Reducing the Instruction Queue Leakage Power in Superscalar Processors

Houman Homayoun and Ted H. Szymanski
Department of Electrical and Computer Engineering
McMaster University, Hamilton Ontario L8S 4K 1, Canada
email: homayh@mcmaster.ca, teds@mail.ece.mcmaster.ca

Abstract

Today’s high performance processors operate in the GHz
Jrequency range and dissipate approximately 100W of power.
According to Moore’s Law, in the next gemeration of
microprocessors we expect an exponential increase in the total
dissipated power. CMOS technology scaling has been the
primary factor responsible for the increase in processor
performance. A smaller feature size enables designers to
increase the clock frequency and tramsistor count which
significantly affects the processor performance. The drawback
of such technology scaling is the leakage power dissipation. As
the semiconductor technology scales down, the leakage
(standby) power also increases exponentially and accounts for
an increasing share of a processor’s total power dissipation.
This issue will become a serious problem in mobile hardware
where applications may generate long periods of inactivity.

In this paper we take a step towards reducing the leakage
power dissipation of the Instruction Queue which allows the
out of order execution in a superscalar processor. This unit is
responsible for up to 27% of total chip power dissipation in
typical superscalar microprocessors. In particular, we reduce
the leakage power in the thousands of comparator units in the
Instruction Queue by applying a power gating technique. We
rely on detecting the idle time in all comparators. We show
that the comparators in the instruction queue stay idle for
typically 50% of the total program execution time. This figure
is based on the observation that the whole processor pipeline
approaches an idle state when a combination of instruction
and data cache misses occur. When such idle time is detected
we apply power gating to turn off all the comparator units
thereby eliminating the leakage power. Our results show that
by power gating the comparators using our idle time detecting
algorithm it is possible to reduce their leakage power
dissipation by up (o 95%.

Keywords: Instruction Queue, Leakage Power, Processor Idle
Period.

1. Introduction

The instruction queue (or in brief 1Q) of a superscalar
processor is a complex structure which is dedicated to out-of-
order execution. Due to its high complexity, the instruction
queue is responsible for a significant amount of overall
processor power dissipation. According to previous studies this
amount varies between 25 to 27 percent of processor total
power dissipation (dynamic and static power) [11] and [15].

There are four tasks involved in instruction queue stage [12]:

= Set an entry for a new dispatched instruction.
= Read an entry to issue instructions to functional units

1-4244-0038-4 2006
IEEE CCECE/CCGEI, Ottawa, May 2006

= Wakeup instructions waiting in the 1Q once a result is
produced by a functional unit

= Select instructions for issue when the available
instructions exceed the processor issue limit (which we
refer to as issue width).

The main complexity of the instruction queue stems from
the associative search during the wakeup process. During this
stage newly-produced results are broadcasted from functional
units to all entries in the instruction queue. Figure 1 shows the
structure of the wakeup logic. Tag drive lines are responsible
to broadcast the results to all instructions waiting in the 1Q.
Each instruction compares its operand tags with the
broadcasted tags. If a match is detected the instruction source
operand is marked as ready. Once all source operands of an
entry are marked as ready (rdyL and rdyR flags) the instruction
can enter the execution stage. Finally the OR logic which is
responsible for OR-ing the results of comparators sets the
rdyL/rdyR flags.

While in the past, low power IQ design techniques mostly
targeted the dynamic power, reducing leakage power in the
instruction queue has received relatively little consideration. In
an 8 way superscalar processor with a 128 entry instruction
queue and 12 bit operand tag, provided that each instruction
has two source operands, there are approximately 25K one-bit
comparators. The combination of comparators and broadcast
buses when idle dissipate moderate leakage power using
today’s technology. In future generations of processors the
instruction queue size, processor issue width and number of
operand tag bits will increase, thus we expect a substantial
increase in the number of comparators and associated busses
and consequently their dissipated leakage power.

Operands tag produced in functional unit

Il

Tag? = o o Tagl
Comparator

s
| (!

ooo coo |Instuction0d
{ Ryl l TaglL ‘ TagR RdyR l
Instruetion 127
’ Ryl ’ TaglL | TagR ’ RdyR |
]

Figure 1: Instruction Queue in superscalar processor [12].

1685

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from |IEEE Xplore. Restrictions apply.

In addition, the fact that the transistor leakage power is
increasing exponentially in future generations of CMOS
technology reveals the importance of applying low power
techniques to reduce the comparators leakage power [5], [7],
[8] and [10].

2. Simulation Framework

Through this study we report for a representative subset of
SPEC’2K benchmarks. We used both floating point (art,
equake and ammp) and integer (vpr, gcc, mcf, gzip, bzip2,
parser and twolf) programs from the SPEC CPU2000 suite
compiled for the MIPS-like PISA architecture used by the
Simplescalar v3.0 simulation tool set [3]. The benchmarks
studied here include different programs including high and low
IPC and those limited by memory and branch misprediction.
We used GNU’s gcc compiler. We simulated 200M
instructions after skipping 200M instructions.

We detail the base processor model in Table 2. In our
baseline architecture the fetch unit stalls until the instruction
miss resolves and retrieves from the main memory.

Table 1: Base processor configuration.

Integer ALU #8 Scheduler 128 entries,
RUU-like
FPALU #38 000 Core any 8
instructions /
cycle
Integer 4 Fetch Unit Up t<; 8 1
s ye mstr./cycle.
]”.ul.tlpherS/ 64-Entry Fetch
Dividers Buffer
FP #4 Ll - 64K, 4-way
Multipliers/ Instruction 53, S2-Dgie
s blocks, 3 cycle
Dividers Caches hit latency
Instruction #32 LI - Data 32K, 2-way
Fetch Caches SA, 32-byte
blocks, 3 cycle
Queue hit latency
Branch 2k Gshare Unified L2 256K, 4-way
. bimodal SA, 64-byte
Predictor w/selector blocks,16-
cycle hit
Load/Store 64 Main Infinite, 100
Queue Size Memory el
Reorder 128 Memory Port | #4
Buffer Size

3. Motivation

Instruction cache misses (Imiss) and data cache misses
(Dmiss) are the two major barriers in increasing processor
throughput. When an instruction or data cache miss happens,
the processor communicates with the main memory to fetch the
instruction or data. This process takes hundreds of cycles
during which the processor performance drops significantly. In
Figure 2 we report the processor performance for each

benchmark when any of instruction cache miss, data cache
miss or a combination of both occurs (which we refer to the
combination of both instruction and data cache misses as
[Dmiss). We measure performance from the time a cache miss
happens until the information (data or instruction) is retrieved
from the main memory (we refer to this period as cache miss
interval). As figure 2 reports, across all benchmarks
performance drops significantly during cache miss intervals.
The ideal performance is 8 IPC and the average performance is
2 IPC which during cache miss interval drops to 0.15 IPC.

This considerable performance drop can be translated to the
fact that during the cache miss interval there are many cycles
in which no instructions issue to the functional units and no
instructions enter processor pipeline; i.e. the processor pipeline
stalls. Accordingly during such idle period the processor
pipeline including instruction queue stalls until the information
is retrieved from the main memory (we refer to this time as
processor idle period). The fact that retrieving information
from the main memory to instruction or data caches may
require hundreds of clock cycles provides the motivation to
apply power gating techniques and reduce leakage power in the
instruction queue. However, identifying idle periods ecarly
enough with minimum extra hardware cost is a challenging
problem. Moreover, reactivating the gated units soon enough
is critical since stalling instructions in any pipeline stage could
come with a performance penalty [7] and [9].

4.5

° IPC_Program
4

- 8 FC_Dmiss

O PC_imiss

o
w»

O PC_Dmiss

w
t

h
o
f

v
f

IPC (instruction per cycle)
N

=
23
f

o il | [S
R $ d & O @ K A ¥ N o
¢ £ & T & ¢ & & F & &
& < &

Figure 2. Processor performance for cache miss interval.

4. Detecting Comparators Idle Time

Based on the observation made in the previous section we
propose an algorithm to detect 1Q comparator idle times. Our
algorithm to detect idle time relies on monitoring the
instruction queue incoming and outgoing buffers. We monitor
the dispatch buffer which sends the recently fetched instruction
to the instruction queue. An “idle” dispatch buffer, for some
consecutive cycles, indicates that an instruction cache miss has
happened, provided that the number of consecutive idle cycles
exceeds the branch misprediction penalty. We also monitor the
issue buffer, which sends instructions to appropriate functional

1686

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from |IEEE Xplore. Restrictions apply.

units. An “idle” issue buffer, for some consecutive cycles,
could indicate that a data cache miss has happened.

An idle dispatch and an idle issue buffer, for some
consecutive clock cycles, is an indication that the IQ
comparators are in an idle state provided that none of the
functional units are busy. If any of the functional units are busy
and the issue and dispatch buffer are idle the instruction queue
comparators will not necessarily be idle as there might be some
instruction in the 1Q that are dependent on the instruction
executing in the functional unit. In this case the IQ
comparators are active to compare the forthcoming generated
results in the functional unit with all available instructions
operands in the instruction queue.

Instruction Cache

ITLE
Fetch
Branch
Fredictor
Decode
BTB

saturating counter

Data Cache

Rezansation
™ Station

[e |mm

Execute

DIID R

. extra hardware to detect comparators idle ime

ROB

Result

T bit
saturating counter

Functional unit busy bit

Figure 3. Proposed configuration to detect comparators idle
time.

Figure 3 shows the configuration we propose. A two bit
saturating counter is associated with each of the issue buffer
and dispatch buffer. The counter increases by one per clock
cycle when each buffer is empty otherwise the counter is reset.
Also a busy bit is associated with the functional unit logic. The
busy bit is set when any of the execution units is busy
executing an instruction. An idle time is detected when the
two counters are saturated and the busy bit it zero.

In figure 4 we report the percentage of cycles the IQ
comparators remain idle using our detection algorithm for three
different value of saturating counter threshold; 5 cycles, 10
cycles and 20 cycles. As mentioned earlier, this threshold
should be more than the branch misprediction penalty to avoid
detecting pipeline flush (due to branch misprediction) instead
of 1Q idle cycles. As it appears, increasing the saturating

counter threshold doesn’t have a major impact on the
percentage of detected idle cycles. This observation indicates
that our algorithm can detect long idle cycles; i.e. when the
dispatch and issue buffer remain empty for enough consecutive
cycles and no instruction is executing in the functional units,
the IQ comparators stay idle for long cycles. To provide better
insight, in figure 5 we report the average number of cycles the
comparators remain idle. This figure shows that the average
detected idle time using our algorithm is more than 120 cycles.
This observation could explain why variation in saturating
counter thresholds in figure 4 doesn’t change the percentage of
detected idle cycles.

In the next section we utilize the idle time detection
algorithm to reduce comparator leakage power.

100%
=K
90% —
=10
o -
80% o020
70%
» 60%
g
£ 50%
2
& 40%
30%
20%
10% ==
R $ S ™ &) L < Dy N @
P K 5 ? § N & 2 R © &
& > & »
& @Q& & K © (b&@

Figure 4. Percentage of execution cycles 1Q comparators
remains idle for different saturating counter threshold.

200 a5 |

180 m10 ||

160 H

140 H M =

120 1 | |

100 H 1 - |

8o H M H = H

Number of cycles

60 H M H H H

40 H M H = H

20 H M H = H

v
S
52 Mo

M N3 %00 & c‘;@
& Ka

2

&

N Nd
<

Figure 5. Average number of cycles [Q comparators stays idle
for different saturating counter threshold.

5. Reducing Comparators Leakage Power by
Detecting Their Idle Time

In the previous section we have shown that the comparators
stay idle for long consecutive cycles. We also detected such
idle cycles. In this section we use power gating to reduce the
comparators leakage power.

Figure 6 shows a traditional pull down comparator logic
used in various pipeline stages of a modern superscalar

1687

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from |IEEE Xplore. Restrictions apply.

processor including the instruction queue. To power gate the
comparator logic we use a header transistor (which is referred
to as a sleep transistor) to block the voltage supply from
reaching the comparators. When the sleep transistor receives
the power gating signal, the voltage at virtual Vcc starts
decreasing. As the virtual Vce decreases the leakage current
reduces and the leakage power saving starts. The power gating
signal is asserted when IQ idle time is detected. The power
gating continues until the information (data or instruction) is
retrieved from the main memory. Assuming deterministic
memory access latency we can eliminate the timing overhead
associated with turning on a power gated comparator unit.

Vce
Power Gating Signa
Virtual Vcc
Al | A1 A8 _| A8
B1 B8

1=
BE]

.

»d
]
Figure 6. Power gating instruction queue comparators.

In figure 7 we show the leakage power saving for the 1Q
comparators when the idle detect saturating counter threshold
is 5 cycles. The results are consistent with the results in figure
4. On average for around 50% of a program execution time the
power can be gated which translate to on average 50% leakage
power reduction. In the application program ammp we
witnessed the highest leakage power savings, ie. a 95%
reduction, which is in consistent with its very low IPC
mentioned in figure 2.

It should be noted that applying power gating comes with
timing overhead. The power gating process includes three
separate intervals. The first interval starts the moment we
decide to power gate a unit and ends when the voltage
supply is completely blocked. The second interval is the
period where the unit is gated and therefore does not dissipate
power. Power dissipation reduction depends on how often and
for how long units stay in the second interval. We have to
wakeup a unit as soon as its idle period ends. Turning on the
voltage supply to wakeup a unit takes time. The third interval
represents this timing overhead and is the time needed to
reactivate a unit. While saving leakage power during the first
and third intervals is possible, the power reduction benefits are

mostly achievable when a unit is in the second interval. Hu et.
al, provide a detailed explanation of the three intervals [6].

100%

80%

60%

40%

20%] —

o L0

Figure 7. Percentage of execution cycles during which IQ
comparators are power gated.

7. Related Work

Several approaches have been proposed to reduce the power
dissipation of the associative search related to wakeup logic.
Folegnani and Gonzalez [15] proposed a new scheme which
avoids waking up empty entries in the instruction queue.
Brown et al. introduced methods to remove the select logic
from the critical path [18]. Homayoun and Baniasadi predicted
“lazy instructions” which stay for long cycles in the instruction
queue. They reduced 1Q power dissipation by waking up lazy
instruction every two cycles. Moreover they reduced wakeup
power dissipation by reducing the fetch rate when the number
of lazy instructions in the pipeline exceeds a dynamically
decided threshold [2]. Canal and Gonzalez proposed a scheme,
which schedules instructions based on their expected issue time
[13] and [14]. Raasch et al. suggested adapting the issue queue
size and exploiting partitioned issue queues to reduce the
wakeup activity [19]. Brekelbaum et al., introduced a new
scheduler, which exploits latency tolerant instructions in order
to reduce implementation complexity [17]. Stark et al., used
grandparent availability time to speculate wakeup [20]. Ernst et
al.,, suggested a wakeup free scheduler which relied on
predicting the instruction issue latency [21]. Hu et al., studied
wakeup-free schedulers such as that proposed in [21] and
explored how design constrains result in performance loss and
suggested a model to climinate some of those constrains [106].
To the best of our knowledge our work is the first attempt to
reduce leakage power in the instruction queue. Previous studies
including all aforementioned techniques try to reduce dynamic
power in the instruction queue or leakage power in other
processor structure such as functional units [1], [4] and [6].

6. Conclusion and Future Studies

In this paper we present a simple technique to reduce
leakage power in the instruction queue of superscalar
processor. We showed that it is possible to reduce leakage
power in the comparators unit considerably.

1688

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from |IEEE Xplore. Restrictions apply.

While through out this work we only focused on the
instruction queue it is also possible to detect idle time in other
processor structures such as register renaming unit, functional
unit and decode unit using our proposed technique. In future
work we will extend our technique to the entire processor
pipeline. We will also study variation in timing overhead
associated with the power gating.

7. Acknowledgements

This work was supported by the Natural Sciences and
Engineering Research Council of Canada, Discovery Grants
Program, Canada Foundation for Innovation, New
Opportunities Fund and Ontario Centre of Excellence Research
Grants Program.

References

[1] H. Homayoun, K. F. Li and S. Rafatirad, “Functional Unit
Power gating in Simultaneous Multithreaded Processors,”
The IEEE Pacific Rim Conference on Communications,
Computers and Signal Processing. Aug. 2005.

[2] H. Homayoun, A. Baniasadi, “Using Lazy Instruction
Prediction to Reduce Processor Wakeup Power
Dissipation,”, In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems and
Software (ISPASS-2006).

[3] D. Burger, T. M. Austin and S. Bennett, “Evaluating
Future Microprocessors: The SimpleScalar Tool Set,”
Technical Report CS-TR-96-1308, University of
Wisconsin-Madison, July 1996.

[4] H. Homayoun and A. Baniasadi, “Analysis of Functional
Unit Power Gating in Embedded Processors,” IFIP
International Conference on Very Large Scale Integration
System on Chip. Oct. 2005.

[5] S. Borkar, “Design Challenges of Technology Scaling,”
IEEE Micro.vol. 19, pp. 23--29, July--Aug. 1999.

[6] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H.
Jacobson and P. Bose, “Microarchitectural Techniques for
Power Gating of Execution Units,” International
Symposium on Low Power Electronics and Design, 2004.

[7]1 J. A. Butts and G. S. Sohi, “A static power model for
architects,” In Proceedings of the 33rd Annual IEEE/ACM
International Symposium on Microarchitecture, pages
191--201, Dec. 2000.

[8] O. S. Unsal and 1. Koren, “System-Level Power-Aware
Design Techniques in real-Time Systems,” In proceedings
of the IEEE, VOL. 91, NO. 7, July 2003.

[9] K. S. Khouri and N. K. Jha, “Leakage power analysis and
reduction during behavioral synthesis,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems Volume
10, Issue 6, Dec. 2002 Page.

[10] S. Thompson, P. Packan and M. Bohr, MOS Scaling:
Transistor Challenges for the 21st Century. Intel
Technology Journal, Q3 1998.

[11] G. Kucuk, D. Ponomarev and K. Ghose, “Low-
Complexity Reorder Buffer Architecture,” 16th ACM
International Conference on Supercomputing (ICS'02),
New York, June, 2002, pp. 57-66.

[12] S. Palacharla, N. P. Jouppi and J. Smith, “Complexity-
effective superscalar processors,” In Proc.of the 24th
Annual International ~ Symposium on Computer
Architecture, pages 206-218, June 1997.

[13] R. Canal and A. Gonzalez, “A low-complexity issue
logic,” In Proceedings of 2000 International Conferences
on Supercomputing, May 2000.

[14] R. Canal and A. Gonzalez. “Reducing the complexity of
the issue logic,” In Proceedings of 2001 International
Conferences on Supercomputing, June 2001.

[15] D. Folegnani and A. Gonzilez, “Energy-effectiveissue
logic,” In Proceedings of the 28th annual international
symposium on Computer architecture, May 2001.

[16] 1. S. Hu, N. Vijaykrishnan, and M. J. Irwin, “Exploring
Wakeup-Free Instruction Scheduling,” In Proceedings of
the 10th International Conference on High-Performance
Computer Architecture (HPCA-10 2004), 14-18 February
2004, Madrid, Spain.

[17] E. Brekelbaum, J. R. II, C. Wilkerson and B. Black,
“Hierarchical scheduling windows,” In Proc. of the 35th
Annual IEEE/ACM International Symposium on
Microarchitecture, Nov. 2002,

[18] M. D. Brown, J. Stark and Y. N. Patt, “Seclect-free
instruction scheduling logic,” In Proc. of the International
Symposium on Microarchitecture, Dec. 2001.

[19] S. Raasch, N. Binkert and S. Reinhardt, “A scalable
instruction queue design using dependence chains,” In
Proc. of the 29th Annual International Symposium on
Computer Architecture, May 2002.

[20] I. Stark, M. D. Brown and Y. N. Patt, ’On pipelining
dynamic instruction scheduling logic,” In Proc. of the
International Symposium on Microarchitecture, Dec.
2000.

[21] D.Emst, A.Hamel and T.Austin, “Cyclone:a broadcast-
free dynamic instruction scheduler selective replay,” In
Proc. of the 30th Annual International Symposium on
Computer Architecture, June 2003.

1689

Authorized licensed use limited to: Univ of Calif Irvine. Downloaded on January 30, 2010 at 21:44 from |IEEE Xplore. Restrictions apply.

