a benign application to bypass the detection mechanisms. In HMD methods
the HPC data is directly fed to a detector, therefore, for embedded malicious code hidden
inside the benign application, the HPC data becomes contaminated as the collected events
include the combined benign and malware microarchitectural events. In addition to the
challenge of detecting embedded malware, prior studies on hardware-based malware de-
tection performed a limited study on malware classification accounting for the availability
of a large number (e.g., 8/16) and diverse type of HPCs accessed at a time. However,
today’s microprocessors, even in the high-performance domain have a limited number of
HPC registers, due to the design complexity and cost of concurrent monitoring of microar-
chitectural events [33,34]. Due to deep pipelines, complex prefetchers, branch predictors,
modern cache design, etc., adding HPCs is a challenge in terms of counting multiple events
and maintaining counter accuracy simultaneously under speculative execution [35]. Even
modern Intel Xeon architectures houses only 4–6 HPCs, compare to 2 in Pentium 4 and
server-class Intel Atom processor, for the very same reason. For embedded mobile and IoT
domains, the number of HPCs that can be accessed simultaneously is even smaller making
the HMD with limited available HPCs more crucial.

In response to the aforementioned challenges, in this paper we present a special-
ized and lightweight time series machine learning-based approach called StealthMiner,
to accurately and intelligently detect the embedded malicious patterns inside the benign
programs using only one HPC feature (branch instruction). In particular, the main objective
of this work is to effectively detect the malicious application embedded inside the benign
program using the least number of microarchitectural events (only one HPC feature) in
which the traditional machine learning-based solutions are unable to detect them with
even 8–16 features. Using an effective feature reduction technique, we first identify the
most prominent low-level feature for embedded malware detection. Next, we propose a
lightweight scalable time series-based Fully Convolutional Neural Network (FCN) model
that automatically identifies potentially contaminated samples in HPC-based time series
and utilizes them to distinguish the stealthy malware from benign applications at run-time
using only branch instructions as the most significant low-level feature. For the purpose of
a thorough assessment, we evaluate the efficiency of StealthMiner across various perfor-
mance evaluation metrics (F-measure, Precision, Recall, Accuracy, Area Under the Curve
(AUC), Latency, and Model Size) against state-of-the-art solutions that depend on standard
ML, deep learning, and time series classification models. The results of this work will assist

Cryptography 2021, 5, 28 4 of 25

the designers in making effective architectural decisions to develop accurate and efficient
intelligent countermeasures for securing modern computing systems against emerging
malicious cyber attacks.

The remainder of this paper is organized as follows. The background and related
work are described in Section 2. Section 3 presents the motivations and challenges of
hardware-based stealthy malware detection using machine learning techniques. Next, the
details of the proposed intelligent and customized hardware-assisted stealthy malware
detection approach are described in Section 4. In addition, the comprehensive analysis of
experimental results is presented in section 5. Finally, Section 6 concludes this study.

2. Related Work and Background

In this section, we categorize the related work and background on malware detection
using low-level features into three subsections. First, an overview of hardware performance
counter registers and their applications is presented. Second, we discuss the latest studies
on hardware-based malware detection, and next, we focus on the prior works on the
detection of embedded/stealthy malware.

2.1. Hardware Performance Counters

The complexity of today’s computing systems has tremendously increased compared
to the prior systems. Hierarchical cache subsystems and pipeline, non-uniform memory,
simultaneous multithreading, and out-of-order execution have a significant impact on the
performance of modern processors. Performance monitoring is an important characteristic
of a microprocessor. Access to the performance monitoring hardware is typically offered in
the form of hardware performance counters, special-purpose registers that are available in
modern microprocessors which count different microarchitectural events [18,21,36].

The primary purpose of HPC registers is to analyze and tune the architectural level
performance and power of running applications [37–39]. While HPCs are finding their way
in various processor platforms from high-performance to low-power embedded processors
and IoT devices, they are limited in the number of microarchitectural events that can be
captured simultaneously. This is mainly due to the limited number of physical registers on
the processor chip which are expensive to implement. A variety of processor platforms
such as Intel, ARM, and AMD includes HPCs on its processors. The HPC registers are
responsible to collect a myriad of low-level events such as cache access and misses, TLB
hits and misses, branch mispredictions, etc. [18,22,30].

Performance counter registers are easily programmable across all platforms. Depending
on the processor architecture, there are different numbers of HPC registers available [18,22,30].
For instance, the number of counter registers in the Intel Ivy-bridge and Intel Broadwell
CPUs is limited to only four per processor core, meaning that only four HPCs can be
captured simultaneously. In addition, Intel SandyBridge and Haswell architectures both
have a total of 8 general-purpose counters per core. This limitation can be mitigated by
multiplexing performance counters [19,24], but at the cost of accuracy degradation.

Recently, application areas of hardware performance counters are grown from mere
performance analysis to detecting firmware modification in embedded systems [21], es-
timating system power consumption [40], and detection of malicious software at the
hardware level [14,17,18,22] or even hardware trojans [41]. As a result, in this work, we
have used the low-level information captured from HPC registers to identify the malicious
patterns of applications by proposing effective and complexity-aware machine learning-
based solutions addressing various critical challenges associated with run-time malware
detection using microarchitectural features.

2.2. Hardware-Assisted Malware Detection

Demme et al. [16] proposed to deploy HPCs information for malware detection
and demonstrated the effectiveness of using traditional ML models for hardware-based
malware detection. They showed high detection accuracy results for Android malware

Cryptography 2021, 5, 28 5 of 25

by applying complex ML algorithms including Artificial Neural Network (ANN) and
K-Nearest Neighbour (KNN). Tang et al. [17] further proposed an HPC-based anomaly
detection and discussed the feasibility of complex unsupervised learning on low-level
features to detect buffer overflow attacks. Unsupervised algorithms though effective
in detecting unknown malware, are complex incurring large overheads and requiring
sophisticated analysis.

The works in [23,42] adopt sub-semantic features to recognize malicious software
signatures using Logistic Regression (LR) and Neural Network classifiers. In addition,
the authors presented modifications in the microprocessor pipeline to detect malware in
a truly real-time setting that increases the cost and complexity of the proposed solution.
Singh et al. [30] is another HMD work that deployed machine learning classifiers that
are applied on synthetic HPC traces for detecting kernel rootkit attacks. They also used
the Gain Ratio feature selection method to determine the most prominent features for
each rootkit dataset. The authors achieve high prediction accuracy in detecting five self-
developed synthetic rootkits models. Nevertheless, this work while important only focused
on the detection of kernel rootkit attacks using a limited set of synthesis datasets.

The HMD study in [31] used logistic regression to classify malware into different types
and trained a specialized classifier for detecting each class. They further used specialized
ensemble learning to improve the accuracy of malware detectors. The research in [18]
proposed ensemble learning techniques to facilitate run-time hardware-assisted malware
detection and improved the performance of HMD by accounting for the impact of reducing
the number of HPC features on the performance of malware detectors. In [24], a machine
learning-based HMD is proposed that uses various traditional classifiers but requires 8 or
more features to achieve high accuracy, which makes it less suitable for online malware
detection.

The recent work in [22] proposed a two-stage machine learning-based approach
for run-time malware detection in which in the first level classifies applications using a
multiclass classification technique into either benign or one of the malware classes (Virus,
Rootkit, Backdoor, and Trojan). In the second level, to have a high detection performance,
the authors deploy a machine learning model that works best for each class of malware
and further apply effective ensemble learning to enhance the performance of malware
detection.

The work in [43] evaluated the suitability of HPCs for HMD. Though the presented
experimental results in this study are mostly in favor of malware detection through HPCs,
they claim that if HPC traces of malware and benign applications are similar, it is hard
to detect malware. However, the robustness of malware detection highly depends on
the type of classifier employed. In addition, it is likely to mislead the HMD methods,
if the malware is crafted adversarially to perturb HPC patterns look similar to benign
applications patterns, similar to adversarial attacks in CNNs for image processing [44].
However, no details on crafting such adversarial applications nor real-world samples are
provided. Furthermore, this work has performed limited analysis on embedded malware
and only shows that one benign program (Notepad++) infused with ransomware cannot
be detected by traditional machine learning-based HMD without providing any effective
solution to tackle the challenge of detecting stealthy malware.

Collectively, prior works on hardware-based malware detection have considered a
threat model in which the malware is spawned as a separate thread within the application
execution time. In particular, they have ignored assuming the malicious code embedded
inside the benign programs which is a more threatening attack for today’s computing
systems. Furthermore, they used traditional ML-based algorithms with more than 4 HPC
features to detect the malware with high accuracy. Our work is different, as it targets a more
harmful attack, embedded malware, running within the same thread and execution binary
of benign programs. It also proposes a lightweight machine learning-based approach
which is capable of detecting patterns of embedded malware in the benign application at
run-time using only one low-level microarchitectural feature.

Cryptography 2021, 5, 28 6 of 25

2.3. Embedded Malware Detection

Stolfo et al. [25] was the first study that introduced a new type of stealthy threat
referred to as embedded malware in which the attacker embeds the malicious code inside a
benign file on the target host such that the benign and malicious applications are executed
as a single thread on the target system. They further introduced a method referred to as
file-print analysis in which they calculated 1-gram byte distribution of a file to identify
the file type among PDF and DOC files. In the context of malware detection, their work
focused on embedded malware detection only in PDF and DOC files. They deployed
three different models for representing the benign distributions namely single centroid,
multi-centroids, and exemplar files as centroids. Mahalanobis distance was calculated
between the distributions obtained from these models and the n-gram distribution of a
given file.

The work in [28] proposed static and run-time dynamic methods for detecting malware
embedded in Word documents. For their static analysis method, they used an open-source
application to decompose files and further produced a similarity score to carry out the
final classification decision. They make use of a 5-gram model for benign and malicious
documents based on their adequate memory and detection performance. Next, given
the model, a “similarity” score was produced for the final classification decision. In
their dynamic approach, they employed sandbox-based tests to evaluate OS crashes and
unexpected changes in the system. However, it is acknowledged by the authors that their
approach is not practical to be used as an independent embedded malware detection
scheme.

The research in [45] used conditional Markov n-grams techniques to propose an
anomaly detection scheme to detect embedded stealthy malware. The rationale for using
this type of n-grams is that it offers a more meaningful representation of a file’s statistical
properties as compared with traditional n-grams techniques. To this aim, they first examine
byte sequences in benign programs to show that benign programs’ data generally exhibit
a 1-st order dependence structure. Using this correlation, they model the conditional
distributions as Markov n-grams. They deployed entropy rate, an information-theoretic
metric, to quantify changes in Markov n-gram distributions of a file and showed that
the entropy rate Markov n-grams obtains significantly disturbed at malware embedding
locations indicating its robustness for embedded malware detection. Their results indicate
that the proposed Markov n-gram detector offers higher detection accuracy and false-
positive rates as compared with the prior work on embedded malware detection in [25].

2.4. Time Series Classification

Since our proposed method in this work considers the embedded HMD problem as
a time series classification task, here, we briefly discuss the recent works on time series
classification.

Time series classification approaches can be divided into two different types, shapelet-
based [46] and bag-of-pattern-based [47]. The shapelet-based approach [46] attempts to
find the subsequences of data that are the most discriminating of classes and deploys them
to generate features for classification. These subsequences can be used to transform the
original inseparable raw time series into a lower-dimensional space that is easier to classify.
In this type of model, each original time series can be transformed to a distance feature
vector by computing the closest match distance between the time series and each of the
shapelets.

The work in [48] proposed an algorithm to approximately select high-quality shapelets
by using symbolic representation of the subsequence. Following a similar idea, the work
in [49] introduced an approach to approximately find qualified shapelets via variable-
length time series motif. In recent works, Grabocka et al. [50] and Li et al. [51] introduced a
learning framework and a genetic algorithm-based framework, respectively, to generate
a shapelet to classify the time series. Furthermore, Hills et al. [52] proposed an approach

Cryptography 2021, 5, 28 7 of 25

called Shapelet Transformation (ST) to classify time series and achieve very high accuracy.
However, the complexity of these approaches is very costly.

On the other hand, bag-of-pattern-based approaches attempt to discretize time se-
ries into a bag of symbols and deploy the distribution information for classification.
Senin et al. [53] used a discretization technique called Symbolic Aggregation Approxi-
mation (SAX) to convert the subsequent time-series data into a bag of symbols and deploys
a histogram of the symbols to represent the time series. Instead of using SAX representation,
Schafer et al. [54] introduced a Symbolic Fourier Approximation (SFA) based discretization
approach to generate the representation.

Recently, several deep learning-based time series classification approaches are pro-
posed [55–58]. These approaches often utilized ML techniques such as convolution neuron
network or LSTM neuron network to extract the features from time series. However, these
models often consist of a large number of parameters incurring significant overhead and
computational complexity to the computer system.

The complexity of all work mentioned above are very costly which makes them unfit
to be used computer systems especially for resource-constrained devices with limited
performance and power requirements. Recently, Schäfer and Li etc.[59,60] proposed a
series of scalable time series classification approaches that are significantly faster than
traditional time series classification models [46,53,54]. s a result, to better evaluate and
highlight the effectiveness of our proposed approach for embedded malware detection
(described in Section 5), we compare StealthMiner with state-of-the-art ML-based HMD
solutions as well as the most recent scalable time series classification method [60].

3. Motivations

In this section, we discuss the motivations and challenges for proposing effective
machine learning-based solutions for run-time stealthy malware detection using low-level
hardware features.

3.1. Challenge of Detecting Stealthy Malware

Figure 1 illustrates the challenge of detecting embedded malware. Figure 1a visualizes
the complete benign and malware HPC data (described in detail in Section 4), when the
malware is spawned as a separate thread, via t-distributed Stochastic Neighbor Embedding
(t-SNE) algorithm [61], a widely used algorithm for visualizing high dimensional data. As
seen, the marginal area between malware and benign programs is large when malware is
spawned as a separate thread indicating that by using traditional ML models (prior works)
the malware can be easily detected. However, the converted points of embedded malware
data are mixed with each other in Figure 1b depicting the impact of embedding malicious
code inside benign applications.

The figure highlights the challenge of stealthy malware detection indicating that
due to the dense distribution of malware and benign applications features, traditional
classification approaches are not able to achieve high accuracy in detecting embedded
malware. As a case study, by applying the nearest neighbor classifier on both complete and
embedded malware datasets, the classifier can achieve an accuracy of 90% in detecting the
malware as a separate thread. However, the classifier can only achieve nearly 60% accuracy
in stealthy malware detection tasks when the malicious code is hidden inside the normal
program.

Cryptography 2021, 5, 28 8 of 25

Figure 1. Visualizing the complete benign and malware dataset using the t-SNE algorithm: (a) mal-
ware spawned as a separate thread; (b) malware embedded inside benign applications.

3.2. Machine Learning for Hardware-Assisted Stealthy Malware Detection

As discussed, in this work, we intend to employ HPCs information to identify the
behavior of running applications. As a case study to verify the suitability of using HPCs
for ML-based malware detection, we executed malware and benign applications on an
Intel Nehalem architecture-based system to observe the behavioral patterns of HPCs. The
benign application is selected from MiBench [20] benchmark suite and the malware is a
Backdoor application that can bypass the authentication process. The observed HPC traces
of branch instructions for malware and benign applications are presented in Figure 2. The
X-axis represents the time at which the HPC is monitored and the Y-axis represents the
branch instruction HPC values.

The profiling trace shows that if two different programs are executed on a processor,
they generate relatively different HPC traces, providing a unique opportunity to detect the
behavior of the application. However, there exists an interesting observation in which if
the malware is embedded inside a benign program from 0 ms to 1000 ms time intervals,
there is a high possibility that the value of branch instructions for both benign and malware
becomes equal which can mislead the traditional ML-based detectors in distinguishing the
malicious behavior from benign applications. This highlights the importance and necessity
of developing an effective intelligent approach as an alternative to traditional ML solutions
to accurately detect the trace of embedded malware.

Figure 2. HPC traces of sample benign and malware (Backdoor) applications for branch-instruction
HPC feature.

4. Proposed Intelligent Stealthy Malware Detection Framework

In this section, we describe the proposed machine learning-based approach for ef-
fective hardware-based stealthy malware detection. Figure 3 illustrates an overview of
different steps for the proposed intelligent malware detection framework. As shown, it is
comprised of different steps including data collection and feature extraction, feature reduc-
tion, and the proposed ML-based embedded malware detection approach (StealthMiner)
each described in detail in the following subsections.

Cryptography 2021, 5, 28 9 of 25

4.1. Experimental Setup and Data Acquisition

This section provides the details of the experimental setup and data collection pro-
cess. The benign and malware applications are executed on an Intel Xeon X5550 machine
(4 HPC registers available) running Ubuntu 14.04 with Linux 4.4 Kernel and HPC features
are captured using Perf tool available under Linux at a sampling time of 10 ms. Perf
provides rich generalized abstractions over hardware-specific capabilities. HPC-based
profilers are currently built into almost every popular operating system. Linux Perf is a new
implementation of performance counter support for Linux which is based on the Linux
kernel subsystem perf-event and provides users a set of commands to analyze performance
and trace data. It exploits perf-event-open function call in the background which can measure
multiple events simultaneously. In our experiments, we executed more than 3500 benign
and malware applications for data collection. Benign applications include real-world appli-
cations comprising MiBench [20] and SPEC2006 [62], Linux system programs, browsers,
and text editors. Malware applications collected from virustotal and virusshare online
repositories include Linux ELFs and scripts created to perform malicious activities and
include 850 Backdoor, 640 Rootkit, and 1460 Trojan samples. The functionality of Backdoor
applications is trying to provide remote access to the remote user (attacker) and facilitates
information leakage; Rootkits provide the attackers with privilege access to modify the reg-
isters and authorized programs; and Trojans perform phishing of confidential information
in the system.

In our experiments, the HPC information is collected by running applications in an
isolated environment referred to as Linux Containers (LXC) [63]. LXC is chosen over other
commonly available virtual platforms such as VMWare or VirtualBox since it provides ac-
cess to actual performance counters data instead of emulating HPCs. To effectively address
the non-determinism and overcounting issues of HPC registers in hardware-based security
analysis discussed in recent works [43,64], we have extracted various hardware events
available under Perf tool using static performance monitoring approach [34] where we can
profile applications several times measuring different events each time. Furthermore, to
ensure that running malware inside the Linux container does not contaminate the system’s
environment and also no contamination occurs in collected data due to the previous run of
the program, the container is destroyed after each run.

Benign

Malware

Customized FCN-based Embedded
Malware Detector: StealthMiner

Reduced HPC
samples

Applications (Malware/Benign)
running on the target system

Feature
Extraction

Microarchitectural Features
Analysis: Identifying the most

prominent HPCs

Malware

Benign

Feature
Reduction

HPC Features are collected via Perf Tool every
10ms from the underlying processor

Backdoor

Trojan

Rootkit

Blended

ML Implementation for Accurate Run-time Hardware-
Assisted Stealthy Malware Detection

Figure 3. Overview of proposed hardware-assisted stealthy malware detection framework.

4.2. Feature Representation

Determining the most significant low-level features is an important step for effective
HMD. As there exist numerous microarchitectural events (e.g., +100 in Intel Xeon), each of
them representing a different functionality, collecting all features leads to high dimensional
data. Furthermore, processing raw dataset involves computational complexity and induces
delay. Hence, to perform an efficient run-time HMD with minimal overhead, we determine
a minimal set of HPCs that can effectively represent the application behavior and are
feasible to collect in a single run even on low-end processors with few HPCs. Therefore,
instead of accounting for all captured features, irrelevant features need to be identified
and removed using a feature reduction algorithm, and a subset of HPC events is selected
that represents the most important features for classification. For the algorithmic selection

Cryptography 2021, 5, 28 10 of 25

of features, we first use Correlation Attribute Evaluation to rank all captured features by
calculating Pearson correlation between each attribute and class. The top features with
the highest correlation coefficient value and their descriptions are shown in Table 1. These
events have a mixture of branch-related events representing core behavior and cache-related
events representing memory behavior. Next, we apply Principle Component Analysis
(PCA) to find the best HPCs suited for training the ML-based malware detectors. PCA is
a class of dimensionally reduction techniques that captures most of the data variation by
rotating the original data to a new variable in a new dimension. We employ PCA to reduce
the features and apply a hierarchical clustering technique to group similar features and
identified the top 4 HPCs to capture the behavior of a specific class of malware. The feature
reduction results indicate that the identified prominent 4 HPCs are the same across various
classes of malware which includes branch instructions, cache references, branch misses,
and node-stores.

Table 1. HPC events used for embedded malware detection and their description.

HPC Event Description

Branch instructions branch instructions retired

Branch-misses branches mispredicted

Cache misses last level cache misses

Cache-references last level cache references

L1-dcache-load-misses cache lines brought into L1 data cache

L1-dcache-loads retired memory load operations

L1-dcache-stores L1 data cache lines copied into DRAM
node-loads successful load operations to DRAM

node-stores successful store operations to DRAM

LLC-load-misses cache lines brought into L3 cache from DRAM

LLC-loads successful memory load operations in L3

iTLB-load-misses misses in instruction TLB during load operations

Branch-loads successful branches

The proposed time series-based detection approach, StealthMiner, using only the
most significant HPC feature, branch instructions, can detect the embedded malware
inside the benign application with high detection accuracy (will be discussed in detail in
Section 5). Branch operations are one of the non-trivial microarchitectural events as most of
the malware rely on branching operations for executing the malicious activity revealing the
behavior of most malware programs. In addition, branch-related counters can be accessed
even in most of the low-end embedded and IoT devices, therefore, making this type of
microarchitectural event appealing to use for malware detection. Furthermore, it is hard to
evade the branch instructions count due to the in-built exception the handler that notifies
the user regarding the exception and terminates the program or it can result in long stalls,
eventually leading to termination of ongoing executions.

4.3. Stealthy Malware Threat Models

The proposed intelligent hardware-assisted malware detection approach in this work
is focused on the identification of a type of stealthy malware, referred to as an embedded
malware attack which is a potential threat in today’s computing systems that can hide itself
within the running benign application on the system.

For modeling the embedded malware threats, we have considered persistent malicious
attacks which occur once in the benign application with a notable amount of duration
attempting to infect the system. For the purpose of thorough analysis, we deployed various
malware types for embedding the malicious code inside the benign application including

Cryptography 2021, 5, 28 11 of 25

Backdoor, Rootkit, Trojan, and Hybrid (Blended) attacks. For per-class embedded malware
analysis, traces from one category of malware, are randomly embedded inside the benign
applications and the proposed detection approach attempts to detect the malicious pattern.

Furthermore, the Hybrid threat combines the behavior of all classes of malware and
hides them in the normal program. Persistent malicious codes are primarily a subset of
Advanced Persistent Threat (APT) which is comprised of stealthy and continuous computer
hacking processes, mostly crafted to perform specific malfunction activities. The purpose
of persistent attacks is to place custom malicious code in the benign application and remain
undetected for the longest possible period. Persistent malware signifies sophisticated
techniques using malware to persistently exploit vulnerabilities in the systems usually
targeting either private organizations, states, or both for business or political motives. The
hybrid malware in our work represents a more harmful type of persistent threat in which
the malicious samples are chosen from different classes of malware to achieve a more
powerful attack functionality seeking to exploit more than one system vulnerability.

To create an embedded malware time series and model the real-world applications
scenario, with capturing interval of 10 ms for HPC features monitoring, we consider 5 s.
infected running application (benign application infected by embedded malware). For this
study, 10,000 test experiments were conducted in which malware appeared at a random
time during the run of a benign program. In our experiments, three different sets of data
including training, validation, and testing sets are created for comprehensive evaluation
of the StealthMiner approach. Each dataset contains 10,000 complete benign HPC time
series and 10,000 embedded malware HPC time series. As the attacker can deploy unseen
malware programs to attack the system, we create these three datasets with three groups of
recorded malware HPC time series consisting of 33.3% for training, 33.3% for validation,
and the remaining of whole recorded data for testing evaluation.

4.4. Overview of StealthMiner

As discussed, prior works on HMD mainly assumed that the malware is executed
as a separate thread when infecting the computer system. This essentially means that
the HPCs data captured at run-time inserted to the classifier belongs only to the malware
program. In real-world applications, however, the malware can be embedded inside a
benign application, rather than spawning as a separate thread, producing a more harmful
attack. Therefore, the HPCs data captured at run-time in each interval could belong to both
malware and benign application. As we will show in this work, this HPC data pollution
could result in performance degradation of traditional ML classifiers. In response to this
challenge, we propose StealthMiner malware detection framework which is based on a
lightweight Fully Convolutional Neural Network (FCN)-based time-series classification.
Primarily, the proposed FCN-based approach attempts to automatically identify potentially
contaminated intervals in HPC-based time series at run-time and utilize them to distinguish
the embedded malware from benign applications.

The overview of StealthMiner and its comparison with prior works is described in
Figure 4. The network is a simplified version of neural network models inspired from pre-
vious general convolutional neural network-based time series classification models [55,56].
As shown in Figure 4a, our proposed solution in this work is based on the least number of
HPC features and targets detecting stealthy attacks that have been ignored in prior studies
on hardware-based malware detection. Furthermore, as seen in Figure 4b, the proposed
FCN-based malware detector is created by stacking two 1-D convolution layers with 16
and 2 kernels, respectively. The size of the kernel in these two convolution layers is 2 and
3, respectively. These convolution layers aim at selecting the subsequence of the HPC
time series for identifying the malware. Next, a global average pooling layer is applied to
convert the output of the convolution layer into low dimension features. These features are
then fed into a fully connected neural network to distinguish the embedded malware from
benign applications.

Cryptography 2021, 5, 28 12 of 25

Applications Computer Systems

Laptop
Servers

...

......
This work: Malware embedded inside benign application

Prior works: Malware spawned as a
separate thread

Prior Works This Work

Detection using low-level features

Least number of HPCs (Only one)

Embedded Malware Detection

1-D Convolution
Layer

16

HPC-based Time
Series

BN+ReLu

1-D Convolution
Layer

2
BN+ReLu

Global Pooling

Softmax

Malware Detected using
Traditional ML Algorithms

Malware Detected with CHASE
Detection Framework

Benign

Malware

Input HPC Time Series
Size: 1×𝑁

Feature Maps o(1)
Size: 16×𝑁

Feature Maps o(2)
Size: 2×𝑁

Low Dimension Features o(3)

Fully connected Neuron Network (2×2)

(b)

(a)

Malware Detected with StealthMiner
Detection Framework

Figure 4. Overview of StealthMiner, Overview of StealthMiner, the proposed customized time series FCN-based approach
for embedded malware detection (b) and its comparison with prior HMD works (a).

Concretely, given a time series of HPC features of x = x1, x2, . . . , xN , where N is
the length of the time series in the first 1-D convolution layer, an output of kth kernel is
computed by:

t(1)i,k = ∑
j∈1,2

wk,j,1xi+j−1 + b1 (1)

where 2-d vector [wk,1,1, wk,2,1] ∈ w is the weight of kth kernel and w = {wk,j,1|k =

1, . . . , 16, j = 1, 2} is a 16× 2 matrix that describes all weights of first layer. Given t(1)k =

[t(1)1,k , . . . , t(1)N,k], a batch normalization function, t(2)k = BN(t(1)k), and a ReLu activation

function, o(1)k = ReLu(t(2)k), are then applied. BN(.) is a function which normalizes mean

and variance of the t(1)k to 0 and 1, respectively. Given an input vector x, BN(.) can be
written as below:

BN(t(1)i,k) =
t(1)i,k − µk

σk
(2)

where µk and σk is the mean and variance of vector across kth kernel. ReLu activation
function is a nonlinear activation function that sets any negative value in input t(2)k to 0:

Relu(t(2)k) = max(0, t(2)k) (3)

The first layer output o(1)k is a N dimension feature map generated from the kth

kernel. We denote o(1) = [o(1)1 , . . . , o(1)16] as the output of the convolution layer. Intuitively,
convolution layer converts original time series of length N into 16 different N dimensional
feature maps capturing different potential local features that can be used to classify the
input data [56].

The o(1) is then fed into next convolution layer with total number of kernels equal to 2.
This layer summarizes o(1) into two different feature maps which can be computed via:

t(3)i,k′ =
16

∑
k=1

3

∑
j=1

wk′ ,k,j,2o(1)i+j−1,k + b2 (4)

where the weight of all kernels is a 3-d tensor wk′ ,k,j,2 of size 2× 16× 3. For each t(3)i ,
BN(.) and ReLu(.) functions are further applied and four feature maps (denoted as o(2) =
[o(2)1 , o(2)2]) are generated. Intuitively, stacking two convolution layers can increase the

Cryptography 2021, 5, 28 13 of 25

accuracy of the framework and the ability of the model to detect complicated features
which are not possible to be captured by a single convolution layer [56]. Note that any
positive value inside the o(2)1 , o(2)2 indicates the potential HPC intervals can be used to
determine whether the input HPC time series contains embedded malware. Next, we
conduct a global average pooling step to convert feature map o(2) into low dimension
features. In particular, given a feature map of o(2)k ∈ o(2), we deploy the average value of

all elements inside o(2)k as the low dimension feature. As a result, this step converts o(2)

into a 2-d vector (denoted as o(3)).
Finally, o(3) is fed into a fully connected neural network with softmax activation

function formulated below where a standard neural network layer is designed for our
target classification task in detecting embedded malware:

o = So f tmax(WTo(3) + b3) (5)

where So f tmax is the softmax activation function. It can be written as follows:

So f tmax(x) =
exi

∑2
k=1 exk

(6)

The Equation (3) first converts o(3) into a new 2-d real value vector via linear transfor-
mation WTo(3) + b3, where W is a 2× 2 matrix and b3 is a 2× 1 vector. Next, all elements
in the vector is mapped to [0,1] via So f tmax function. The final output is a 2-d vector
o = [o1, o2] which describes the possibility that the time series is benign or infected by
malware (See Figure 5).

Suppose that we denote all the weights and the output of network as Θ and Θ(x) =
[Θ1(x), Θ2(x)], respectively. Given a training dataset D and the network weights Θ, we
update Θ by minimizing the binary cross-entropy loss which can be computed by

L = ∑
(xi ,yi)∈D

−yi log(Θ1(xi))− (1− yi) log(Θ2(xi))) (7)

where xi and yi is the HPC time series and the associated ground true label of the ith record
in D. And yi ∈ {0, 1} indicates whether the time series is benign or contains malware.
Equation (7) can be minimized via a standard backpropagation algorithm, a widely used
model for training various types of neural networks [55,56]. It primarily updates weights
in the neural network by propagating the loss function value from the output to the input
layer and iteratively minimizes the loss function for each layer via the gradient descent
method. In this work, for each layer, the weights are optimized via Adam optimizer [65], a
stochastic gradient descent method used to efficiently update weights of neural network.

To demonstrate the functionality of the StealthMiner approach in identifying the
malware embedded inside the benign program, two illustrative case studies are presented
Figure 5. As shown in Figure 5a, an HPC-based time series is an input to the classifier
which contains an embedded rootkit malware (the embedded malware is highlighted in
red). To identify the hidden malicious pattern, StealthMiner generates two feature maps
o(2)1 , o(2)2 via the proposed fully convolution neural network. The o(2)1 and o(2)2 are then
categorized as a 2-d feature vector o(3) by calculating the simple average of all the values
in the feature map. In the given example, o(3) is equal to [0.26, 0.32]. This 2-d feature is
then fed into a fully connected neural network layer and the proposed detector analyzes
the input HPC time series and attempts to find that whether the input trace contains an
embedded malware or not in which in this case it successfully identifies the embedded
malware with a significantly high probability (0.999). Similarly, when a benign HPC trace
is fed into StealthMiner (as shown in Figure 5b), following the same process as the first
example, the time series is converted into the 2-d feature vector ([0.25, 0.1]). Then, the 2-d
vector is fed into the fully connected neural network layer and the network successfully
identifies that it is a benign trace with a probability of 0.73.

Cryptography 2021, 5, 28 14 of 25

Final Feature Maps

𝒐(𝟐)

Input HPC Time Series

[𝟎. 𝟐𝟔, 𝟎. 𝟑𝟐]Low Dimension Feature:

𝒐(𝟑)

𝒐𝟏
(𝟐)

𝒐𝟐
(𝟐)

[𝟎. 𝟎𝟎𝟏, 𝟎. 𝟗𝟗𝟗]Output:
𝒐

(Benign) (Malware)

Embedded
malware

(a)

𝑜!
(#)

𝑜#
(#)

Input HPC Time Series

Final Feature Maps
𝒐(𝟐)

Low-dimensional Feature:
𝒐(𝟑) [0.25 0.1]

Output:
𝒐

[0.73 0.26]

benign malware

(b)

Figure 5. Illustrative case studies of StealthMiner in recognizing embedded malware via HPC time
series traces. (a) Embedded malware is detected. (b) Input HPC trace is benign.

StealthMiner Implementation and Overhead: We implemented the proposed embedded
malware detection framework via Pytorch deep learning library. For evaluating Stealth-
Miner framework using performance metrics such as accuracy and F-measure (described
in Section 5, the proposed detector determines whether the input time series contains
embedded malware by computing the argmax(o). For measuring the Area Under the
Curve (AUC), we directly use the output computed via Equation (3).

Different from existing neural network time series classification models proposed in
prior works, the StealthMiner framework has a small total number of kernels and layers
which dramatically reduces the number of parameters and the cost of detecting malware in
the new HPC time series. For instance, in the latest neural network introduced by [55], to
classify a time series the proposed solution needs more than 100,000 parameters. Hence,
applying such heavyweight classification models to our embedded malware detection
problem would significantly increase the overhead and complexity of our design, which
certainly makes the solution impractical. In contrast, the StealthMiner framework only
contains 200 parameters. Having a small number of parameters enhances the efficiency
of the proposed ML-based malware detection solution highlighting the effectiveness and
applicability of our proposed neural network-based approach to efficiently identify the
embedded malware.

5. Experimental Results and Analysis

In this section, we evaluate the proposed embedded malware detection approach
across different attack types and evaluation metrics with a comparison to existing tech-
niques.

5.1. Performance Evaluation Criteria

In this work, the StealthMiner approach is evaluated using precision, recall (a.k.a.
sensitivity), F-score, and detection accuracy (the overall rate of correctly classified samples).
Typically, in binary classification techniques, the true positive (tp) metric represents the
number of correctly classified positive samples, and the true negatives (tn) metric denotes
the number of negative samples that are correctly classified. In addition, the false positive
(fp) metric represents the incorrectly classified positive samples and the false negative (fn)
metric is the number of negative samples that are incorrectly classified. The positive and
negative terms show the success of the ML model, and the true and false terms specify if
the classification is matched with the actual target class of application (malware or benign).

Cryptography 2021, 5, 28 15 of 25

Accuracy (ACC): Detection accuracy of the ML classifier is evaluated by the ratio of
correctly classified samples to a total number of samples. Notably, detection accuracy is
an appropriate evaluation metric when the analyzed dataset is balanced. However, in
real-world applications, it can be considered that the benign samples are far more than the
malicious samples which could make the accuracy a less effective evaluation metric in an
imbalanced dataset.

ACC =
TP + TN

TP + FP + TN + FN
(8)

Precision (P): Precision metric is defined as the ratio of true positive samples to pre-
dicted positive samples represents the proportion of the sum of true positives versus the
sum of positive instances which indicates the confidence level of malware detection. For
instance, it is the probability for a positive sample to be classified correctly.

P =
TP

FP + TP
(9)

Recall (R): Recall or True Positive Rate (TPR) or Sensitivity or hit rate is defined as the
ratio of true positive samples to total positive samples and is also called the detection rate.
It basically refers to the proportion of correctly identified positives or the rate of malware
samples (i.e., positive instances) correctly classified by the classification model. The recall
detection rate reflects the model’s ability to recognize attacks which are calculated as
follows:

TPR =
TP

TP + FN
(10)

F-Measure (F): F-Measure or F-Score in machine learning is interpreted as a weighted
average of the precision (P) and recall (R) that reaches its best value at 1 and worst at 0. F-
Measure is a more comprehensive evaluation metric over accuracy (percentage of correctly
classified samples) since it takes both the precision and the recall into consideration. More
importantly, the F measure is also resilient to the class imbalance in the dataset which is
the case in our experiments. Different measurements could be contradictory to each other.
It is hard to meet with high precision and recall at the same time. We need to make a
trade-off to balance them. Thus, F-measure i.e., F-score is often used to indicate detection
performance. F Measure is calculated using the below equation:

FMeasure =
2× (P× R)

P + R
(11)

Area under the Curve (AUC): As the F-measure and accuracy are not the only metrics to
determine the performance of the ML-based malware detectors, we also evaluate Stealth-
Miner using Receiver Operating Characteristics (ROC) graphs. The ROC curve represents
the fraction of true positives versus false positives for a binary classifier as the threshold
changes. We further deploy the Area under the Curve (AUC) measure for ROC curves
in the evaluation process which corresponds to the probability of correctly identifying
malware and benign programs.and is more related to the robustness of the classifier. The
robustness term is referred to how well the classifier distinguishes between binary malware
and benign classes, for all possible threshold values. The AUC of the best possible classifier
is equal to 1, meaning that we can find a discrimination threshold under which the classifier
obtains 0% false positives and 100% true positives.

AUC =
∫ 1

0
TPR(x)dx =

∫ 1

0
P(A > τ(x))dx (12)

5.2. Evaluation of StealthMiner and Comparison to State-of-the-Arts

For the purpose of a comprehensive evaluation, we compared our proposed ap-
proach with recent general time series classification approaches, recent traditional machine

Cryptography 2021, 5, 28 16 of 25

learning-based HMD techniques, and well-known deep learning algorithms that are widely
used for cybersecurity and anomaly detection proposes.

5.2.1. StealthMiner vs. Traditional ML Models

We studied two general time series classification methods including a k-Nearest
Neighbour (KNN) classifier, a classical time series classification method, and Bag-of-
Pattern-Features (BOPF) [60] classifier, which is a recently proposed scalable time series
classification approach. Given the input time series, the KNN classifier will assign the same
class label to the input time series based on the most similar observed time series in the
training set in which the similarity is measured by Euclidean distance.

As described before, Bag-of-Pattern-Features based time series classification approach
is one of the recent fast time series classification algorithms that have a significantly low
time and computational complexity compared with other existing time series classification
approaches while maintaining a very high accuracy. As a result, for a comprehensive
comparison of StealthMiner with state-of-the-arts, we implemented different ML-based
HMD techniques and time series classification presented in recent prior works including
JRip [18,24,32], J48 [18,24,32], Logistic Regression [23,24,31], KNN [16,32], and BOPF [60]
that are representing the rule-based, decision tree, regression-based, and time series ma-
chine learning classifiers and have demonstrated high accuracy for detecting malware
(spawned as a separate thread) in recent works.

Table 2 presents the evaluation results of malware detection for different classes of
embedded malware for validation set. The results show that our proposed lightweight
neural network-based solution can achieve average accuracy, precision, recall and F-score
of nearly 0.9 across all types of experimented with embedded malware only by using the
most prominent HPC feature (branch instructions). This makes the run-time detection of
stealthy malware feasible which is primarily eliminating the need to execute applications
multiple times to capture various low-level features suitable for HMD.

Table 2. Evaluation results of StealthMiner for the validation set.

Type Precision Recall F-Score Accuracy

Hybrid 0.85 0.89 0.88 0.87
Rookit 0.93 0.88 0.91 0.91
Trojan 0.91 0.87 0.89 0.89

Backdoor 0.88 0.94 0.91 0.91

Average 0.89 0.9 0.9 0.89

Figure 6 illustrates the ROC graphs of the proposed approach compare to state-of-
the-art HMD and time series classification techniques. The correspondent AUC values
for each embedded malware category are further presented in Table 3. A higher AUC
value means that the ROC graph is closer to the optimal threshold and the classifier is
performing better in terms of identifying the stealthy malware and classification of malware
and benign applications. The ROC results clearly indicate the effectiveness of the proposed
approach in this work as compared with prior ML-based malware detection and time
series classification. As can be seen, our proposed approach, StealthMiner, achieves an
average AUC value of 0.94 across all experimented categories of embedded malware.
Furthermore, StealthMiner significantly outperforms the traditional ML algorithms used in
recent HMD works, JRip, J48, and LR, by up to 0.48, and further outperforms tested time
series classification approaches by up to 0.45 (for embedded Rootkit).

For the purpose of thorough analysis and comparison, Table 4 presents the accuracy,
F-score, precision, and recall values testing evaluation results of proposed lightweight
embedded malware detection approach in comparison with state-of-the-art works on
hardware-based malware detection and time series classification. As seen, StealthMiner
approach achieves highest accuracy and F-score for detection across all four different types

Cryptography 2021, 5, 28 17 of 25

of embedded malware with the highest value of 0.93 for embedded Rootkit detection.
Overall, the results indicate that StealthMiner performance is outperforming the state-of-
the-art HMD methods (e.g., Logistic Regression) by up to 0.43 in accuracy and 0.44 in
F-score highlighting the effectiveness of the proposed customized time series machine
learning-based approach in detecting stealthy malware.

Table 3. AUC values of testing set results of StealthMiner vs. traditional ML-based detectors in prior
works for detecting various embedded malware.

Attack Type StealthMiner JRIP J48 LR KNN BOPF

Hybrid 0.92 0.64 0.62 0.53 0.6 0.7
Rookit 0.98 0.77 0.62 0.5 0.54 0.53
Trojan 0.93 0.85 0.69 0.57 0.65 0.79

Backdoor 0.91 0.73 0.54 0.51 0.6 0.68

Average 0.94 0.75 0.62 0.52 0.58 0.67

Table 4. Testing evaluation results of StealthMiner vs. traditional ML and time series classification
techniques used in prior works.

Embedded Hybrid Malware

Proposed vs. Prior Work Precision Recall F-Score Accuracy

StealthMiner 0.85 0.83 0.86 0.89

JRIP [18,24,32] 0.63 0.58 0.6 0.62
J48 [18,24,32] 0.63 0.57 0.6 0.62
LR [23,24,31] 0.52 0.49 0.51 0.52

BOPF [60] 0.97 0.41 0.58 0.7
KNN [16,32] 0.59 0.55 0.57 0.58

Embedded Rootkit Malware

StealthMiner 0.95 0.9 0.93 0.93

JRIP [18,24,32] 0.81 0.68 0.74 0.76
J48 [18,24,32] 0.66 0.53 0.59 0.63
LR [23,24,31] 0.5 0.47 0.49 0.5

BOPF [60] 0.69 0.1 0.18 0.53
KNN [16,32] 0.55 0.46 0.5 0.54

Embedded Trojan Malware

StealthMiner 0.92 0.82 0.86 0.87

JRIP [18,24,32] 0.84 0.78 0.81 0.82
J48 [18,24,32] 0.7 0.69 0.69 0.69
LR [23,24,31] 0.56 0.55 0.55 0.55

BOPF [60] 0.92 0.63 0.74 0.78
KNN [16,32] 0.63 0.72 0.67 0.65

Embedded Backdoor Malware

StealthMiner 0.89 0.83 0.86 0.86

JRIP [18,24,32] 0.83 0.58 0.68 0.73
J48 [18,24,32] 0.59 0.31 0.41 0.55
LR [23,24,31] 0.5 0.43 0.46 0.51

BOPF [60] 0.93 0.38 0.54 0.68
KNN [16,32] 0.62 0.49 0.55 0.58

Cryptography 2021, 5, 28 18 of 25

(a) (b)

(c) (d)

Figure 6. ROC graphs for detecting different classes of embedded malware. (a) Blended Malware.
(b) Rootkit Malware. (c) Trojan Malware. (d) Backdoor Malware.

5.2.2. StealthMiner vs. Deep Learning Models used in Prior Works

Next, we compared the proposed framework with a series of deep learning-based
time series classification models presented in previous works. To this aim, we compared
StealthMiner with four popular deep learning-based time series classification models includ-
ing Fully Convolutional Networks (FCN), Multilayer Perception (MLP), Deep Residual
Neuron Network (ResNet), and Multi-Scale Convolutional Neural Networks (MCDCNN)
as described below:

• Fully Convolutional Networks (FCN): [56] The heavy parameter version of the fully con-
volutional neural network model that consists of three convolution layers consisting
of 128, 256, and 128 channels, respectively.

• Multi-layer Perception (MLP): [66] A classical multilayer perception deep learning
Model that consists of three fully connected layers.

• Deep Residual Neuron Network (ResNet): [67] A deep convolutional neural network that
consists of a skip-connection structure.

• Multi-Scale Convolutional Neural Network (MCDCNN): [68] A deep convolution neuron
network that runs a Convolutional Neural Network with a different resolution of time
series.

Performance Analysis: We first compared the detection performance of StealthMiner
against the tested DL models. The results are shown in Table 5. As shown, compared with
MLP and MCDCNN baselines, the proposed model achieves much higher performance.
Compared with FCN and ResNet, StealthMiner has slightly decreased performance in
detecting Hybrid, Backdoor, and Trojan malware. In embedded Rootkit malware detection
tasks, StealthMiner achieves very similar F-measure and Accuracy against best baselines
(0.93 vs. 0.94 and 0.93 vs. 0.95, respectively).

Cryptography 2021, 5, 28 19 of 25

Table 5. Testing evaluation results of StealthMiner vs. Deep learning based approaches.

Embedded Hybrid Malware

Proposed vs. Prior Work Precision Recall F-Score Accuracy

StealthMiner 0.85 0.83 0.86 0.89

FCN 0.97 0.91 0.94 0.94
MLP 0 0 0 0.5

ResNet 1 0.89 0.94 0.95
MCDNN 0 0 0 0.5

Embedded Rootkit Malware

StealthMiner 0.95 0.90 0.93 0.93

FCN 1.00 0.78 0.88 0.89
MLP 0.50 1.00 0.67 0.50

ResNet 1.00 0.89 0.94 0.95
MCDNN 0.00 0.00 0.00 0.50

Embedded Trojan Malware

StealthMiner 0.92 0.86 0.86 0.87

FCN 0.98 0.95 0.97 0.97
MLP 0.00 0.00 0.00 0.50

ResNet 1.00 0.83 0.91 0.92
MCDNN 0.50 1.00 0.66 0.50

Embedded Backdoor Malware

StealthMiner 0.89 0.83 0.86 0.86

FCN 0.90 0.80 0.85 0.86
MLP 0.67 0.00 0.00 0.50

ResNet 1.00 0.94 0.97 0.97
MCDNN 0.00 0.00 0.00 0.50

Efficiency Analysis: We next compared the efficiency with all tested deep learning-
based models. We analyzed the cost effectiveness of StealthMiner by considering two
efficiency parameters representing the relative execution time (αtime) and the model size
(αsize) (i.e., number of parameters required) of StealthMiner w.r.t to baseline deep learning
algorithms. Specifically, we evaluated the performance by

αtime =
ExecutionTimeo f BaselineModel
ExecutionTimeo f StealthMiner

(13)

αsize =
ModelSizeo f BaselineModel
ModelSizeo f StealthMiner

(14)

Table 6 reports the execution time and model size results of StealthMiner as compared
with other tested deep learning models for both execution time and the model size. Ac-
cording to the results, StealthMiner is significantly faster (by up to 6.52 times) than all the
compared deep learning baseline models. This result indicates StealthMiner can result in
much smaller computational latency that makes it an effective yet accurate solution for
the online malware detection process. Moreover, StealthMiner contains up to 4375 times
fewer parameters as compared with the most parameter-heavy baseline model. Thus, the
lightweight characteristics of StealthMiner have dramatically reduced its complexity and
memory footprints. Lastly, we demonstrated the efficiency (performance vs. cost) trade-off
of each ML model. Specifically, the average F-measure (Accuracy) vs. Execution Time
(Model Size) of StealthMiner and all the deep learning models are shown in Figure 7a–d. For
instance, the Figure 7a indicates the trade-off between accuracy and execution time of the
models in which StealthMiner achieves the best efficiency by delivering high detection rate
while requiring significantly smaller execution time as compared to other models. Overall,

Cryptography 2021, 5, 28 20 of 25

the results clearly highlight the effectiveness of our our proposed intelligent lightweight
method, StealthMiner, in which it achieves a significantly better efficiency while maintain-
ing a high detection rate with a very close accuracy and F-measure performance to the
complex and heavyweight deep learning models.

Table 6. Execution time and model size results of StealthMiner as compared with deep learning
models.

Model Execution Time (s) Model Size (# par.) αtime αsize

StealthMiner 0.95 172 ×1 ×1
FCN 4.0 265,986 ×4.17 ×1546
MLP 3.69 752,502 ×3.85 ×4375

ResNet 6.24 506,818 ×6.52 ×2946
MCDCNN 3.6 717,006 ×3.76 ×4168

Lastly, we analyze the advances, differences and limitations of our proposed intelligent
solution as compared with prior works. To this aim, we compare the performance and
efficiency characteristics of StealthMiner against three different types of learning models
(deep learning classifier, classical ML classifier, and efficient time series classifier) for
stealthy malware detection. A comparison between all the methods tested in this paper
is shown in the Table 7. In the table, each column represents a model and each row
represents an evaluation metric including performance (detection rate), Cost (Complexity
and Latency), and efficiency (trade off between performance and cost). The× sign indicates
the model is bad at a metric,© indicates the model is good at this metric, and4 indicates
the performance is good but slightly worse than©.

Table 7. Comparison of StealthMiner against baseline learning classifiers presented in prior studies.

Model
Deep Learning Classical ML Efficient TS

StealthMiner FCN MLP ResNet MCDNN JRip J48 LR KNN BOPF

Performance 4 © × © × × × × × ×
Cost 4 × × × × © © © © ©

Perf vs. Cost © × × × × × × × × ×

Comparing with the deep learning based models, StealthMiner has significantly fewer
parameters and faster execution time. Since hardware-assisted malware detection has a
strong requirement of efficiency, StealthMiner is more suitable for stealthy malware detec-
tion tasks compared with other deep learning models even with slightly lower detection
performance. Moreover, as compared with classical machine learning classifiers and effi-
cient time series classification approach, StealthMiner is more efficient in terms of the trade-
off between performance and cost. We observe that the standard ML-based approaches
have significantly worse malware detection performance compared with StealthMiner in
our experiments across all four types of malware tested. Therefore, StealthMiner is also a
more effective and balanced choice as compared with these methods when the computation
cost is tolerable.

Cryptography 2021, 5, 28 21 of 25

(a) (b)

(c) (d)

Figure 7. Efficiency analysis StealthMiner as compared with deep learning models. (a) Acc. vs.
Execution Time. (b) Acc. vs. Model Size. (c) F-measure vs. Execution Time. (d) F-measure vs.
Model Size.

6. Concluding Remarks and Future Directions

Malware detection at the hardware level has emerged as a promising solution to im-
prove the security of computer systems. The existing works on Hardware-based Malware
Detection (HMD) primarily assume that the malware is spawned as a separate thread while
infecting the target system. However, detecting stealthy malware attacks, malicious code
embedded in a benign application, at run-time is significantly a more challenging problem
in today’s computer systems, as the malware hides in the normal application execution.
Embedded malware is a category of stealthy cybersecurity threats that allow malicious
code to be hidden inside a benign application on the target computer system and remain
undetected by traditional signature-based methods and commercial antivirus software.
In hardware-based malware detection methods, when the HPC data is directly fed into a
machine learning classifier, embedding malicious code inside the benign applications leads
to contamination of HPC information, as the collected HPC features combine benign and
malware microarchitectural events together.

In response, in this work we proposed StealthMiner, a lightweight time series-based
Fully Convolutional Neural Network framework to effectively detect the embedded mal-
ware that is concealed inside the benign applications at run-time. Our novel intelligent
approach, using only the most significant low-level feature, branch instructions, can de-
tect the embedded malware with 94% detection performance (Area Under the Curve) on
average at run-time outperforming the detection performance of state-of-the-art hardware-
based malware detection methods by up to 42%. In addition, compared with the current
state-of-the-art deep learning methods, StealthMiner is up to 6.52 times faster, and requires
up to 4000 times less parameters. As the future directions of this work, we plan to explore
the application of unsupervised anomaly detection and few-shot learning methods that
could help train the detection model without requiring the ground truth with only a few
or zero labels available. Moreover, as the next future line of our work we plan to examine
the effectiveness of our proposed time series machine learning-based detector in resource-
constrained mobile platforms. To this aim, we will expand our framework and experiments
to ARM processor which is a widely used architecture in embedded systems and mobile
applications. This direction could pave the way towards a more cost-effective run-time

Cryptography 2021, 5, 28 22 of 25

stealthy malware detection in embedded devices with limited resources and computing
power characteristics.

Author Contributions: Conceptualization, H.S. and H.H.; methodology, H.S. and Y.G.; software,
H.S. and Y.G.; validation, H.S., Y.G., P.C.C. and H.H.; formal analysis, H.S. and Y.G.; investigation,
H.S., Y.G. and H.M.M.; resources, H.S., J.L. and H.H.; data curation, H.S. and Y.G.; writing—original
draft preparation, H.S. and Y.G.; writing—review and editing, H.M.M., P.C.C., J.L., S.R. and H.H.;
visualization, H.S., Y.G. and H.M.M.; supervision, J.L., P.C.C., S.R. and H.H.; project administration,
H.S., S.R. and H.H.; funding acquisition, H.H. and S.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded in part by NSF, grant number 1936836.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sayadi, H.; Gao, Y.; Mohammadi Makrani, H.; Mohsenin, T.; Sasan, A.; Rafatirad, S.; Lin, J.; Homayoun, H. Stealthminer:

Specialized time series machine learning for run-time stealthy malware detection based on microarchitectural features. In
Proceedings of the 2020 on Great Lakes Symposium on VLSI (GLSVLSI’20), Virtual Event, China, 7–9 September 2020; pp. 175–180.
[CrossRef]

2. Sayadi, H.; Wang, H.; Miari, T.; Makrani, H.M.; Aliasgari, M.; Rafatirad, S.; Homayoun, H. Recent advancements in microarchi-
tectural security: Review of machine learning countermeasures. In Proceedings of the 2020 IEEE 63rd International Midwest
Symposium on Circuits and Systems (MWSCAS), Springfield, MA, USA, 9–12 August 2020; pp. 949–952.

3. Mosenia, A.; Jha, N.K. A comprehensive study of security of internet-of-things. IEEE Trans. Emerg. Top. Comput. 2016, 5, 586–602.
[CrossRef]

4. Dinakarrao, S.M.P.; Guo, X.; Sayadi, H.; Nowzari, C.; Sasan, A.; Rafatirad, S.; Zhao, L.; Homayoun, H. Cognitive and scalable
technique for securing IoT networks against malware epidemics. IEEE Access 2020, 8, 138508–138528. [CrossRef]

5. Bettany, A.; Halsey, M. What Is Malware? In Windows Virus and Malware Troubleshooting; Apress: Berkeley, CA, USA, 2017;
pp. 1–8._1. [CrossRef]

6. Elhadi, A.A.E.; Maarof, M.A.; Osman, A.H. Malware detection based on hybrid signature behaviour application programming
interface call graph. Am. J. Appl. Sci. 2012, 9, 283.

7. Jacob, G.; Debar, H.; Filiol, E. Behavioral detection of malware: From a survey towards an established taxonomy. J. Comput. Virol.
2008, 4, 251–266. [CrossRef]

8. McAfee Labs. Mcafee Labs Threats Report. 2019. Available online: https://www.mcafee.com/enterprise/en-us/assets/reports/
rp-quarterly-threats-aug-2019.pdf (accessed on 13 October 2021).

9. Christodorescu, M.; Jha, S.; Kruegel, C. Mining Specifications of Malicious Behavior. In Proceedings of the the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on The Foundations of Software Engineering
(ESEC-FSE’07), New York, NY, USA, 3–7 September 2007; pp. 5–14.

10. Moser, A.; Kruegel, C.; Kirda, E. Limits of Static Analysis for Malware Detection. In Proceedings of the Twenty-Third Annual
Computer Security Applications Conference (ACSAC 2007), Miami Beach, FL, USA, 10–14 December 2007; pp. 421–430. [CrossRef]

11. Preda, M.D.; Christodorescu, M.; Jha, S.; Debray, S. A Semantics-based Approach to Malware Detection. In Proceedings of the
34th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL’07), New York, NY, USA,
20–22 January 2007; pp. 377–388. [CrossRef]

12. Burguera, I.; Zurutuza, U.; Nadjm-Tehrani, S. Crowdroid: Behavior-based Malware Detection System for Android. In Proceedings
of the 1st ACM Workshop on Security and Privacy in Smartphones and Mobile Devices (SPSM’11), New York, NY, USA, 17 October
2011; pp. 15–26. [CrossRef]

13. Gu, G.; Porras, P.; Yegneswaran, V.; Fong, M.; Lee, W. BotHunter: Detecting Malware Infection through IDS-driven Dialog
Correlation. In Proceedings of 16th USENIX Security Symposium on USENIX Security Symposium, Berkeley, CA, USA, 6–10
August 2007; pp. 12:1–12:16.

14. Sayadi, H.; Makrani, H.; Randive, O.; Sai Manoj, P.D.; Rafatirad, S.; Homayoun, H. Customized Machine Learning-Based
Hardware-Assisted Malware Detection in Embedded Devices. In Proceedings of the 17th IEEE International Conference On
Trust, Security and Privacy in Computing and Communications (IEEE TrustCom-18), New York, NY, USA, 1–3 August 2018;
pp. 1685–1688. [CrossRef]

http://doi.org/10.1145/3386263.3407585
http://dx.doi.org/10.1109/TETC.2016.2606384
http://dx.doi.org/10.1109/ACCESS.2020.3011919
http://dx.doi.org/10.1007/978-1-4842-2607-0_1
http://dx.doi.org/10.1007/s11416-008-0086-0
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
https://www.mcafee.com/enterprise/en-us/assets/reports/rp-quarterly-threats-aug-2019.pdf
http://dx.doi.org/10.1109/ACSAC.2007.21
http://dx.doi.org/10.1145/1190216.1190270
http://dx.doi.org/10.1145/2046614.2046619
http://dx.doi.org/10.1109/TrustCom/BigDataSE.2018.00251

Cryptography 2021, 5, 28 23 of 25

15. Pudukotai Dinakarrao, S.M.; Sayadi, H.; Makrani, H.M.; Nowzari, C.; Rafatirad, S.; Homayoun, H. Lightweight Node-level
Malware Detection and Network-level Malware Confinement in IoT Networks. In Proceedings of the 2019 Design, Automation
Test in Europe Conference Exhibition (DATE), Florence, Italy, 25–29 March 2019; pp. 776–781. [CrossRef]

16. Demme, J.; Maycock, M.; Schmitz, J.; Tang, A.; Waksman, A.; Sethumadhavan, S.; Stolfo, S. On the Feasibility of Online Malware
Detection with Performance Counters. In Proceedings of the 40th Annual International Symposium on Computer Architecture
(ISCA’13), Tel-Aviv, Israel, 23–27 June 2013; pp. 559–570. [CrossRef]

17. Tang, A.; Sethumadhavan, S.; Stolfo, S.J. Unsupervised Anomaly-Based Malware Detection Using Hardware Features. In Research
in Attacks, Intrusions and Defenses; Springer: Cham, Switzerland, 2014; pp. 109–129.

18. Sayadi, H.; Patel, N.; Sasan, A.; Rafatirad, S.; Homayoun, H. Ensemble Learning for Effective Run-time Hardware-based Malware
Detection: A Comprehensive Analysis and Classification. In Proceedings of 55th ACM/ESDA/IEEE Design Automation
Conference, San Francisco, CA, USA, 24–28 June 2018; pp. 1–6. [CrossRef]

19. Garcia-Serrano, A. Anomaly Detection for malware identification using Hardware Performance Counters. arXiv 2015,
arXiv:1508.07482.

20. Guthaus, M.R.; Pingenberg, J.S.; Austin, T.M.; Mudge, T.; Brown-MiBench, R.B. MiBench: A free, commercially representative
embedded benchmark suite. In Proceedings of the Fourth Annual IEEE International Workshop on Workload Characterization,
Austin, TX, USA, 2 December 2001; pp. 3–14. [CrossRef]

21. Wang, X.; Konstantinou, C.; Maniatakos, M.; Karri, R. Confirm ConFirm: Detecting firmware modifications in embedded systems
using Hardware Performance Counters. In Proceedings of the 2015 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), Austin, TX, USA, 2–6 November 2015; pp. 544–551. [CrossRef]

22. Sayadi, H.; Makrani, H.M.; Pudukotai Dinakarrao, S.M.; Mohsenin, T.; Sasan, A.; Rafatirad, S.; Homayoun, H. 2SMaRT: A Two-
Stage Machine Learning-Based Approach for Run-Time Specialized Hardware-Assisted Malware Detection. In Proceedings of
the 2019 Design, Automation Test in Europe Conference Exhibition (DATE’19), Grenoble, France, 25–29 March 2019; pp. 728–733.
[CrossRef]

23. Ozsoy, M.; Donovick, C.; Gorelik, I.; Abu-Ghazaleh, N.; Ponomarev, D. Malware-aware processors: A framework for efficient
online malware detection. In Proceedings of the 2015 IEEE 21st International Symposium on High Performance Computer
Architecture (HPCA), Burlingame, CA, USA, 7–11 February 2015; pp. 651–661. [CrossRef]

24. Patel, N.; Sasan, A.; Homayoun, H. Analyzing Hardware Based Malware Detectors. In Proceedings of the 54th Annual Design
Automation Conference (DAC ’17), Austin, TX, USA, 18–22 June 2017; pp. 25:1–25:6. [CrossRef]

25. Stolfo, S.J.; Wang, K.; Li, W.J. Towards Stealthy Malware Detection. In Malware Detection; Christodorescu, M., Jha, S., Maughan,
D., Song, D., Wang, C., Eds.; Springer US: Boston, MA, USA, 2007; pp. 231–249.

26. Rudd, E.M.; Rozsa, A.; Günther, M.; Boult, T.E. A Survey of Stealth Malware Attacks, Mitigation Measures, and Steps Toward
Autonomous Open World Solutions. IEEE Commun. Surv. Tutor. 2017, 19, 1145–1172. [CrossRef]

27. Zhang, H.; Yao, D.; Ramakrishnan, N. Detection of stealthy malware activities with traffic causality and scalable triggering
relation discovery. In Proceedings of ACM Asia Conference on Computer and Communications Security (ASIA CCS’14), Kyoto,
Japan, 4–6 June 2014; pp. 39–50.

28. Li, W.J.; Stolfo, S.; Stavrou, A.; Androulaki, E.; Keromytis, A.D. A Study of Malcode-Bearing Documents. In Detection of Intrusions
and Malware, and Vulnerability Assessment; Springer: Berlin/Heidelberg, Germany, 2007; pp. 231–250.

29. Jiang, X.; Wang, X.; Xu, D. Stealthy Malware Detection Through Vmm-based “Out-of-the-box” Semantic View Reconstruction. In
Proceedings of Conference on Computer and Communications Security (CCS’07), 31 October–2 November 2007; pp. 128–138.

30. Singh, B.; Evtyushkin, D.; Elwell, J.; Riley, R.; Cervesato, I. On the Detection of Kernel-Level Rootkits Using Hardware Performance
Counters. In Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security (ASIA CCS’17),
New York, NY, USA, 2–4 April 2017; pp. 483–493. [CrossRef]

31. Khasawneh, K.N.; Ozsoy, M.; Donovick, C.; Abu-Ghazaleh, N.; Ponomarev, D. Ensemble Learning for Low-Level Hardware-
Supported Malware Detection. In Research in Attacks, Intrusions, and Defenses; Springer: Cham, Switzerland, pp. 3–25. Volume
9404._1. [CrossRef]

32. Bahador, M.B.; Abadi, M.; Tajoddin, A. HPCMalHunter: Behavioral malware detection using hardware performance counters
and singular value decomposition. In Proceedings of the 2014 4th International Conference on Computer and Knowledge
Engineering (ICCKE), Mashhad, Iran, 29–30 October 2014; pp. 703–708. [CrossRef]

33. Doyle, N.C.; Matthews, E.; Holl, G.; Fedorova, A.; Shannon, L. Performance impacts and limitations of hardware memory access
trace collection. In Proceedings of the Design, Automation Test in Europe Conference Exhibition (DATE), Lausanne, Switzerland,
27–31 March 2017; pp. 506–511. [CrossRef]

34. Malone, C.; Zahran, M.; Karri, R. Are Hardware Performance Counters a Cost Effective Way for Integrity Checking of Programs.
In Proceedings of the Sixth ACM Workshop on Scalable Trusted Computing, Chicago, IL, USA, 17 October 2011; pp. 71–76.
[CrossRef]

35. Sprunt, B. The basics of performance-monitoring hardware. IEEE Micro 2002, 22, 64–71. [CrossRef]
36. Intel Performance Monitoring Unit. Available online: https://software.intel.com/en-us/articles/intel-performance-counter-

monitor (accessed on 10 January 2020).

http://dx.doi.org/10.23919/DATE.2019.8715057
http://dx.doi.org/10.1145/2485922.2485970
http://dx.doi.org/10.1109/DAC.2018.8465828
http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/10.1109/ICCAD.2015.7372617
http://dx.doi.org/10.23919/DATE.2019.8715080
http://dx.doi.org/10.1109/HPCA.2015.7056070
http://dx.doi.org/10.1145/3061639.3062202
http://dx.doi.org/10.1109/COMST.2016.2636078
http://dx.doi.org/10.1145/3052973.3052999
http://dx.doi.org/10.1007/978-3-319-26362-5_1
http://dx.doi.org/10.1109/ICCKE.2014.6993402
http://dx.doi.org/10.23919/DATE.2017.7927041
http://dx.doi.org/10.1145/2046582.2046596
http://dx.doi.org/10.1109/MM.2002.1028477
https://software.intel.com/en-us/articles/intel-performance-counter-monitor
https://software.intel.com/en-us/articles/intel-performance-counter-monitor

Cryptography 2021, 5, 28 24 of 25

37. Sayadi, H.; Homayoun, H. Scheduling multithreaded applications onto heterogeneous composite cores architecture. In
Proceedings of the 2017 Eighth International Green and Sustainable Computing Conference (IGSC), Orlando, FL, USA, 23–25
October 2017; pp. 1–8.

38. Malik, M.; Tullsen, D.M.; Homayoun, H. Co-locating and concurrent fine-tuning MapReduce applications on microservers for
energy efficiency. In Proceedings of the 2017 IEEE International Symposium on Workload Characterization (IISWC), Seattle, WA,
USA, 1–3 October 2017; pp. 22–31.

39. Makrani, H.M.; Sayadi, H.; Motwani, D.; Wang, H.; Rafatirad, S.; Homayoun, H. Energy-aware and machine learning-based
resource provisioning of in-memory analytics on cloud. In Proceedings of the ACM Symposium on Cloud Computing, Carlsbad,
CA, USA, 11–13 October 2018; pp. 517–517.

40. Bircher, W.L.; John, L.K. Complete System Power Estimation: A Trickle-Down Approach Based on Performance Events. In
Proceedings of the 2007 IEEE International Symposium on Performance Analysis of Systems Software, San Jose, CA, USA, 25–27
April 2007; pp. 158–168. [CrossRef]

41. Elnaggar, R.; Chakrabarty, K.; Tahoori, M.B. Run-time hardware trojan detection using performance counters. In Proceedings of
the 2017 IEEE International Test Conference (ITC), Fort Worth, TX, USA, 31 October–2 November 2017; pp. 1–10. [CrossRef]

42. Ozsoy, M.; Khasawneh, K.N.; Donovick, C.; Gorelik, I.; Abu-Ghazaleh, N.; Ponomarev, D. Hardware-Based Malware Detection
Using Low-Level Architectural Features. IEEE Trans. Comput. 2016, 65, 3332–3344. [CrossRef]

43. Zhou, B.; Gupta, A.; Jahanshahi, R.; Egele, M.; Joshi, A. Hardware Performance Counters Can Detect Malware: Myth or Fact? In
Proceedings of the 2018 on Asia Conference on Computer and Communications Security (ASIACCS’18), Incheon, Korea, 4 June
2018; pp. 457–468. [CrossRef]

44. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and Harnessing Adversarial Examples. arXiv 2015, arXiv:1412.6572.
45. Shafiq, M.Z.; Khayam, S.A.; Farooq, M. Embedded Malware Detection Using Markov n-Grams. In International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment; Springer: Berlin/Heidelberg, Germany, 2008; pp. 88–107.
46. Ye, L.; Keogh, E. Time series shapelets: A new primitive for data mining. In Proceedings of the 15th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD’09), Paris, France, 28 June–1 July 2009; pp. 947–956.
47. Lin J, Li Y. Finding structural similarity in time series data using bag-of-patterns representation. In Scientific and Statistical

Database Management; Springer: Berlin/Heidelberg, Germany, 2009; pp. 461–477.
48. Rakthanmanon, T.; Keogh, E. Fast shapelets: A scalable algorithm for discovering time series shapelets. In Proceedings of the

2013 SIAM International Conference on Data Mining (SDM’13), Austin, TX, USA, 2–4 May 2013; pp. 668–676.
49. Wang, X.; Lin, J.; Senin, P.; Oates, T.; Gandhi, S.; Boedihardjo, A.P.; Chen, C.; Frankenstein, S. RPM: Representative Pattern Mining

for Efficient Time Series Classification. In Proceedings of 19th International Conference on Extending Database Technology
(EDBT’16), Bordeaux, France, 15–16 March 2016; pp. 185–196.

50. Grabocka, J.; Schilling, N.; Wistuba, M.; Schmidt-Thieme, L. Learning time-series shapelets. In Proceedings of the 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’14), New York, NY, USA, 24–27 August
2014; pp. 392–401.

51. Li, X.; Lin, J. Evolving separating references for time series classification. In Proceedings of the 2018 SIAM International
Conference on Data Mining (SDM’18), San Diego, CA, USA, 3–5 May 2018; pp. 243–251.

52. Hills, J.; Lines, J.; Baranauskas, E.; Mapp, J.; Bagnall, A. Classification of time series by shapelet transformation. Data Min. Knowl.
Discov. 2014, 28, 851–881. [CrossRef]

53. Senin, P.; Malinchik, S. Sax-vsm: Interpretable time series classification using sax and vector space model. In Proceedings of the
2013 IEEE 13th International Conference on Data Mining (ICDM), Dallas, TX, USA, 7–10 December 2013; pp. 1175–1180.

54. Schäfer, P. The BOSS is concerned with time series classification in the presence of noise. Data Min. Knowl. Discov. 2015,
29, 1505–1530. [CrossRef]

55. Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM fully convolutional networks for time series classification. IEEE Access 2018,
6, 1662–1669. [CrossRef]

56. Wang, Z.; Yan, W.; Oates, T. Time series classification from scratch with deep neural networks: A strong baseline. In Proceedings
of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 1578–1585.

57. Zhang, X.; Gao, Y.; Lin, J.; Lu, C.T. Tapnet: Multivariate time series classification with attentional prototypical network. Proc.
AAAI Conf. Artif. Intell. 2020, 34, 6845–6852. [CrossRef]

58. Yang, J.; Nguyen, M.N.; San, P.P.; Li, X.L.; Krishnaswamy, S. Deep convolutional neural networks on multichannel time series for
human activity recognition. In Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI’15), Buenos Aires,
Argentina, 25–31 July 2015; pp. 3995–4001.

59. Schäfer, P. Scalable time series classification. Data Min. Knowl. Discov. 2016, 30, 1273–1298. [CrossRef]
60. Li, X.; Lin, J. Linear Time Complexity Time Series Classification with Bag-of-Pattern-Features. In Proceedings of the 2017 IEEE

International Conference on Data Mining (ICDM), New Orleans, LA, USA, 18–21 November 2017; pp. 277–286.
61. Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
62. Henning, J.L. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. Archit. News 2006, 34, 1–17. [CrossRef]
63. Helsely, M. Lxc: Linux Container Tools. IBM Developer Works Technical Library. 2009. Available online: https://developer.ibm.

com/tutorials/l-lxc-containers/ (accessed on 13 October 2021).

http://dx.doi.org/10.1109/ISPASS.2007.363746
http://dx.doi.org/10.1109/TEST.2017.8242063
http://dx.doi.org/10.1109/TC.2016.2540634
http://dx.doi.org/10.1145/3196494.3196515
http://dx.doi.org/10.1007/s10618-013-0322-1
http://dx.doi.org/10.1007/s10618-014-0377-7
http://dx.doi.org/10.1109/ACCESS.2017.2779939
http://dx.doi.org/10.1609/aaai.v34i04.6165
http://dx.doi.org/10.1007/s10618-015-0441-y
http://dx.doi.org/10.1145/1186736.1186737
https://developer.ibm.com/tutorials/l-lxc-containers/
https://developer.ibm.com/tutorials/l-lxc-containers/

Cryptography 2021, 5, 28 25 of 25

64. Das, S.; Werner, J.; Antonakakis, M.; Polychronakis, M.; Monrose, F. SoK: The challenges, pitfalls, and perils of using hardware
performance counters for security. In Proceedings of the 2019 IEEE Symposium on Security and Privacy (SP), San Francisco, CA,
USA, 19–23 May 2019.

65. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
66. Gardner, M.W.; Dorling, S. Artificial neural networks (the multilayer perceptron)—A review of applications in the atmospheric

sciences. Atmos. Environ. 1998, 32, 2627–2636. [CrossRef]
67. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
68. Zheng, Y.; Liu, Q.; Chen, E.; Ge, Y.; Zhao, J.L. Time series classification using multi-channels deep convolutional neural

networks. In Proceedings of the International Conference on Web-Age Information Management, Macau, China, 16–18 June 2014;
pp. 298–310.

http://dx.doi.org/10.1016/S1352-2310(97)00447-0

	Introduction
	Related Work and Background
	Hardware Performance Counters
	Hardware-Assisted Malware Detection
	Embedded Malware Detection
	Time Series Classification

	Motivations
	Challenge of Detecting Stealthy Malware
	Machine Learning for Hardware-Assisted Stealthy Malware Detection

	Proposed Intelligent Stealthy Malware Detection Framework
	Experimental Setup and Data Acquisition
	Feature Representation
	Stealthy Malware Threat Models
	Overview of StealthMiner

	Experimental Results and Analysis
	Performance Evaluation Criteria
	Evaluation of StealthMiner and Comparison to State-of-the-Arts
	StealthMiner vs. Traditional ML Models
	StealthMiner vs. Deep Learning Models used in Prior Works

	Concluding Remarks and Future Directions
	References

