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Abstract—Hardware security architectures and primitives are
becoming increasingly important in practice providing trust
anchors and trusted execution environment to protect modern
software systems. Over the past two decades we have witnessed
various hardware security solutions and trends from Trusted
Platform Modules (TPM), performance counters for security,
ARM’s TrustZone, and Physically Unclonable Functions (PUFs),
to very recent advances such as Intel’s Software Guard Extension
(SGX). Unfortunately, these solutions are rarely used by third
party developers, make strong trust assumptions (including in
manufacturers), are too expensive for small constrained devices,
do not easily scale, or suffer from information leakage. Academic
research has proposed a variety of solutions, in hardware security
architectures, these advancements are rarely deployed in practice.

I. INTRODUCTION
Hardware-assisted security promises to solve many long-

existing problems of vulnerable software. Hardware security
features are used to store and protect sensitive state such
as cryptographic keys, to isolate a minimal set of security
critical software, or to implement security critical functions
directly in hardware. The assumptions are that hardware is less
likely to have vulnerabilities, and by minimizing the security
critical software its complexity and thus the likelihood for
vulnerabilities is reduced. Hardware-assistance is also used to
support software security solutions, like control-flow integrity
(CFI) [1], e.g., to improve the performance [2].

The development, standardization and deployment of hard-
ware security primitives has mainly been impelled by industry.
Academia has mostly been focused on utilizing those hardware
primitives, often in new and creative ways, to build security
mechanisms and architectures for various scenarios, ranging
from small embedded systems to cloud computing.

For instance, security solutions for mobile devices [3] have
mostly been based on ARM TrustZone [4], which is the
Trusted Execution Environment (TEE) implementation widely
deploy in these primarily ARM-processor based devices.

The security and privacy concerns of users and businesses
with regard to cloud computing have been the focus of research
for many years. Early solutions relied on Trusted Platform
Modules (TPMs) and software isolation based on trusted
hypervisors [5]. With the introduction of Intel’s Software
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Guard Extensions (SGX) [6]–[8] many solutions have been
published aiming to secure cloud applications using TEEs [9]–
[12].

Another research direction with the same goal investigates
purely cryptographic solutions, i.e., homomorphic encryption
(HE) or secure multi-party computation (SMPC). However,
these solutions are highly impractical due to their massive
overhead in computation time and communication costs.

TEEs have been proposed as a substitution for
cryptography-based secure multi-party computation been
proposed in [13]–[15]. Ohrimenko et al. [16] adapts several
machine learning (ML) algorithms, including neural networks,
to prevent cache-based side-channel attacks in scenarios where
multiple institutions use Intel SGX to securely share their
datasets for training and evaluation of joint ML models. In
[17], the authors introduce a similar protection mechanism
that is efficient enough for real-time data processing: instead
of preventing memory accesses that depend on sensitive
data, they add noise to memory traces by accessing dummy
data. The very recent Chiron [18] system allows a user to
train a model using the computing resources of a cloud
service provider while the training data remains hidden and
the resulting model can only be accessed as a black box.
VoiceGuard [19] allows secure and privacy-preserving speech
recognition in public cloud.

However, while hardware-security mechanisms can help to
improve the security of systems it is not a magic bullet. Many
problems remain even when using them, for instance, they
are often vulnerable to hardware and hardware-related attacks
like side-channel attacks. Also, the security critical functions,
despite being isolated through hardware security architectures,
remain vulnerable to runtime attacks. Even worse, hardware-
security mechanisms give rise to additional problems, for
instance, they require strong trust in manufacturer of hardware
components, or they often provide limited access to third-
party developers. Hardware-security mechanisms are usually
integrated into legacy system, as an afterthought. As a con-
sequence they are not always scalable and cannot provide
comprehensive security guarantees.

In this paper, we discuss different hardware-security ar-
chitectures and primitives, with their limitations and possible
attacks. We start with physically unclonable functions (PUFs),
followed by co-processor based approaches. Afterwards, we
discuss TEEs, starting with ARM TrustZone. The focus will be
on Intel’s recent SGX, for which we detail on different attack
vectors. Looking closer at side channels, we will elaborate
on various defense strategies and discuss the challenges in



defeating side-channel attacks in the context of SGX.
In addition to the aforementioned challenges, recent studies

have demonstrated that malicious activities on the hardware-
level ranging from application-based malware to side-channel
attacks can be effectively recognized by classifying anomalies
in the low-level feature spaces such as microarchitectural
events collected by Hardware Performance Counter registers.
The last section of this paper devotes to the comprehensive
analysis of defense mechanisms against malicious applications
and side-channel attacks targeting the available on-chip hard-
ware performance counters.

II. PHYSICALLY UNCLONABLE FUNCTIONS (PUFS)

Since their celebrated invention, PUFs have been introduced
as central building blocks in security architectures and cryp-
tographic protocols. A PUF is a noisy function embedded
in a physical object that generates an object-specific output
(response) to a given input (challenge). Several attempts to
model the most relevant security properties of PUFs have
been made [20], [21]. Hence, PUFs are assumed to fulfill
the following properties: physical unclonability (infeasible to
create two identical PUF instances), unpredictability (infeasi-
ble to predict responses of unknown challenges), robustness
(with high probability, a PUF instance generates the same
response for the same challenge) and tamper-evidence. Among
the common deployment scenarios of PUFs are secure cryp-
tographic key generation, device authentication/identification
and binding software to hardware. For these purposes, a variety
of PUF constructions have been proposed. The most intuitive
ones for the integration into electronic circuits are the silicon
PUFs, which fall into different categories including Delay-
based PUFs and Memory-based PUFs. Delay-based PUFs ex-
ploit race conditions in integrated circuits (e.g., Arbiter PUFs
and Ring Oscillator PUFs). Memory-based PUFs exploit the
process variation in volatile memory elements e.g., dynamic
random access memory (DRAM), static RAM (SRAM), flip-
flops and latches.

Along the lines, PUFs have been subject to various evalua-
tions as well as attacks. The attacks range from non-invasive
modeling to (invasive) physical attacks or a mix of both,
referred to as hybrid attacks. Modeling attacks usually utilize
ML techniques, which exploit the linear structure of a PUF to
derive numerical models. During the last decade, several new
or modified PUF constructions were introduced as modeling-
resilient PUFs, however, later on they have been attacked
using advanced ML techniques [22], [23]. On the other hand,
although PUFs have been considered to be tamper-evident,
it has been shown that they are vulnerable to all kinds of
physical attacks including side-channel, (semi-) invasive and
fault injection attacks without affecting their functionality [24],
[25]. Semi-invasive attacks from the IC backside of a PUF
chip have been demonstrated to be feasible, as well [26].
Moreover, hybrid attacks on PUFs combining physical attacks
and ML techniques for PUF modeling have been proven to be
effective [27]–[29].

In the opposite direction, several new PUF constructions
have been proposed. MEMS PUFs [30] leverage Micro-
Electro-Mechanical Systems (MEMS)-based sensors as a
source of entropy to generate a secret key with the help of
a fuzzy extractor. However, it requires at least 23 sensors to
generate a strong 128-bit key. Other PUFs that are based on
non-linear electronic characteristics, e.g., the voltage-transfer
PUFs [31] and the current-mirrors PUFs [32], were introduced
as ML-resilient PUFs. These PUFs have been proven to be
vulnerable to more advanced ML techniques [33]. Besides that,
several PUFs based on emerging nano-technologies have been
proposed [34]. Other PUF proposals that leverage emerging
non-volatile memory technologies include Memristor/Resistive
Random Access Memory (RRAM) [35] and Magnetoresistive
Random Access Memory (MRAM) and its advanced version
Spin-Transfer Torque MRAM (STT-MRAM) [36].
A. Conclusion

While current PUF constructions have been proven to be
vulnerable to physical and modeling attacks, recent PUF
constructions that are based on emerging technologies lack a
comprehensive security evaluation framework, which is very
crucial to gain confidence that such PUF constructions can
be deployed in real-world scenarios. Therefore, it is obvious
that the construction of PUFs that are resilient to advanced
modeling attacks as well as physical attacks is still an open
challenge and a prerequisite for the security of PUF-based
protocols.

III. CO-PROCESSOR SOLUTIONS

One of the most widely available co-processor based
hardware-assisted security solutions is the TPM [37], which
extends commodity computers with a hardware root of trust for
a number of security services, including device identification,
remote attestation, and secure storage and sealing. These
capabilities allow the protection of data at rest and to ensure
the initial integrity of a computer’s software, i.e., ensure that
software like the operating system was not modified.

In later version of TPM and in conjunction with the CPU,
the concept of dynamic root of trust for measurement was in-
troduced (Intel Trusted Execution Technology [38] and AMD
Secure Virtual Machines [39]). It allows to reset the computer
at runtime to a secure state, from where the integrity of all
loaded software can be checked. Flicker [40] has demonstrated
that this mechanism can also be used to build a TEE like
mechanism.

However, since the TPM only ensures the integrity of
software at load time TPM-based solutions do not provide
protection against runtime attacks like Return-oriented Pro-
gramming (ROP) [41]–[46].

A. Conclusion.

Ensuring the security and trustworthiness of entire platform
is hard (or even impossible) to achieve due to the large
software stack on today’s platforms. Therefore, protection
mechanisms are needed that allow the fine-grained isolation
of software components. Additionally, the integrity of such
components must be ensured both, at load-time and run-time.



IV. ARM TRUSTZONE

TrustZone represents a set of security enhancements to
ARM’s processor designs and Systems-on-Chip. TrustZone
enhances the processor, memory (including caches), and pe-
ripherals. A TrustZone-enabled processor can execute instruc-
tions in two security modes at any given time. The secure and
normal world both manage their own address spaces using the
traditional privilege levels for separation of the OS kernel and
application code.

The processor can switch from normal to secure world via
an dedicated secure monitor call (smc) instruction. When an
smc instruction is invoked from normal world, the processor
performs a context switch to the secure world (via the monitor
mode) and freezes the execution of the normal world.

TrustZone can separate physical memory into two partitions,
with one partition being exclusively accessible by the secure
world. This isolation is enforced by the memory controller
(TZASC). While the normal world cannot access memory
assigned to secure world, the secure world can access normal
world memory.

A device running ARM TrustZone boots up in the secure
world. After the secure world finished its initial setup, it
switches to the normal world and boots the legacy operating
system. Most TrustZone-enabled devices are configured to
support secure boot, i.e., the boot loader cryptographically
checks the secure world OS prior to execution [47]. In fact,
many vendors lock their devices against end-user modification
via secure boot, to ensure the integrity of the secure world.
This allows them to treat the secure world as part of their
Trusted Computing Base (TCB).

A. TrustZone Attacks and Limitations

Despite TrustZone’s implementation and wide-spread de-
ployment, the underlying TEE is mainly used by the vendors
for their own purposes, and hence a flourishing landscape of
secure mobile services is largely missing, even more than a
decade after TrustZone was initially released [48].

In practice, bugs in TrustZone-enabled applications expose
a large number of devices to real-world security threats, as
continuously demonstrated by security researchers across de-
vice families and hardware vendors: TrustZone’s isolation has
been repetitively broken [49]–[56]. Google’s ProjectZero [57]
recently summarized the main flaws of the current design of
TrustZone as follows: it combines (i) weak isolation between
trusted applications (TAs) in TEE, with (ii) TCB expansion,
and (iii) highly privileged access to the platform, making
TrustZone a high-value target for attackers. These problems
strongly limit the use of TrustZone for security-critical appli-
cations which will benefit both developers and users.

B. Conclusion

The fact that TrustZone supports only a single isolated
execution environment that has to be shared by all trusted
applications leads to weak isolation among them, which in
turn is co-responsible for the restrictive access policies of
the device manufacturers. To enable an open and secure

multi-stakeholder system multiple, mutually strongly isolated
execution environments are necessary.

V. INTEL SOFTWARE GUARD EXTENSIONS

Intel Software Guard Extensions (SGX) enables processing
of confidential data on untrusted systems [6]–[8]. SGX intro-
duces the concept of enclaves, which are programs executed
in isolation from all other software on a system, including
privileged software, like the operating system (OS) or a
hypervisor.

Enclaves are loaded as part of a host process and are
embedded in its virtual memory, like a library. The initial
content of an enclave is loaded from unprotected memory,
hence, it can be manipulated and is not kept confidential.
Therefore, confidential data must be provisioned to an enclave
over a secure channel after it has been created. To ensure that
secret data is not sent to a malicious (or maliciously modified)
enclave, the integrity and authenticity of an enclave needs to be
verified before provisioning secret data. To enable this, SGX
provides a security service called remote attestation (RA).

Once available inside an enclave, secret data can be en-
crypted using an enclave-specific key and written to untrusted
storage, e.g., the hard disk. This sealing mechanism allows an
enclave to use secret data across multiple instantiations.

A. Attacks on Intel SGX

SGX protects enclaves against direct accesses, however,
code inside the enclave can still be attacked through run-
time attacks. Also effects of an enclave’s computations can be
observed through side channels allowing to deduce sensitive
information. Subsequently we discuss each of these attack
vectors in detail.

RunTime Attacks. In the ideal scenario, the enclave code
only includes minimal carefully-inspected code, which could
be formally proven to be free of vulnerabilities. However,
legacy applications can be adapted as well to run inside
SGX enclaves with relatively minor modifications. Formally
verifying or manually inspecting such complex legacy software
is not feasible, meaning that the same memory-corruption
vulnerabilities that plague legacy software are also very likely
to occur in those complex enclaves. Such vulnerabilities allow
an attacker to mount a runtime attack to induce unauthorized
program actions.

Only recently, Kuvaiskii et al. presented SGXBounds [58]
that offers protection against out-of-bounds memory accesses.
Lee et al. [59] presented the first memory-corruption attack
against SGX. Their attack, called Dark-ROP, is based on
several oracles and return-oriented programming (ROP) [41].
The oracles inform the attacker about the internal status of the
enclave execution, whereas ROP maliciously re-uses benign
code snippets (called gadgets) to undermine non-executable
memory protection. Dark-ROP is based on principles of blind
ROP [60]: if an application is not randomized, or it is not re-
randomized after crashing, crashes leak useful information to
the attacker. This allows Dark-ROP to extract secret code and



data, as well as undermine remote attestation. However, Dark-
ROP requires a constant, non-randomized memory layout as
the oracles frequently crash enclaves.

Hence, to address the Dark-ROP attack, Seo et al. [61]
demonstrated an implementation of SGX randomization
called SGX-Shield. Randomization schemes such as SGX-
Shield [61] challenge the assumption of a constant memory
layout, since the memory layout changes every time the
enclave is constructed. Further, SGX-Shield makes traditional
exploitation techniques significantly hard to apply because it
employs fine-grained randomization and non-readable code.

Biondo et al. [62] propose code-reuse attacks against en-
claves built on top of the Intel SGX SDK that also undermine
randomization techniques such as SGX-Shield. By abusing
preexisting SDK mechanisms, their attacks provide full control
of the CPU’s general-purpose registers to an attacker able to
exploit a memory corruption vulnerability. Controlling regis-
ters is essential in any code-reuse attack. For instance, they
can prepare data for subsequent gadgets or set arguments for
function calls. To this end, two new exploitation primitives are
developed: the ORET and CONT primitive attack technique.

The ORET primitive is based on abusing the function
asm_oret from the tRTS library in the Intel SGX SDK.
Normally, this function is used to restore the CPU context
after an OCALL. However, when exploiting this function
by means of a code-reuse attack, the ORET primitive gives
control of a subset of CPU registers, including the register
that holds the first function argument and the instruction
pointer. In contrast, the CONT primitive abuses the function
continue_execution from the tRTS, which is meant to
restore the CPU context after an exception. This primitive
requires the ability to call that function which is achievable
by exploiting a memory corruption vulnerability affecting
a function pointer. This primitive yields full control over
all general-purpose CPU registers. In addition, this attack
primitive can be combined with the ORET primitive to also
apply it to controlled stack situations.

In preparation for the exploit, the attacker performs static
analysis on the enclave binary to determine the gadgets she
wants to reuse. In particular, the attacker starts by determining
the offsets of asm_oret and continue_execution.
Since they are part of the loader, which is challenging to
randomize by existing randomization solutions such as SGX-
Shield, those offsets will not change at runtime. Next, the
attacker constructs a gadget chain consisting of a sequence of
gadgets which will perform the desired malicious activity, and
defines the register state that should be set before executing
each gadget. The primitives work by abusing functions in-
tended to restore CPU contexts by tricking them into restoring
fake contexts, thus gaining control of the registers. In contrast
to a standard ROP exploit, which is usually self-contained,
the attacks require a number of auxiliary memory structures
to hold these fake contexts and execute the primitives. This
setup allows triggering the first CONT primitive to start
an ORET+CONT loop. Every cycle will execute a gadget
and advance the chain, thus running the attacker’s payload.

Specifically, the proof-of-concept attack extracts cryptographic
keys used during the remote attestation process. Once an
attacker is in possession of those keys, she can impersonate the
enclave when communicating with the remote server. These
attacks apply to any enclave developed with the Linux or
Windows Intel SDK for SGX.

As discussed, building randomization-based defenses for
SGX enclaves is challenging as it requires careful support of
SDK library code and additional protection of SGX context
data to mitigate the threat of runtime attacks against SGX. On
the other hand, enforcement-based defense techniques against
runtime attacks such as control-flow integrity [1], [63] could
be leveraged for SGX enclave code. This would ensure that
the enclave’s program flow always adhere to a pre-defined
control-flow graph.

Side-channel Attacks. Side-channel attacks on software in
general, and SGX in particular, come in many different forms.
Any kind of resource use that is influenced by the software’s
execution and can be observed by the adversary can serve
as a side channel. For instance, the use of electricity as well
as effects thereof like electro-magnetic emission, or the use
of shared CPU caches. In this context we focus on software
side channels, i.e., such that are observable by a software
program running on the target machine, precluding physical
or hardware side-channel attacks.

In the realm of software side-channel attacks a number of
distinct variants exist. On one hand, different shared resources
can be used as a side channel, like the different caches of the
CPU, or the virtual memory management. On the other hand,
side-channel attacks can target different information, including
sensitive access patterns to data as well as secret dependent
code execution paths.
Controlled channel attack. Xu et al. [64] demonstrated page-
fault side-channel attacks on SGX, where an untrusted op-
erating system exfiltrates secrets from enclaves by tracking
memory accesses at the granularity of memory pages.
Cache side-channel attacks. Lee et al. [65] use branch shad-
owing to infer the control flow of an enclave. Their approach
requires the victim enclave to be interrupted at a high fre-
quency, which enables effective detection methods [66], [67].

Schwarz et al. [68] study a scenario, where an unprivileged
attacker process (hiding in an enclave) is spying on the L3-
cache utilization of another process (or enclave).

CacheZoom [69] attacks an AES implementation through
L1 cache by interrupting the victim, and thus increasing the
temporal resolution of the attack. Enclave exits introduce
noise in a subset of cache lines rendering them unobservable.
Additionally, the interrupts make the attack easily detectable
[66], [67].

Götzfried et al. [70] also attack AES on L1. They run the
victim uninterrupted to avoid disturbance due to enclave exits.
However, their attack assumes synchronization (collaboration)
between the victim and the attacker – an assumption which
typically does not hold in practice.

Brasser et al. [71] show that side-channel attacks are not
only dangerous for cryptographic algorithm but can be used



to extract sensitive information from a much broader range
of data processing algorithms. The authors demonstrate this
by extracting genomic data from an SGX enclave running a
genome analysis algorithm. Unlike previous works their attack
does not requires interrupts or makes synchrony assumptions,
which makes it harder to detect and easier to deploy in
practice.

Recent works [72], [73] have investigated the possibility of
leaking information through a side-channel with granularity
smaller than a single cache line.

CacheBleed [72] exploits cache bank conflicts to leak fine-
grained information. However, this attack does not apply to
SGX CPUs due to an updated cache design.

MemJam [73] uses read-after-write false dependencies to
introduce latency when a victim program reads data with a
specific page offset. By measuring the run time of the victim
program a high number of times while jamming different page
offsets, the attacker can infer which offsets are read more
often by the victim. This attack can leak information with a
four byte granularity, but requires an extremely high number
of runs (50 million runs for an attack against a simple and
deterministic SGX enclave).

B. Side-channel Defenses

New cache architectures. Cache-based side-channel attacks
can be addressed by changes in the cache architecture. The
two common approaches are (i) cache partitioning [74]–[77],
where the cache is divided into partitions that are not shared
between processes, and (ii) cache access obfuscation [76],
[78]–[80], where the goal is to obfuscate the side-channel
information obtained by the attacker. Such defenses require
hardware changes and are limited to cache attacks. Such
approaches do not defend against other side-channels, e.g.,
based on page-faults.

Transactional memory. Some of the known SGX side-
channel attacks interrupt the victim enclave repeatedly [64].
Corresponding defenses enable the victim enclave to detect
interruption and take counteractive measures, such as stop-
ping its execution. T-SGX [66] leverages the Intel Trans-
actional Synchronization Extension (TSX) to detect asyn-
chronous enclave exits, e.g., due to interrupts from page faults.
Déjá Vu [67] monitors the execution time of an enclave to
detect a slowdown due to frequent interrupts. These defenses
do not prevent attacks that work interrupt-less [68], [70], [71].

Cloak [81] uses TSX to preform atomic memory operations
that hide sensitive memory accesses. Before sensitive memory
is accessed, all cache lines are touched (primed) by the
enclave, and thus the adversary learns nothing about the
enclave’s sensitive accesses. Cloak relies on the developer to
annotate sensitive data structures that should be protected from
side-channel attacks and requires the TSX feature that is not
supported by all SGX processors.

ORAM and oblivious execution. Oblivious RAM
(ORAM) [82]–[87] refers to schemes that hide the memory
access pattern of a trusted client (e.g., CPU or network
client) to an untrusted and encrypted memory (e.g., DRAM or

storage server) by introducing fake accesses and shuffling the
encrypted memory elements such that the observable access
pattern is independent of the actual access pattern. ORAM
systems are typically designed for a model where the trusted
client has internal secure memory for maintaining required
meta-data. If ORAM is used to hide all memory accesses of an
enclave, the client would be the enclave and the RAM would
to be considered the untrusted memory. Since an adversary
can observe the enclave’s memory access patterns, the enclave
needs to access also the internal meta-data in an oblivious
manner which increases performance overhead.

Oblivious execution architectures [88]–[90] attempt to hide
all observable effects of program execution, including both
memory accesses (code and data) and timing information.
Oblivious execution on standard processor architectures is
extremely expensive, and thus oblivious execution systems
leverage custom hardware.

Data randomization for SGX. Raccoon [91] provides
oblivious data access only for developer-annotated enclave
data, thus reducing the overhead. Memory accesses are hidden
by either ORAM or streaming over entire data structures.

DR.SGX [92] offers side-channel defense with an adjustable
trade-off between security and performance. In DR.SGX the
entire data memory of the application is randomized on a
cache-line granularity: like in ORAM schemes, the location
of each block is moved to a randomized location. In contrast
with ORAM, which requires big data tables to keep track of
the location of each block, DR.SGX uses a pseudo-random
permutation function which only requires minimal secret data:
as a result, while ORAM schemes need to implement further
costly protections to access the metadata without leaking
information to the adversary, DR.SGX can access its secret
data easily and efficiently. The permutation function is derived
from small-domain format-preserving encryption techniques
and leverages the fast hardware implementation of AES on
Intel processors. Additionally, DR.SGX can re-randomize the
data at a configurable interval, giving developers the possibility
to prioritize performance or security.

ZeroTrace [93] is an oblivious data structure framework
for SGX that runs on top of a software memory controller.
ZeroTrace is designed to hide memory access to resources
outside of an enclave, e.g., to the hard disk drive. Importantly,
it is not designed to make all memory accesses of an enclave
to its own main memory oblivious. Furthermore, ZeroTrace
requires the developer to use the memory controller interface
for all access that should be protected.

HardIDX [94] provides oblivious database accesses from an
SGX enclave to external storage.

C. Emerging Hardware-based Attacks

Attacks like Meltdown [95], Spectre [96] and Rowham-
mer [97]–[99] have impressively demonstrated that the com-
plexity of our modern computer systems bears new threats.
Meltdown and Spectre operate on a level below the access
control enforces by SGX and can therefore undermine its
security guarantees [100].



D. Conclusion

While SGX’s isolation adds security for many usage sce-
narios it cannot guarantee comprehensive security under all
circumstances. In fact, the remaining attack vectors, as dis-
cussed above, must be considered when using SGX. It is the
developers and users responsibility to harden his code against
runtime attacks as well as side-channel attacks. Also, security
solutions need to be reevaluated whenever new attacks are
discovered.

VI. EXPLOITING PERFORMANCE COUNTERS FOR
HARDWARE SECURITY

The security of a system can be compromised by either
side-channel attacks or by executing malicious applications
infecting the system. In addition to the aforementioned de-
fenses, here we present the detection mechanisms and mea-
sures that take advantage of built-in hardware components
i.e., hardware performance counters (HPCs) to capture the
running application behavior for security. HPCs are special
purpose registers embedded inside modern microprocessors
to monitor and capture different microarchitectural events.
The primary purpose of HPC is to analyze and tune the
architectural level performance of running applications [101]–
[104]. Recent works have proposed to utilize the HPCs for
securing the hardware systems against both malware (appli-
cation execution based attacks) and side-channel attacks. We
present the analysis in-detail below.
A. HPCs for Malware Detection

Malware is a piece of code written by the attacker to
perform intended malicious activities such as information leak-
age, data stealing, and gaining unauthorized access without
the consent of the user. Researchers have suggested both
the signature-based and anomaly detection based malware
detectors using the HPCs. In this section, we discuss the latest
efforts on hardware-assisted malware detection.

The work in [106] is one of the first works to study the
suitability of HPC data for detecting the malware. It uses ML
models for malware detection. The primary focus of this work
is on detecting malware in mobile OS such as Android. In
addition, it has demonstrated the capability of employing HPC
information for detecting malware such as Linux rootkits, and
cache side-channel attacks on Intel and ARM processors. In
[107], HPCMalHunter, which is a behavioral online malware
detector that predicts the existence of malware with high
accuracy by deploying support vector machine (SVM) is
proposed. As the number of available microarchitectural events
are large and the number of HPCs that can be accessed
simultaneously are small, a Singular Value Decomposition
(SVD) based feature reduction is deployed for selecting the
prominent microarchitectural events. Thus, only prominent
microarchitectural events are monitored through HPCs.

Similarly, detection of malware specifically for Kernel-level
rootkit attacks with the aid of HPCs is proposed in [108].
In this work, ML classifiers are trained using the HPCs
collected from benign and rootkit applications for detection
and classification. It has been found that the rootkits employing

direct kernel object manipulation (DKOM) do not significantly
impact the HPCs, which makes it hard to detect with the aid of
simple HPCs. The works such as Numchecker [109] employ
HPCs’ information for detecting the rootkits. Numchecker is
a virtualization based framework devised to detect malicious
modifications of the guest VM’s system calls using the behav-
ior of hardware events. The work in [110] proposes dynamic
integrity checking of programs during runtime for malicious
activities using HPC information. In this work, a comparison
of the HPC values is used for malware detection. To address
the associated memory overheads with storing HPC patterns
for malware detection, a “sample-locally-analyze-remotely”
technique is proposed in [111].

A malware-aware processor (MAP) is proposed in [112],
[113], where different sub-semantic features of low-level mi-
croarchitectural events are explored for malware detection,
such as: (1) features based on executed instructions; (2) fea-
tures based on the memory address patterns; (3) features based
on architectural events. However, MAP suggests changes in the
microprocessor pipeline for evaluating sub-semantic features
and detecting malware in real-time.

To facilitate runtime malware detection, [114], [115] pro-
poses leveraging limited available number of HPCs in which
the microarchitectural events are chosen based on the sys-
tematic feature reduction. It has been found that different
ML classifiers achieve different performance across different
malware classes. Furthermore, the accuracy drops with the
number of HPCs used for detecting the malware. However, to
enhance the performance, the work in [114]–[117] proposes
use of ensemble ML-based solutions for effective runtime mal-
ware detection using low-level microarchitectural features. For
feature reduction, [114], [115] employ a systematic approach
to select the top events from the entire set of available events
by using Correlation Attribute Evaluation technique.

Tang et al. [118] deployed unsupervised learning that em-
ploys low-level features (HPCs) for detecting ROP and buffer
overflow attacks by detecting the anomaly patterns in the HPC
patterns. It uses samples from HPCs to train unsupervised
ML techniques for detecting deviations in program behavior
that occurs due to a potential malicious attack. Although
unsupervised algorithms can be more effective in detecting
new malware and attacker evolution, they are complex in
nature requiring more complex hardware implementations.

One of the recent works [119] performs the cross validation
of HPC based malware detection. The results have shown a
larger variation in performance across when using different
ML classifiers. Similar variations are observed when employ-
ing different ML classifiers in the previous works as well.
Additionally, [119] presents an adversarial malware sample
where a notepad++ application is fused with ransomware
application that encrypts the data leading to result in same
HPC traces as a benign application. This poses the chal-
lenge that for sophisticatedly crafted malware samples, simple
anomaly-detection based detection techniques are might not
be sufficient, and thus needs to be improved and used in
conjunction with other malware detection techniques.



In addition to malware detection that only alters the ap-
plication control-flow, use of HPCs have also shown to be
effective for malware targeting firmware modifications. Con-
Firm [120] proposes a lightweight technique for detecting
malicious modifications in firmware libraries. This work per-
forms a comparison of low-level hardware events (HPCs)
for detecting malicious activities. Similarly, for firmwares
involving complex control flows, a ML-based classifier using
HPC information is proposed in [121].
B. HPCs for Side-channel Attack

HPCs are also employed for detecting side-channel attacks.
As mentioned, side-channel attacks target secret keys or in-
formation used in cryptographic [105] and secure operations.
The attack detection using HPCs are presented below.

The proposed works [122], [123] can detect Flush+Reload,
Prime+Probe and Flush+Flush. The Flush+Flush is relatively
robust as it uses only Flush instruction and hence can bypass
defenses based on timing as a parameter. The CloudRadar
presented in [122] employs two distinct steps for detecting the
side-channel attacks: Signature-based detection and anomaly-
based detection. The former one works by comparing mon-
itored application with pre-defined attack signatures and the
latter one works by detecting the deviation in the application’s
behavior by comparing it with its normal behavior. However,
the CloudRadar requires an entire physical CPU for monitor-
ing other VMs and applications might be an overhead and adds
up to the price that the cloud service users have to pay. To
overcome the limitations, CacheShield is proposed in [123].

CacheShield [123] aims at reducing the overhead caused
when all the VMs in a Cloud are to be monitored continuously
for security threats. It is kind of an on-demand solution where
a user (VM) notifies the CacheShield which in turn utilizes
the HPC info from the PMU to decide whether the user/VM
is under attack or not. CacheShield proposes change-point
detection technique for detecting abrupt changes in the distri-
bution. In contrast to traditional ML-based anomaly detection
techniques, change-point detection method is self-learning.
The CacheShield works based on the assumption that the
performance of protected algorithms are affected under attack
situations and the detection method in itself has minimum
impact on the system performance. In the event of an attack, it
can then implement one of the numerous available mitigation
strategies (such as adding noise by frequently flushing cache
lines [123]; hiding the true secrets in a process by generating
dummy ones [123]), and less protected implementations in
case of no attacks with low overheads. The above mentioned
defenses protect LLC from the aforementioned attacks.

Detection of Flush+Reload side-channel attack that exploits
the dependencies of HPC data and ML is proposed in [124]. In
the first method, detection is done by obtaining the correlation
between victim and spy process by analyzing the data obtained
from Quickhpc tool [125], which is similar to perf_stat.
The correlation of total L3 cache accesses over time is seen
as a good indicator to differentiate the victim from the spy
process. In the second method that employs ML techniques
(such as neural networks), though computationally intensive

but has proven to provide better results and do not require the
data to be pre-processed. In addition to the above methods,
another detection mechanism is proposed in [124], where the
data samples obtained from the spy processes are considered
as “normal” and from any other processes as “anomalies”. The
advantage of this method is that it requires less time and data
to model each spy, as the number of spy programs available
are limited. However, for unseen spy applications, the classifier
has to be trained again. As such, this technique is more suitable
for defending against known attacks.

The work in [126] is one of the first side-channel attack
detection methods to leverage Intel’s CMT (Cache Monitoring
Technology). This provides two advantages: improves system
performance by observing the cache occupancy of the VM
and then applying resource usage limitation through CAT
(Cache Allocation Technology), thereby reduces the shared
resource contention and mitigates cache side-channel attacks.
During an attack, as the attacker VM tries to evict cache
lines multiple times from the LLC, this aggressive behavior
of the VM is detected by the CMT and thus the side-channel
attack is detected. This technique is effective to attacks like
Prime+Probe, Flush+Reload, Flush+Flush and Evict+Time.

The work in [127] focuses on the temporal scheduling of
the processes to reduce hardware/functional units contention
and information sharing, eventually leading to minimizing the
risk of side-channel attacks. The [127] suggests to devise
a scheduler that can peek into an application/process and
determine what kind of operation it would perform during
its runtime based on the modeled ML predictors and thus
schedule them such that no two such applications are sched-
uled on the same core to avoid hardware unit contention and
improve performance. In addition to scheduling, HPCs are
also monitored to recognize memory intensive applications and
schedule them on separate cores to avoid information sharing
between two or more applications. Thus, the information
leakage through side-channels can be reduced.

In addition to these attacks, the Spectre [96] and Meltdown
[95] are some of the recently introduced attacks that have
seen to be one of the most devastating side-channel attacks
discovered so far. The work in [128] proposes use of HPCs for
detecting such advanced attacks. As we know that Spectre [96]
and Meltdown [95] leave footprints due to ‘page fault’. Hence,
these can be defended and detected by exploiting the same.
These defenses capture the “segfaults” inside the operating
system. The approach is successfully tested by the kprobe
tool [129], as any application generating too many segfault
errors is scarce. This defense mechanism is built based on
the assumption that the attacker does not employ Intel’s TSX,
as the SIGSEV (segfault) error will not be thrown and the
defense mechanism would fail.

Other robust defense technique to detect and mitigate
the Meltdown and Spectre attacks using HPCs is pre-
sented in [128]. This work employs HPCs to detect
and mitigate the Spectre and Meltdown attacks by using
LLC_References, LLC_Misses, LLC_load_misses,
and LLC_loads counters. From the experiments in [128], it



has been found that since these attacks target LLC and during
the attack there are more cache loads/misses due to the fact that
the attack flushes the cache content, the LLC_References
and LLC_Misses varies tremendously compared to normal
programs. Thus, based on these counters and by calculating
the miss Rate, Spectre and Meltdown attacks can be detected.

The side-channel attacks, Spectre, and Meltdown exploit the
vulnerabilities by measuring the temporal difference between
the cache access (which varies if data is hit, miss, and so
on, followed by utilizing this timing differences to identify
executable, non-executable, mapped and unmapped pages in
the memory). Modern state-of-the-art attacks [130] use Intel’s
TSX to measure this time gap. The TSX aborts the transaction
when an application tries to access an unknown location or
unknown target address. As these side-channel attacks use
TSX, no software interrupts are triggered in the system and
hence these kinds of attacks go undetected. The work in [131]
demonstrates a technique by which the aforementioned attacks
can be checked. Intel’s TSX system has specific counters
(such as RTM_RETIRED.ABORTED) to signal an alarm when
transactions are aborted very frequently. By monitoring this
specific counter the attacks can be mitigated.
C. Conclusion

The information captured from the available on-chip HPCs
can be utilized for detecting malicious activities on the hard-
ware ranging from application-based malware to side-channel
attacks. Despite the proven benefits, the existing HPCs might
not be efficient for achieving ‘perfect security’. As such,
there is an emerging need to perform a better analysis of the
information captured in the HPCs to expose the characteristics
of specially crafted attacks.

VII. CONCLUSION AND FUTURE DIRECTIONS

As we continue to build larger and more complex systems
hardware-assistant security will play an increasingly important
role in the future. However, current solutions face a number
of challenges that we identified in the paper. On one hand,
solutions must be available for wide-spread use, unlike for
instance ARM TrustZone. On the other hand, none of the
existing solutions can provide perfect security, as demonstrated
by the various attacks shown in the past.

Providing comprehensive security is costly and might only
be needed for some rare highly sensitive use-cases. To account
for the different requirements hardware must become more
flexible, allowing more control from software. For example, by
selectively disabling resource sharing high-security software
can prevent side-channel leakage while other software can
retain the performance benefits of utilizing shared resources.
Going one step further, fine-grain control over the hardware
would ultimately allow to re-configure or even patch hardware
when a new vulnerability is detected.

In addition, efficient usage of on-chip performance coun-
ters is beneficial towards security without adding additional
overheads. The hardware performance counters can be utilized
for both malware and side-channel attack detection. However,

adversarially crafted malware or sophisticated side-channel at-
tacks, calls for devising better HPCs and/or advanced analysis
techniques for achieving perfect security.
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