
1  
  

Co-Locating and Concurrent Fine-Tuning MapReduce 
Applications on Microservers for Energy Efficiency 

Maria Malik1, Dean M. Tullsen2, Houman Homayoun2 
1Department of Electrical and Computer Engineering, George Mason University, {mmalik9, hhomayou}@gmu.edu 

2Department of Computer Science and Engineering, University of California San Diego, tullsen@cs.ucsd.edu 
 

Abstract 
Datacenters provide flexibility and high performance for 

users and cost efficiency for operators. However, the high 
computational demands of big data and analytics 
technologies such as MapReduce, a dominant programming 
model and framework for big data analytics, mean that even 
small changes in the efficiency of execution in the data center 
can have a large effect on user cost and operational cost. 
Fine-tuning configuration parameters of MapReduce 
applications at the application, architecture, and system 
levels plays a crucial role in improving the energy-efficiency 
of the server and reducing the operational cost. In this work, 
through methodical investigation of performance and power 
measurements, we demonstrate how the interplay among 
various MapReduce configurations as well as application 
and architecture level parameters create new opportunities 
to co-locate MapReduce applications at the node level. We 
also show how concurrently fine-tuning optimization 
parameters for multiple scheduled MapReduce applications 
improves energy-efficiency compared to fine-tuning 
parameters for each application separately. In this paper, we 
present Co-Located Application Optimization (COLAO) 
that co-schedules multiple MapReduce applications at the 
node level to enhance energy efficiency. Our results show 
that through co-locating MapReduce applications and fine-
tuning configuration parameters concurrently, COLAO 
reduces the number of nodes by half to execute MapReduce 
applications while improving the EDP by 2.2X on average, 
compared to fine-tuning applications individually and run 
them serially for a broad range of studied workloads. 
Keywords  Co-locate, Tuning, MapReduce,   Energy-
Efficiency, Power  

1. Introduction 
Datacenters are the computer platforms of choice to process 

diverse applications in the emerging domain of big data. With 
the significant increase in the volume of data to process big data 
applications, hyperscale datacenters have gained interest as a 
promising computing architecture that is designed to provide a 
massively scalable computer architecture. Recent improvements 
in the networking, storage, energy-efficiency and infrastructure 
management [46, 47] has made hyperscaling a preferable 
approach to respond to the challenges associated with big data. 
However, introducing more nodes to existing infrastructural 
creates challenges for datacenters providers to balance 
computational power and energy efficiency. In addition, the cost 
of hyperscale data centers is one of the major limiting factors. 
To address these challenges, many recent works address the 
need for hardware specialized accelerators [49] to increase the 

performance using a fewer number of nodes [47]. However, 
specialized accelerator reduces the preferable homogeneous 
computing environment in datacenters and increases the 
compatibility issues for the target big data workloads that are 
diverse in nature and are changing at a rapid rate.  In addition, 
the cost of deploying an accelerator in server and the operational 
cost of the datacenters can become highly exposed to the cost of 
these very high-demand applications, whether that cost is 
absorbed by the owner of the datacenter or passed on to a user 
running applications.  As energy consumption and cooling cost 
are a major part of operational cost, hardware design priority is 
shifting from a performance-centric to an energy efficiency 
centric design methodology for server class architectures. 
Microservers represent an attractive microarchitecture in data 
centers, employing embedded-class low power processors as the 
main processing unit. These platforms can enhance energy 
efficiency and reduce operational cost. Therefore, microserver-
based architectures have been proposed as an alternative to 
traditional high performance architectures to process big data 
applications [1, 28, 29, 32, 33, 34]. 

In this paper, we evaluate co-locating of MapReduce 
applications on microserver to reduce the number of nodes 
required in a cluster to process MapReduce applications for 
maximum energy efficiency. This is achieved while maintaining 
the cost-efficient homogeneous computing environment in the 
datacenters. Many big data applications rely on the MapReduce 
programming model and framework to perform their analysis on 
large-scale datasets [2, 3, 17]. MapReduce configuration 
parameters, as well as application and architectural parameters, 
directly affect its performance and energy efficiency that creates 
the opportunities for co-locating MapReduce applications at the 
node level. A closest work to ours is Bubble-up [30] and 
Bubble-Flux [41], where they introduce a characterization and 
profiling methodology and predicts the performance 
degradation between pairwise application co-locations. Co-
locating traditional desktop and parallel applications and tuning 
the underlying processor (such as adapting the voltage and 
frequency [35, 38]) has been well studied in the literature [8, 12, 
13, 14]. However, MapReduce applications, such as Hadoop-
based, has fundamentally different microarchitectural behavior 
than traditional applications highlighted in recent work [28, 29, 
48], while having significantly more tuning optimization knobs.  

For MapReduce applications, it is important to evaluate 
which resources (CPU utilization, memory footprint, I/O read 
and write, etc.) are bottlenecks and how system-level (number 
of mappers running simultaneously in a compute node, HDFS 
block size), application-level (application type and input data 
size) and architectural-level (operating voltage and frequency) 
tuning parameters affect the performance, power, and energy-



2  
  

efficiency. While several recent works [42, 43] show how tuning 
individual or a subgroup of tuning parameters at a time improves 
performance or energy-efficiency, they have ignored the 
interplay among all of these parameters at various level of 
abstractions. In addition, while all of the prior work mainly 
focused on fine-tuning optimization parameters for individual 
applications and in isolation, they have not studied opportunities 
for co-optimizing these tuning parameters for multiple 
scheduled applications, simultaneously. 

In the presence of these optimization opportunities, a key 
research question is to determine the best tuning parameters at 
the system, application, and architecture levels that create the 
possibility to co-locate MapReduce applications at the node 
level and still maintain the energy efficiency. To this goal, we 
examine the impact of application, system, and architectural 
tuning parameters and the interplay among them on the 
performance and energy efficiency for various MapReduce 
applications. In addition, we compare two optimization 
strategies; Individually-Located Application optimization 
(ILAO) which represents a conventional approach, and Co-
Located Application Optimization (COLAO) which represents 
running and tuning applications concurrently at a node level. 
ILAO tunes optimization parameters for each application 
individually. COLAO tunes optimization parameters 
concurrently to determine the best tuning parameters for 
maximum energy-efficiency.  

To the best of our knowledge, this is the first experimental 
work that addresses the challenges of concurrent fine-tuning and 
co-locating MapReduce applications for energy efficiency. In 
this paper, our analysis helps to determine how critical it is to 
jointly fine tune system, application and architecture level 
parameters for maximum energy-efficiency for multiple 
scheduled MapReduce applications concurrently, and how fine 
tuning these parameters creates new opportunities for co-
locating them at the node level. 

The rest of this paper is organized as follows. Section 2 
presents the experimental setup details. Section 3 presents the 
characterization analysis of MapReduce applications. Section 4 
discusses the performance and energy-efficiency analysis of 
MapReduce applications by fine-tuning the systems, 
architectural as well as application level parameters. Co-located 
applications at node level analysis is discussed in section 5. 
Section 6 presents the evaluation on scalability of COLAO 
technique. Section 7 provides the related work. Finally, section 
8 presents the concluding remarks. 

2. Experimental Setup 
This section describes our hardware and software platforms 

used to run real experiments on reasonable server hardware, 
studied applications and the tuning parameters, our 
measurement methodology, and tools used to enhance our 
results analysis. 

2.1 Hardware/software infrastructure 
We conduct our study on an 8-node cluster comprised of 

Intel Atom C2758 CPUs. Each Intel Atom has 8 processor cores 
per node and a two-level cache hierarchy with 8GB of system 
memory using DDR3 @1600MHz.The operating system is 

Ubuntu 13.10 with Linux kernel 3.11 and Hadoop version 2.6.1. 
For this study, we have focused on the parameters that are 
system configurable and are transparent at the user level, namely 
HDFS block size, input data size per node, number of mappers, 
and the operating frequency of the processor. While there are 
more tuning parameters to be included, this paper attempts to 
provide an in-depth understanding of how concurrent tuning of 
the studied parameters at various levels can impact the 
performance and energy efficiency. The buffer page caches are 
flushed at the start of each run to ensure that data is read fresh 
from HDFS. 

2.2 Application Diversity 
A Hadoop MapReduce cluster can host a variety of big data 

applications running concurrently. We have included 11 widely 
used Hadoop applications in this research. Out of these, four 
applications are Hadoop micro-benchmarks that are used as 
kernels in many Big Data applications, namely Wordcount-WC, 
Sort-ST, Grep-GP and TeraSort-TS in this paper. We have also 
included seven real-world applications namely Naïve Bayes 
(NB), FP-Growth (FP), Collaborative Recommendation 
Filtering (CF), support vector machine (SVM), PageRank (PR), 
Hidden Markov Model (HMM), and KMeans (KM) [18].  

2.3 Input Data Size 
The size of data can have significant impact on 

microarchitectural behavior [31]. For this research, we therefore 
use three input data sizes per node for each application; 1GB, 
5GB, and 10GB representing small, medium and large data sets. 
For instance, 10GB input data size per node presents 80GB input 
data size processed by application in an 8-node cluster.  

2.4 Interdependent Tuning Parameters 
We have studied the impact of the system, application, and 

architectural level tuning parameters including the HDFS block 
size (64MB, 128MB, 256MB, 512MB, 1024MB), the number 
of mappers that run simultaneously on a single node (1-8), and 
frequency settings (1.2GHz, 1.6GHz, 2.0GHz, 2.4GHz) to 
evaluate how these parameters affect energy efficiency.  

2.5 Measurement 
We use Perf [4] to capture the performance characteristics of 

the studied applications. Perf is a Linux profiler tool that records 
the hardware performance counters. Perf exploits the 
Performance Monitoring Unit (PMU) to measure performance 
as well as other hardware events accurately. Perf multiplexes the 
PMUs, therefore, to obtain accurate values for several hardware 
events, we run each workload multiple times. 

For measuring power consumption, Wattsup PRO power 
meter is used [5]. It measures and records power consumption at 
one second granularity. The power reading is for the entire 
system, including core, cache, main memory, hard disks and on-
chip communication buses. We have collected the average 
power consumption of the studied applications and subtracted 
the system idle power to estimate the dynamic power dissipation 
of the entire system. The same methodology is used in [43], for 
power and energy analyses. Dstat [26] is used for main memory, 
disk and CPU utilization analysis. Dstat is a system-monitoring 
tool, which collects various statistics of the system. 



3  
  

3. MapReduce Applications Characterization  
In this section we characterize MapReduce applications by 

monitoring the real time system resources as well as micro-
architectural metrics to understand their runtime behavior and 
resource utilization. This analysis helps us to generalize the 
optimal configuration parameters with respect to the application 
type. 

3.1 Resource Utilization Analysis 
To explore the resource utilization of MapReduce 

applications, we collect the following metrics: 
• CPU utilization. The dstat profiling tool classifies CPU 

utilization into different types such as CPUuser, CPUidle, 
CPUiowait, etc. We collect the data for CPUuser utilization 
which represent CPU usage by a user (usr) processes - and 
CPUiowait which represents the percentage of time CPU is 
idle waiting for I/O operation to complete. 

• I/O read/write Bandwidth, which reports the disk I/O 
bandwidth rate. 

• Memory Footprint, which reports the minimum amount of 
memory (in KB) required to run the application. 
Additionally, the MemCache metric shows the amount of 
file contents kept in the cache that are yet to be written to 
the disk. 
In addition, we have included several micro-architectural 

parameters including, IPC, Instruction Cache Misses per Kilo 
instructions (MPKI), LLC MPKI, and Branch Misprediction 
rate. 

3.2 PCA and Clustering Analysis 
Unfortunately, there is no single perfect hardware counter 

that accurately indicates performance behavior of an 
application. There is substantial debate about what hardware 
counter event can accurately indicate performance across a 
variety of applications [17, 29, 31]. In this paper several micro-
architectural metrics and runtime resource utilization metrics are 
collected and are used in identifying MapReduce application 
characteristics. However, collecting all of the performance 
counter data requires multiple runs because the counter 
resources are multiplexed in the microserver. In order to avoid 
multiple runs, we would like to identify a minimal set of 
counters that can be collected in a single run, maximizing 
correlation with performance, while minimizing redundant 
counters (correlated to each other). These should be 
representative of application, software stack, and micro-
architecture interactions in the presence of various system calls.  

A systematic approach for this purpose is to use Principal 
Component Analysis (PCA). PCA analysis allows us to monitor 
the most vital and distinct micro-architecture parameters to 
capture application characteristics. PCA captures most of the 
data variation by rotating the original data to a new variable in a 
new dimension, commonly known as the principal components 
(PC). These new variables are uncorrelated to each other and are 
a linear combination of the original data. We employ PCA to 
project our 14 original gathered features into a new dimensional 
space to determine the most important features along different 
PC dimensions. The number of PCs can be less than or equal to 

the number of original data variables. We only present the first 
two PCs covering 85.22% of the total variance due to space 
limitation. PCA is sensitive to the relative scaling of the original 
variables. Thus, we have normalized the data to the unit normal 
distribution for segregating the impact of the variable range of 
each feature metric. Figure 1 shows the scatter plot of the first 
and second principal components, PC1 and PC2. Features that 
appear closer in this Figure typically exhibit similar behavior.  

Later, we apply a hierarchical clustering technique to group 
similar features and finally analyze the results as shown in the 
Figure 1. We have reduced the features to 7 most important and 
distinct ones that are CPUuser, CPUiowait, I/O Read, I/O write, 
IPC, Memory Footprint, LLC MPKI to characterize the 
MapReduce applications. Based on these resource profiling and 
micro-architectural characteristics, the applications are 
characterized into compute-bound (C), combination of 
compute-bound and I/O-bound referred to as hybrid (H), 
memory-bound (M) and I/O-bound (I) classes. We observe 
(details are presented in Section 4) that the optimal configuration 
parameters for maximum efficiency are highly correlated to 
application type (I/O bound, compute-bound, memory-bound or 
hybrid), which can be identified by underlying 
microarchitectural behavior.  

4. Fine-Tuning MapReduce Applications for 
Eenergy-Efficiency 

In this section, we discuss and analyze the experimental 
results of the MapReduce applications at a single node level on 
an Atom microserver, across a wide range of Hadoop 
configuration parameters. Hadoop MapReduce performance 
and energy efficiency is sensitive to many configuration and 
system parameters; however, we focus on the parameters that 
are system configurable and transparent to the user space, 
configurable at the user level. This analysis helps to determine 
how critical it is to jointly fine tune system, application and 
architecture level parameters for maximum energy-efficiency 
for multiple scheduled MapReduce applications concurrently, 
and how fine tuning these parameters creates new opportunities 
for co-locating them at the node level. 
4.1 Execution Time Analysis  

Figure 2 (represented as a bar graph) shows the execution 

 
Figure 1: Scatter plot of feature metrics using first and second 

principal components 
 

-1.5

-1

-0.5

0

0.5

1

1.5

2

-1.5 -1 -0.5 0 0.5 1 1.5 2

P
C

2

PC1

CPUiow

dskWrite ioWrite

IPC

dskRead

ioRead

memCache

Br-Misses

MemFoot

CPUuser

Icache

LLCcache



4  
  

time of MapReduce applications with respect to the number of 
mapper slots, in brief mappers, HDFS block size and operating 
frequency with a fixed input data size of 10GB per node. We 
have performed the experiments for the input data size of small, 
medium, and large with all mappers (ranges from 1 to 8), 
however due to space limitation and graph readability, Figure 2 
presents the results for selected applications with 1, 4 and 8 
mappers at the large input data size. Across almost all studied 
applications, the HDFS block size of 64MB -- the default HDFS 
block size -- has the highest execution time. Small HDFS block 
size generates a large number of map tasks [number of map task 
= Input data size /HDFS block size], which increases the 
interaction between master and slave nodes. These interactions 
are necessary to request the HDFS block location information. 
On the other hand, large HDFS block size reduces the slave node 
interaction with the master node. Additionally, with a large 
block size, less metadata is required to be stored on the master 
node, which can more likely be placed in the memory, which is 
faster to access. Conversely, storing large chunks of data on a 
node can create a performance bottleneck if the application 
accesses the same data repeatedly. This behavior explains the 
parabolic behavior in the compute-bound and hybrid 
applications such as Wordcount, Grep, and TeraSort. 

The results show performance improves significantly with the 
increase in the HDFS block size. This behavior is consistent 
across all applications when the number of mappers is less than 
4. With few mappers, the largest HDFS block size generates an 
adequate number of map tasks to keep all cores in the system 
busy. On the other hand, a medium HDFS block size of 256MB 
and 512MB are preferable for large numbers of cores/mapper 
slots as it generates more map tasks to run simultaneously with 
fast execution time per map task. The exception is Sort, which 
is an I/O application. Other applications, including Wordcount, 
Grep, and TeraSort show a parabolic behavior at large number 
of mappers and achieve the minimum execution time at 256MB 
or 512MB block size. Sort’s optimal HDFS block size is 
1024MB whereas for Wordcount this is 256MB with the 
maximum number of mappers. Similar to [3], we have observed 
that TeraSort shows hybrid characteristics. The Map phase of 
TeraSort is CPU-bound and Reduce phase is I/O-bound, 
therefore unlike Sort, TeraSort’s optimal HDFS block size is 
512MB. Grep also displays hybrid characteristics. Grep consists 
of two separate phases, search and sort, running in sequence. 
The search phase is compute-bound and the sort phase is I/O-
bound.  

In addition, we have studied the impact of CPU frequencies 
on performance to understand how MapReduce applications are 
sensitive to this tuning parameter. The results show that the Sort 
application is less sensitive to frequency, compared to other 
benchmarks. For this benchmark when CPU frequency is 
reduced to half the performance only drops by 9%. Sort is an I/O 
bound benchmark, which spends most of its execution time 
requesting data and waiting for I/O operations to complete. 
Observation: Although the optimal HDFS block size carefully 
decided by the application type for the peak performance, using 
256MB block size for compute bound and 1024MB for I/O- 
bound applications can avoid the extensive experimental search 

to determine the best HDFS block size and achieve close to the 
upper bound performance. 
4.2 Energy-efficiency Analysis 

In order to characterize the energy efficiency, we evaluate 
Energy Delay Product (EDP) metric to investigate trade-off 
between power and performance. Energy Delay Product (EDP) 
is a fair metric to study the impact of changing optimization 
knobs in an architecture. EDP (or Power x ExecutionTime2) 
represents a trade-off between power and performance. Without 
EDP and just using energy metric for comparison, we can simply 
reduce the voltage and frequency in an architecture, and reduce 
its energy, however at a cost of lowering the performance 
(increased execution time). Therefore, performance along with 
energy is important to find out the impact of optimization 
parameters. The results presented in Figure 2 show that setting 
the number of mappers equal to the number of available cores 
minimizes the EDP. The worst EDP is reported with one 
mapper, while 8 mappers give the best EDP by effectively 
utilizing all available cores. The margin of EDP improvement 
becomes smaller with the increase in the number of mappers. 
 Thus, the best energy efficiency is achieved when we utilize 
all available cores. In other words, the performance 
improvement achieved by adding more cores outweighs the 
power overhead associated with additional cores. The EDP trend 
is consistent with the execution time trend showing that in I/O 
bound applications, the maximum energy efficiency is achieved 
with the largest HDFS block size, however compute-bound and 
hybrid applications achieve optimal EDP at 256MB and 
512MB, respectively. Moreover, we have conducted the 
analyses of frequency scaling on the EDP results. Energy 
efficiency is maximized at the highest frequency of 2.4GHz in 
all applications with the exception of Sort. Sort provides the 
maximum energy efficiency at 1.6GHz. As discussed earlier, 
Sort is an I/O bound application that spends a significant amount 
of execution time reading data from and writing to HDFS. This 
makes the performance of Sort almost insensitive to the 
operating frequency. 
 When we look at the best combination of all these 
parameters, the results show that by simultaneously fine-tuning 
the HDFS block size and operating frequency, we can reduce the 
number of mappers and still be as energy efficient as the 
maximum number of mappers. For example, Grep with 512 MB 
block size running at 2.4 GHz frequency with 2 and 4 mappers 
achieves higher or similar energy efficiency compared to the 
maximum number of mappers, i.e. 8.  
Observation: The results indicate that by fine-tuning frequency 
and HDFS block size, we can maximize energy efficiency with 
fewer mappers. Besides, carefully fine-tuning the system and 
architecture parameter suggests the potential for reducing the 
reliance on full core occupancy in the system and creates the 
possibility to co-locate multiple applications onto one node.  
4.3 EDP Sensitivity Analysis 
 To determine how important it is to jointly tune the 
optimization parameters, we calculate the EDP for various 
tuning parameters individually and concurrently. If the variation 
found to be large, it highlights the importance of carefully fine-
tuning parameters for energy-efficiency, otherwise an arbitrary  



5  
  

concurrently. All EDP results are normalized to the EDP result  

 
Figure 2(a): Execution Time and EDP of WordCount with various mappers, HDFS block size and operating frequencies  

 
Figure 2(b): Execution Time and EDP of Sort with various mappers, HDFS block size and operating frequencies 

 
Figure 2(c): Execution Time and EDP of Grep with various mappers, HDFS block size and operating frequencies 

 
Figure 2 (d): Execution Time and EDP of Terasort with various mappers, HDFS block size and operating frequencies 

 

0.0E+0

1.0E+8

2.0E+8

3.0E+8

4.0E+8

5.0E+8

6.0E+8

7.0E+8

8.0E+8

9.0E+8

0

2000

4000

6000

8000

10000

12000

14000

64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024

Mapper8 Mapper 4 Mapper 1

E
D

P
 (

Js
e

c)

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

c)

HDFS Block Size (MB)

WordCount

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 256MB Block Size

Best EDP: 8 mappers, 256MB Block Size, Frequency 2.4GHz

Execution Time: 

EDP: 

0.0E+0

1.0E+7

2.0E+7

3.0E+7

4.0E+7

5.0E+7

6.0E+7

0

500

1000

1500

2000

2500

3000

3500

64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024

Mapper8 Mapper 4 Mapper 1

E
D

P
 (

Js
e

c)

E
xe

cu
ti

o
n

 T
im

e
 (

S
e

c)

HDFS Block Size (MB)

Sort

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 1024MB Block Size

Best EDP: 8 mappers, 1024MB Block Size, Frequency 1.6GHz

Execution Time: 

EDP: 

0.0E+0

1.0E+7

2.0E+7

3.0E+7

4.0E+7

5.0E+7

6.0E+7

7.0E+7

0

500

1000

1500

2000

2500

3000

3500

4000

64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024

Mapper8 Mapper 4 Mapper 1

ED
P

 (
Js

ec
)

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c)

HDFS Block Size (MB)

Grep

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 256MB Block Size

Best EDP: 8 mappers, 512MB Block Size, Frequency 2.4GHz

EDP: 

Execution Time: 

0.0E+0

5.0E+7

1.0E+8

1.5E+8

2.0E+8

2.5E+8

0

1000

2000

3000

4000

5000

6000

7000

8000

64 128 256 512 1024 64 128 256 512 1024 64 128 256 512 1024

Mapper8 Mapper 4 Mapper 1

ED
P

 (
Js

ec
)

Ex
ec

u
ti

o
n

 T
im

e 
(S

ec
)

HDFS Block Size (MB)

TeraSort

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

1.2 Freq 1.6 Freq 2.0 Freq 2.4 Freq

Best Execution Time: 8 mappers, 512MB Block Size

Best EDP: 8 mappers, 512MB Block Size, Frequency 2.4GHz

EDP: 

Execution Time: 



6  
  

selection would be sufficient. To understand the variation in 
energy efficiency with respect to the tuning parameters we 
present EDP sensitively analysis results in Figure 3(a-d) by 
changing HDFS block size and frequency individually and 
concurrently. All EDP results are normalized to the EDP result 
of 64MB HDFS block size running at the minimum operating 
frequency of 1.2GHz. 

The results show that EDP sensitivity to HDFS block size 
becomes smaller with the increase in the number of mappers. 
Similarly, EDP sensitivity to operating frequency becomes 
smaller with the increase in the number of mappers.  

We also observe that the concurrent tuning of HDFS block 
size and frequency achieves the highest EDP improvement 
compared to when tuning them individually. The EDP 
improvement achieved by concurrently tuning HDFS block size 
and operating frequency ranges from 3.73% to 87.39% 
compared to the individual tuning parameters. Also the results 
show that the margin of EDP improvement decreases with the 
increase in the number of mappers. It is important to note that it 
is not ideal in a datacenters to assign all cores of a single node 
to a single application, especially for an I/O intensive application 
that exhibits a low CPU utilization. 
Observation: The results show that applications are more 
sensitive to frequency and HDFS block size at small number of 
mappers. Therefore, for co-locating applications on a single 

node, while each would get fewer mappers/cores allocated, it is 
critical to determine the fine-tuned these parameters to observe 
EDP improvement.  

5. Co-Locating Applications at the Node Level 
The results presented in the previous section show that for  

MapReduce applications, careful fine tuning of parameters 
made it more likely that maximum energy efficiency is achieved 
without utilizing all cores. Thus, we illustrate that co-locating 
MapReduce applications on the same server are typically 
effective, particularly when the application types are diverse and 
have different bottlenecks, as long as they are carefully (and 
cooperatively) tuned. The alternative is to instead bias toward 
isolating jobs on servers.  

To compare co-located tuned applications with the 
individually tuned applications, we study two different 
optimization strategies: individually-located application 
optimization (ILAO) and co-located application optimization 
(COLAO). This helps us understand whether tuning MapReduce 
applications together or individually will provide better EDP. 

• ILAO runs the applications serially where each 
application is tuned individually to achieve the 
maximum energy-efficiency. 

• COLAO runs multiple applications at a node where 
application tuning parameters are optimized 
concurrently for maximum energy-efficiency. 

             
Figure 3(a): WordCount EDP sensitivity analysis w.r.t. HDFS  Figure 3(b): Sort EDP sensitivity analysis w.r.t. HDFS 

HDFS block size, Frequency (individually) and HDFS             block size, Frequency (individually) and HDFS 
           block size +Frequency (concurrently)    block size +Frequency (concurrently) 

              
Figure 3(c): Grep EDP sensitivity analysis w.r.t. HDFS   Figure 3(d): TeraSort EDP sensitivity analysis w.r.t. HDFS 

HDFS block size, Frequency (individually) and HDFS             block size, Frequency (individually) and HDFS 
           block size +Frequency (concurrently)    block size +Frequency (concurrently) 

 

0

20

40

60

80

100

1 2 3 4 5 6 7 8

E
D

P
 S

e
n

si
ti

v
it

y
 (

%
)

Mappers

WordCount
hdfs freq hdfs+freq

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

E
D

P
 S

e
n

si
ti

v
it

y
 (

%
)

Mappers

Sort
hdfs freq hdfs+freq

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8

E
D

P
 S

e
n

si
ti

v
it

y
 (

%
)

Mappers

Grep
hdfs freq hdfs+freq

0

20

40

60

80

100

1 2 3 4 5 6 7 8

E
D

P
 S

e
n

s
it

iv
it

y
 (

%
)

Mappers

TeraSort
hdfs freq hdfs+freq



7  
  

In both studied optimization strategies, various 
combinations of tuning parameters are explored to find the one 
that maximizes the energy efficiency. At the node level given 
the availability of 8 cores we can co-locate 8, 6, 4, 2, and 1 
application simultaneously. However, our results indicate that 
while 2 co-located applications provide improvement over 1 
application in terms of energy efficiency, co-locating beyond 2 
applications (i.e. 4, 6 and 8) at a node level degrades energy 
efficiency significantly. Therefore, throughout this paper we 
focus mainly on co-locating 2 applications at the node level.      

Figure 4 presents the EDP ratio of ILAO and COLAO 
techniques. We have performed experiments with different 
combinations of input data sizes across all studied applications, 
however due to space limitation, Figure 4 shows EDP 
comparison of studied optimization policies when co-located 
MapReduce applications have same input data size. The 
presented COLAO results are normalized to their corresponding 
ILAO values. We observe that in almost all studied cases 
COLAO outperforms ILAO in terms of EDP (by upto 4.52x). 
Pairing I/O bound applications together results in the highest 
EDP gap of 4.52x between COLAO and ILAO. With COLAO 
optimization technique, co-located applications are running with 
fewer mappers. For instance, H will run on 5 mappers, and I will 
be assigned to 3 mappers when H-I applications are co-located 
on a single node. On the other hand, ILAO will be running each 
application on the maximum mappers serially. On the other 
hand, ILAO will be running each application on the maximum 
mappers serially. On the other hand, the EDP gap reduces 
between the two techniques when the memory bound 
applications are co-located with other applications. This is due 
to the fact that a memory bound application with high execution 
time typically prefers the maximum number of cores/mappers 
and suffers when sharing. Overall, the results support the idea of 
co-locating and concurrent fine-tuning of applications rather 
than scheduling/fine-tuning them individually. 

 
6. Scalability 

In this section, we evaluate the scalability of co-located 
MapReduce applications on a local cluster with 8 nodes atom 
servers. 
6.1 Application mapping policies 

We have evaluated the workloads, shown in Table 1 where 
each workload comprises of 16 applications. Various 

application mapping policies are studied with default 
configuration parameters as well as after tuning configuration 
parameters. With respect to the number of nodes in a local 
cluster, the mapping policies studied in this paper are as follows:   
1. Serial Mapping [NT]: Each application has access to the 

entire cluster. [Not Tune-NT] indicates that we are running 
applications without tuning their configuration parameters. 
Serial Mapping is referred as SM.  

2. Single Node Mapping [NT]: Each application is being 
assigned to a single node (all 8 cores are active on nodes). 
Single Node Mapping is referred as SNM. 

3. ILAO [T]: Each application is being assigned to a single 
node and is tuned individually to achieve the maximum 
energy-efficiency. 

4. Core Balance Mapping [NT]: Two applications are co-
located on a single node, and the same number of cores (4 
cores) is assigned to each application to run. Core Balance 
Mapping is referred as CBM.  

5.  COLAO [T]: Co-locate applications at the node level after 
concurrently tuning the configuration parameters for 
maximum energy-efficiency.  

Figure 5 presents the EDP results for randomly selected 
workload policies with 8 nodes at the local cluster. All results 
are normalized to the result of COLAO mapping policy. Serial 
mapping with no tuning (NT) performs poorly. However, Single 
Node mapping and ILAO mapping policies that allow multiple 
applications to run in parallel improve EDP. Furthermore, we 
have studied the impact of co-locating applications at the node 
level – Core Balance Mapping and COLAO mapping. Core 
Balance mapping is sensitive to the behavior of applications in 
a workload. Compute-bound (C) and memory-bound (M) 
workloads illustrate poor EDP for Core Balance mapping policy 
compared to Single Node mapping in the workload WS4, WS5, 
WS7 and WS8. This is due to the fact that Compute-bound (C) 
and memory-bound (M) workloads applications with high 
execution time typically prefers the maximum number of 
cores/mappers and suffers significant performance loss when 
sharing. 

Additionally, we have observed significant EDP 
improvement by fine-tuning the configuration parameters of 
applications as compared to the applications that run without 
tuning the studied parameters. For instance, COLAO has on 
average 68.53% and 64.162% better energy efficiency as  

  
Figure 4: EDP improvement of training workloads with the same input data size  

0

0.2

0.4

0.6

0.8

1

1.2

I-
I

I-
H

H
-H

C
-H C
-I

C
-C

M
-I

M
-H

M
-C

M
-M I-

I

H
-H I-
H

C
-H C
-I

C
-C

M
-H

M
-I

M
-C

M
-M I-

I

H
-H I-
H

C
-H C
-I

C
-C

M
-H

M
-I

M
-C

M
-M

Small Input Data Size Mediumn Input Data Size Large Input Data Size

C
O

LA
O

_
e

d
p

 /
 I

LA
O

_
e

d
p

COLAO_edp ILAO_edp



8  
  

compared to mapping policies with no tuning i.e. Single Node 
and Core Balance, respectively. In addition, in the comparison 
of tuned mapping policy- ILAO and COLAO, we observe that 
COLAO achieves on average 44.272% better energy efficiency 
compared to ILAO.   
Observation: The results indicate that COLAO mapping policy 
not only achieve maximum energy efficiency compared to other 
studied mapping policies especially ILAO, it also reduces the 
number of processing cores/nodes required  to maximize EDP, 
by fine-tuning configuration parameters and co-locating 
MapReduce application at a node level.  
 
6.2 Case Study 

 To validate that COLAO requires less number of nodes to 
process the MapReduce applications and is still more energy 
efficient compared to ILAO, the workloads of 16 applications 
shown in Table 1 are scheduled using ILAO and COLAO 
mapping policy on a local cluster of 4 and 8 nodes in Figure 6 
(a, b). In case of 8 nodes, ILAO can only map 8 applications at 
a time. On the other hand, COLAO can map all 16 applications 
simultaneously on 8 nodes by fine-tuning the system, 
architectural and application configuration parameters.  

 Figure 6 (a) shows the EDP results for COLAO with 2, 3 
and  4 nodes normalized to the results of ILAO at 4 nodes (lower 
is better). ILAO takes 4 iterations to complete the workload, 
however, COLAO can complete the execution of all 
applications in the workload in 2 iterations by co-locating 
applications simultaneously on 4 nodes. Similar to Figure 4 and 
Figure 5, EDP results of COLAO_n4 outperforms ILAO_n4. 

Although, COLAO attains higher EDP at 2 nodes (COLAO_n2) 
compared to ILAO_n4, the important observation is that the 
EDP results of COLAO_n3 are comparable to ILAO_n4 for 
most of studied workloads.  

Similarly, in Figure 6(b) where we have considered 8 nodes 
to execute 16 applications, COLAO outperforms ILAO by 2.24 
times on average by accommodating double applications at node 
level compared to the ILAO. Most importantly, the EDP results 
for COLAO are also promising with 6 and 7 nodes by the factor 
of 1.04 and 1.35 times on average compared to ILAO. Compare 
to the C-bound and M-bound application, I-bound and hybrid 
applications can still be energy efficiency with less than half 
number of nodes required by ILAO. 

We conclude that despite the increasing complexity of the 
parameters, through fine-tuning configuration parameters and 
concurrently running and tuning multiple MapReduce 
applications, COLAO reduces the number of nodes/cores to 
execute the applications and even enhances the EDP. 

 
7.  Related Work 

There has been a significant amount of work to address the 
challenge of co-locating applications on multicore processor 
[19, 20]. Several techniques have been developed that perform 
job scheduling to alleviate the shared resource contention. The 
work in [7] have introduced a synthetically generated base 
vectors and have classified the application's usage with respect 
to the shared resources by co-locating them along the base 
vectors for selecting the optimal pairing. Additionally, authors 
have calculated the application's sensitivity; i.e. how 

Table 1: Studied workload scenarios 

 

Workload 

Scenarios
Application type Studied Applications

WS1 [C,C,C,C,C,C,C,C,C,C,C,C,C,C,C,C]
[svm, svm, wc,wc, svm, wc, mar, wc, 

mar, mar, wc,wc, mar, wc, svm, wc]

WS2 [H,H,H,H,H,H,H,H,H,H,H,H,H,H,H,H] [ts, gp, ts, ts, ts, gp, ts, ts, ts, gp, ts, ts, ts, gp, ts, ts]

WS3 [I,I,I,I,I,I,I,I,I,I,I,I,I,I,I,I] [st, st, st, st, st, st, st, st, st, st, st, st, st, st, st, st]

WS4 [C,C,H,I,C,C,H,I,C,C,H,I,C,C,H,I] [svm, wc, ts, st, wc, wc, ts, st, mar, svm, ts, st,  wc, wc, ts, st]

WS5 [M,H,I,H,M,H,I,H,M,H,I,H,M,H,I,H] cf, ts, st, ts, cf, ts, st, ts, fp, ts, st, ts, fp, ts, st, ts ]

WS6 [H,I,H,I,H,H,I,I,H,I,H,I,H,I,H,I] [ts, st, ts, st, ts, ts, st, st,ts, st, ts, st,ts, st, ts, st ]

WS7 [M,M,M,I,M,M,M,I,M,M,M,I,M,M,M,I] [cf, cf, cf, st, cf, cf, cf, st, cf, cf, cf, st, cf, cf, cf, st]

WS8 [M,M,H,I,M,M,H,I,C,C,H,I,C,C,H,I] [cf,fp, ts, st, cf, fp, ts, st, mar, svm, ts, st,  wc, wc, ts, st]

 
Figure 5: EDP improvement with respect to various mapping scenarios at 8 Nodes  

(A = SM, SNM, ILAO, CBM, COLAO) 
 

0.
00

87

0.
00

70

0.
00

12

0.
02

11

0.
00

41

0.
00

54

0.
01

02

0.
01

90

0.
27

16

0.
29

58

0.
07

07

0.
55

50

0.
33

91

0.
31

53

0.
35

51 0.
55

29

0.
46

42

0.
42

22

0.
22

21

0.
91

01

0.
62

65

0.
42

47 0.
62

12 0.
78

86

0.
46

62

0.
45

25

0.
19

17

0.
26

49

0.
32

51 0.
46

98

0.
33

84

0.
26

55

1 1 1 1 1 1 1 1

WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8

8 NODES

ED
P

_C
O

LA
O

 /
 E

D
P

_A

SM [NT] SNM [NT] ILAO [T] CBM [NT] COLAO [T]



9  
  

performance impacts by lack of a specific processor resource, 
and application's intensity; i.e. how much application stresses a 
particular processor resource. Many co-locating studies on CMP 
platforms [8, 9, 10, 11 and 23] investigate shared cache 
contention-aware scheduling techniques to improve the 
performance and fairness. [12] proposed CRUISE that examines 
the LLC utilization information to schedule multi-programmed 
applications on CMP. The cache aware scheduler comprises the 
classification scheme and scheduling policy. Classification 
scheme is used to identify which co-located applications are 
effective to schedule and scheduling policy allocates the 
assigned thread to the cores based on the classification [13]. In 
[21], authors have used L2 cache miss rate predictions to assign 
suitable threads together on a CMP platform. In [22], authors 
model resource interference of server consolidation workloads 
by estimating cache usage while co-locating two jobs at a time. 
Bubble-up [30] and Bubble-Flux [41], a characterization and 
profiling methodology, predicts the performance degradation 
between pairwise application co-locations. However, they have 
not discussed how the interplay of tuning parameters impacts the 
performance and energy efficiency of multiple scheduled 
applications. 

There are also several works that attempt to find which 
applications should co-locate simultaneously on a CMP. [14] 
introduces a resource-aware co-locating technique that uses a 
holistic approach to co-locate the applications for performance 
and energy improvement. The effectiveness of this approach is 
dependent on the studied multi-programmed workload that 
comprises of a mixture of high contention and low contention 

applications. The work in [15] has studied the co-located HPC 
applications by evaluating the affinity-aware contention 
information with the greedy allocation heuristics technique. Our 
work is orthogonal to these resource-awareness techniques.  

Big data frameworks and in particular Hadoop-based 
applications [16, 26, 27] inherent different microarchitectural 
behavior than traditional application (SPEC and PARSEC) [1, 
28, 29, 32, 33, 34]. In addition, these frameworks have large set 
of tuning knobs, which individually and concurrently influence 
the mapping decision. All of above techniques therefore are not 
directly applicable for co-locating outcome of MapReduce 
applications. It is also important to note that most of prior 
research that focus on scheduling has shown promising results, 
however using simulation-based methods [37], which cannot 
capture the real-system behavior of complex big data 
framework.  

While several recent work show [42, 43] how tuning 
individual or a subgroup of tuning parameters at a time improves 
performance, they have ignored the interplay among all of these 
parameters at various level of abstractions. [42, 43] mainly 
focused on fine-tuning optimization parameters for individual 
applications and in isolation, however, our work targets the 
opportunities for co-optimizing these tuning parameters for 
multiple scheduled applications, simultaneously. [44, 45] use 
online classification to estimate interference between co-located 
workloads that are unlikely to cause interference, however, [44] 
does not study the impact of tuning parameters. These studies 
focus on performance analysis as compared to our work that 
emphasizes on energy efficiency. Furthermore, unlike [43] and 

  
Figure 6 (a): EDP analysis of COLAO and ILAO at 4 Nodes (i = Nodes equal to 2, 3, 4)  

   
Figure 6 (b): EDP analysis of COLAO and ILAO at 8 Nodes (i = Nodes equal to 4, 5, 6, 7, 8)  

 

0

1

2

3

4

WS1 WS2 WS3 WS4 WS5 WS6 WS7 WS8

C
O

LA
O

_i
 /

 IL
A

O
_n

8

COLAO_n4 COLAO_n5 COLAO_n6

COLAO_n7 COLAO_n8 ILAO_n8



10  
  

[45], our results illustrates that HDFS block size has a significant 
impact on the performance and energy efficiency.  In addition, 
[43] has performed a limited study and on only two small 
Hadoop kernels. 

8. Conclusions  
MapReduce applications with their complex and deep 

software stacks, is influenced by many tuning parameters such 
as number of mappers, HDFS block size, and frequency of the 
core. The large number of tuning parameters provides more 
opportunity for optimization, but it is also challenging problem.  

This paper examines the impact of tuning parameters and the 
interplay among them on performance and energy efficiency. 
We observe that although maximum energy efficiency on a 
single node is achieved while utilizing all available 
cores/mappers slots, the reliance on the maximum number of 
cores reduces significantly after concurrently fine-tuning 
parameters such as frequency and HDFS block size. This 
provides opportunities to co-locate multiple MapReduce 
applications at the node level. In addition, the level of sensitivity 
of EDP to these parameters when running applications with 
fewer mapper slots/cores increases significantly, highlighting 
the importance of fine-tuning when co-locating multiple 
applications onto one node. Comparing two scheduling 
strategies where one fine-tune applications individually and run 
them serially and the other where fine-tune applications together 
and co-locate them at the node level, show that concurrent fine-
tuning of MapReduce applications (at application, architecture 
and system levels), and co-locating them reduces the number of 
nodes required to execute MapReduce applications by half while 
improving the EDP by 2.2X, on average, for a wide range of 
studied workloads.  

References 
[1] Malik, M. et al. “Big data on low power cores: Are low power embedded 

processors a good fit for the big data workloads?” in ICCD 2015. 
[2] Ferdman, M. et al. "Clearing the clouds: a study of emerging scale-out 

workloads on modern hardware." ACM SIGPLAN 2012. 
[3] Huang, S., et al. "The HiBench benchmark suite: Characterization of the 

MapReduce-based data analysis," In the proc. of 26th ICDEW, 2010  
[4] “Perf,” https://perf.wiki.kernel.org/index.php/Main Page. 
[5] “Wattsuppro power meter,” [online]  
[6] “Dsat,” http://lintut.com/dstat-linux-monitoring-tools/. 
[7] Doucette, D., et al., “Base vectors: A potential technique for 

microarchitectural classification of applications,” in WIOSCA 2007. 
[8] Jiang, Y., et al., “Analysis and approximation of optimal co-scheduling 

on chip multiprocessors,” in PACT 2008 
[9] Xie, Y., et al., “Dynamic classification of program memory behaviors in 

cmps,” in the 2nd CMP-MSI 2008. 
[10] Knauerhase, R., et al., “Using os observations to improve performance in 

multicore systems,” in IEEE MICRO 2008. 
[11] Chandra, D., et al., “Predicting inter-thread cache contention on a chip 

multi-processor architecture,” in HPCA 2005  
[12] Jaleel, A., et al., “Cruise: cache replacement and utility-aware 

scheduling,” in ACM SIGARCH Computer Architecture News, 2012  
[13] Blanche, A. D.,  et al., “Addressing characterization methods for memory 

contention aware co-scheduling,”Journal of SC, vol.71,1451–1483, 2015.  
[14] Bhadauria, M., et al., “An approach to resource-aware co-scheduling for 

cmps,” in ACM ICS 2010 
[15] Kim, S., “Plat-form and co-runner affinities for many-task applications in 

distributed computing platforms,” in CCGrid 2015  
[16] Xiong, W., et al., “A characterization of big data benchmarks,” in Big 

Data, 2013  

[17] Jia, Z., et al., “Characterizing and subsetting big data workloads,” in 
IISCW 2014  

[18] Apache Mahout: scalable machine-learning and data-mining library 
[19] Hankendi, C. et al., "Energy-efficient server consolidation for multi-

threaded applications in the cloud." In IGCC 2013  
[20] Dey, T. et al., "Characterizing multi-threaded applications based on 

shared-resource contention." In ISPASS 2011 
[21] Fedorova, A. et al., "Performance of multithreaded chip multiprocessors 

and implications for operating system design." (2005). 
[22] Tang, L. et al., "The impact of memory subsystem resource sharing on 

datacenter applications." In ISCA 2011  
[23] Kim, Y. K., et al., "A symbiotic evolutionary algorithm for the integration 

of process planning and job shop scheduling." Computers & Operations 
Research 2003 

[24] Che, S., et al., “A characterization of the Rodinia benchmark suite with 
comparison to contemporary CMP workloads.” In  IISWC 2010  

[25] Malik, M., et al. "System and architecture level characterization of big 
data applications on big and little core server architectures." In Big Data 
2015 

[26] Li, A., et al. "CloudCmp: comparing public cloud providers." Proc. of the 
10th ACM SIGCOMM conf. on Internet measurement. ACM, 2010 

[27] Armstrong, T.G., et al., “LinkBench: a database benchmark based on the 
Facebook social graph.” In Proc. of ACM SIGMOD 2013  

[28] Anwar, Ayesha, et al., "On the use of microservers in supporting hadoop 
applications." In CLUSTER, 2014 

[29] Krish, K. R., et. al., "[phi] Sched: A Heterogeneity-Aware Hadoop 
Workflow Scheduler." In MASCOTS, 2014. 

[30] Mars, J., et al. "Bubble-up: Increasing utilization in modern warehouse 
scale computers via sensible co-locations." In MICRO 2011. 

[31] Bienia, C. et al., “Benchmarking modern multiprocessors. “ New York: 
Princeton University 2011 

[32] Chung, E. S., et al., “Linqits: Big data on little clients.” In ACM 
SIGARCH Computer Architecture News 2013 

[33] Loghin, D., et al., “A performance study of big data on small nodes. 
Proceedings of the VLDB Endowment, 8(7):762–773, 2015. 

[34] Wang, L. et al., “Bigdatabench: A big data benchmark suite from internet 
services.” In  HPCA 2014 

[35] Aktasoglu, M. S. "A Workload Mapping Method for Multicore Systems 
Using Cross-run Statistics." PhD diss., The Penn State University, 2012. 

[36] Blem, E. et al., "Power struggles: Revisiting the RISC vs. CISC debate on 
contemporary ARM and x86 architectures." In HPCA2013 

[37] Liu, Y., et al., “SleepScale: Runtime Joint Speed Scaling and Sleep States 
Management for Power Efficient Data Centers,” in ISCA 2014 

[38] Wu, C. M., et al., "A green energy-efficient scheduling algorithm using 
the DVFS technique for cloud datacenters." Future Generation Computer 
Systems 37 (2014): 141-147. 

[39] Holmes, G., et al., “Generating rule sets from model trees”, Sydney, 
Australia: Springer-Verlag, 1999. 

[40] Zhao. Y., et al., "Comparison of decision tree methods for finding active 
objects," Advances in Space Research, vol. 41, pp. 1955-1959, 2008. 

[41] Yang, H., et al. "Bubble-flux: Precise online qos management for 
increased utilization in warehouse scale computers." ACM SIGARCH 
Computer Architecture News 2013. 

[42] Ganapathi, A., "Predicting and optimizing system utilization and 
performance via statistical machine learning." 2009. 

[43] Yigitbasi, N. et al., "Towards machine learning-based auto-tuning of 
mapreduce." In MASCOTS 2013. 

[44] Delimitrou, C. et al., "Paragon: QoS-aware scheduling for heterogeneous 
datacenters." In ACM SIGPLAN Notices 2013. 

[45] Delimitrou, C. et al., "Quasar: resource-efficient and QoS-aware cluster 
management." In ACM SIGPLAN Notices 2014. 

[46] http://www.storageswitzerland.com/Articles/Entries/2013/5/20_What_Is
_A_Hyperscale_Data_Center.html 

[47] Caulfield, A. M., et al., “A cloud-scale acceleration architecture.”, 
In MICRO 2016 

[48] Malik, M. et al., “Big vs Little Core for Energy-Efficient Hadoop 
Computing”, Design, Automation and Test in Europe (DATE), 2016  

[49] Neshatpour, K., et., al., “Accelerating Machine Learning Kernel in 
Hadoop Using FPGAs”, ,in CCGRID, 2015 

 


