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Abstract- OpenCV applications are computationally intensive 
tasks among computer vision algorithms. The demand for low 
power yet high performance real-time processing of OpenCV 
embedded vision applications have led to developing their 
customized implementations on state-of-the-art embedded 
processing platforms. Given the industry move to heterogeneous 
platforms which integrates single core or multicore CPU with on-
chip FPGA accelerators and GPU accelerators, the question of 
what platform and what implementation, whether hardware or 
software, is best suited for energy-efficient processing of this class 
of applications is becoming important. In this paper, we seek to 
answer this question through a detailed hardware and software 
implementation of OpenCV applications and methodically 
measurement and comprehensive analysis of their power and 
performance on state-of-the-art heterogeneous embedded 
processing platforms. The results show that in addition to 
application behavior, the size of image is an important factor in 
deciding the efficient platform in terms of highest energy-
efficiency (EDP) among hardware accelerators on FPGA and 
software accelerators on GPU and multicore CPUs. While 
hardware implementation on ZYNQ shown to be the most 
performance and energy-efficient for image size of 500x500 or 
less, software GPU implementation found to be the most efficient 
and achieves highest speedup for larger image sizes. In addition, 
while for compute intensive vision applications the gap between 
FPGA, CPU and GPU reduces as the size of image increases, for 
non-intensive applications, a large performance and EDP gap is 
observed between the studied platforms, as the size of the image 
increases.  
Keywords-Computer vision; OpenCV; GPU; FPGA; Multicore CPU 

I. INTRODUCTION 
Recent innovations in the semiconductor industry made it 

possible to integrate various sensors and computing 
components in an embedded system on a chip (SoC) 
processing platform. Mobile platforms use embedded SoC to 
process sophisticated and computationally intensive computer 
vision applications. An example of such system is a wearable 
glass with camera, which has numerous applications in 
healthcare, robotics, navigation and security[1, 2].  

Low power yet high performance image processing on 
embedded vision platform has many applications in various 
domains including healthcare, security, telecomm and IoT, just 
to name a few. An example is in healthcare, for patient 
rehabilitation, where a user’s movement or posture needs to be 
accurately tracked to detect the need for corrective action[3]. 
This is true if a patient is at risk of falling and an alert needs to 
be automatically generated in case of injury. Another example 
is in remote sensing and monitoring, where accurate tracking 

required for autonomous drones is partially performed by 
interpreting location change through image content being 
received and processed at a high frame rate [4,5]. For instance, 
Parrot’s AR.Drone- a dual camera system whose vertical 
camera generates images at 60 frames a second rely on a 
navigation system that uses corner detection algorithms that 
run Sobel filtering on large images at high frame rate[4]. In 
general, remote sensing and monitoring applications rely on 
sophisticated computer vision algorithms to run on low power 
embedded hardware to maximize their operating time. 
Similarly in the field of security, image processing at the 
camera before transmission is critical to reduce bandwidth of 
distributed surveillance systems[6]. These systems may 
employ filtering on the embedded camera hardware and only 
transmit the approximated target state coefficients[6]. This 
eliminates the need for a high bandwidth links, while allowing 
multiple target information to be captured. 

While demand for high performance computing vision 
continues to grow, the physical design constraints, such as 
power and density, have become the dominant limiting factors 
for scaling out embedded computing systems. Current 
processor design, based on commodity homogeneous 
processors, are not the most efficient in terms of 
performance/watt to process compute intensive 
applications[15, 19, 20]. To address the energy-efficiency 
challenge, heterogeneous architectures have emerged as a 
promising solutions in high performance as well as embedded 
systems to significantly improve the energy-efficiency by 
allowing applications to run on a computing core that matches 
the resource needs more closely than a single one-size-fits-all 
general purpose core. A heterogeneous chip architecture 
integrates cores with various micro-architectures (in-order or 
out-of-order) or instruction set architectures (Thumb and x86) 
with on-chip GPU or FPGA accelerators to provide more 
opportunities for efficient workload mapping so that the 
application can find a better match among various components 
to improve power efficiency. In particular, hardware 
acceleration through specialization, which is enabled by tight 
integration of CPU core and FPGA logic, has received renewed 
interest in recent years, partially in response to the dark silicon 
challenge. Examples of heterogeneous architectures in 
embedded domains are Xilinx ZYNQ (CPU+FPGA), NVIDIA 
Tegra (CPU+GPU), Qualcomm Snapdragon 
(CPU+DSP+GPU) and Samsung Exynos (Big +Little 
CPU+GPU). Given the diversity of architectures for these 
emerging heterogeneous platforms, the question is which 
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architecture best suits the power and performance requirement 
of computer vision applications becomes important.  

The objective of this paper is to answer this question through 
a detailed hardware and software implementation of various 
OpenCV applications and methodically measurement and 
comprehensive analysis of their power and performance on 
state-of-the-art heterogeneous embedded processing 
platforms. Among OpenCV applications, we are mainly 
focusing on the convolution based filters (Sobel and Gaussian) 
representing more computationally intensive vision 
applications, as well as general image processing techniques 
(Average subtraction, Image thresholding, and Image scaling) 
representing less computationally intensive vision 
applications. Filtering algorithms are being used extensively in 
various vision domains for feature detection, image analysis 
and noise reduction [7–9]. The Sobel filter is employed in 
application involves with edge detection[10, 12, 18, 22] where 
Gaussian filter is utilized for noise reduction and suppressing 
image details [13]. These filters usually are implemented by 
using convolution, where an image is convolved with the 
kernel corresponding to a particular filter. Convolution is a 
computationally intensive operation mainly for real-time 
performances; therefore there is a need for better optimization 
at the system and algorithm level to enhance the power 
efficiency.  

For the choice of heterogeneous architecture, our 
experimental work implemented these vision algorithms on 
Nvidia Tegra, Xilinx ZYNQ and Multicore Intel ATOM and 
ARM to study the choice between Multicore CPU with diverse 
ISA (x86 ATOM vs ARM thumb), GPU, as well as FPGA 
implementations. To find out how the results are sensitive not 
only to application behavior (computationally intensive vs 
non-intensive) but also image characteristics, we measure and 
analyze performance and power consumption in terms of 
energy-delay product (EDP) for several image sizes.  

Several research works have reported the performance 
results of parallel implementation of computer vision 
algorithms on CPU and compared it with the accelerator 
implementations [11, 16, 24]. Cope et al, have compared the 
implementation performance of image convolution on GPU, 
FPGA and CPU [12]; Russo et al, have compared image 

convolution processing on GPU and FPGA [23]; Also Asano 
et al have investigated the performance comparison of two-
dimensional filter on FPGA, GPU and CPU[17, 25]; however 
none of this work has studied the trade-off between power and 
performance on state-of-the-art embedded heterogeneous 
platforms. To the best of our knowledge this is the first 
experimental work that compares hardware and software 
implementations of several OpenCV computer vision kernels 
on state-of-the-art heterogeneous embedded platforms.  

The rest of the paper is organized as follows: In section II, 
we explain the experimental methodology and setup. In section 
III, we present the results. Section IV discusses in details the 
power and performance measurements results across studied 
architectures. Finally, in section V we present the conclusion 
remarks. 

II. METHODOLOGY 
Two convolution based filters (Sobel and Gaussian) and 

three general image processing techniques (Average 
subtraction, Image thresholding, and Image scaling) were 
implemented on three different platforms: GPU, FPGA and 
two types of CPU (ATOM and ARM). The algorithms are 
implemented as individual standalone programs. Multicore 
implementation of studied applications are performed with 
OpenCV and OpenMP. 

The algorithms processed seven different images sizes in the 
range of 60 by 60 up to 1600 by 1200. The total pixels 
calculated by multiplying the image dimensions and is used 

 
Figure. 2: FPGA Implementation Design 
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when comparing algorithm results using a pixel processing per 
time unit. The methodology on which experiments are 
conducted is presented in the Figure 1. 

To investigate the effect of optimization at the hardware and 
software levels (application software tuning), several different 
hardware optimization and software tuning sceneries were 
implemented. For instance, the CPU results for different 
compiler optimization levels from O0 (no optimization) to O3 
(most optimized one) on single core and multi-core were 
compared with the results of the other two hardware platforms 
(GPU and FPGA), which considered to be a better optimized 
platforms (performance and EDP wise). Image tiling were also 
implemented as a program tuning to optimize the process in 
parallel manner. Next we will discuss in more details the 
implementation details of the studied OpenCV applications on 
each platform.  
A. GPU implementation  

The GPU implementation uses an NVIDIA Jetson TK1 
developer kit which is built around the Tegra K1 processor. 
The processor is composed of a GPU and multicore CPU. The 
GPU has 192 NVIDIA CUDA cores while the CPU is a "4-
Plus-1" 2.32 GHz ARM quad-core Cortex-A15. A single core 
of the ARM processor speed was fixed at 1.224 GHz with the 
other cores turned off. The GPU speed was fixed at 852 MHz. 
We run each code module as a standalone program by a script 
file that accepts the program configuration information as 
command line arguments. Each program had an internal loop 
to run the OpenCV code multiple iterations which provided the 
execution time per iteration for the study. The image load time 
was excluded from each run. Timing was performed using the 
C API clock() function to be consistent with the ARM timing. 
B. FPGA implementation  

For FPGA implementation, we use Xilinx ZEDBOARD 
with a Zynq-7020 SoC containing of dual-core ARM and a 
FPGA. The hardware design consists of 3 major parts shown 
in Figure 2: 

a) Processing system (PS): ARM processor inside Zynq 
Platform.  

b) Interconnects: The high performance (HP) ports are 
used for transactions between PS and Programmable logic 
(PL). The data (image) is transferred to/from the accelerator in 
PL using ARM core. AXI Interconnects IPs generated 
automatically using Vivado design suit take care of data trans- 
action between ARM PS and PL in memory mapped mode. 

c) Programmable logic (PL) which has 3 major IPs: 
i. Accelerators: These are the main IPs which are 

generated using Vivado HLS. We developed HLS (High Level 
Synthesis)_ready C++ code by the Vivado HLS OpenCV 
library which is provided by Xilinx, specifically for each 
application. The HLS_ready C++ code contains different 
pragmas and tweaks in comparison with regular C++ code. We 
have implemented the C++ code because all C++ coding 
capabilities are not supported by HLS process (e.g., Dynamic 
memory allocation, structures and etc.). In the next step 
HLS_ready C++ code is translated to VHDL and the 
corresponding IP is generated using Vivado HLS. Two 
different interfaces are used for each accelerator IP, AXI4_Lite 
interface for sending control data such as image size and 

AXI4_Stream video interface for sending and receiving input 
and output image respectively. The reason for this selection is 
that AXI4_Lite doesn’t have burst transaction capability and it 
is suitable for sending small amount of data with specific 
address. However, AXI_Stream let you send and receive data 
in burst mode, so it will give you much better performance for 
transferring large amount of data without addresses. Coding 
Hierarchy: At first we convert the input image from 
AXI4_Stream format to HLS Mat format using 
hls::AXIvideo2Mat. We then process the corresponding image 
in Mat format and at the end the output image is converted 
from Mat format to AXI4_Stream format using 
hls::Mat2AXIvideo. Therefore we can transfer the output 
result using AXI DMA. 

ii. AXI Direct Memory Access (DMA): This IP is added 
to block design from Xilinx IP catalog and it converts the 
stream transaction to memory map and let the user to write and 
read to and from DDR memory. 

iii. AXI Timer: Added from Xilinx IP catalog which 
measure the execution time of hardware implementation. 

Our implementation consists of four DMA blocks, each of 
them connected to one of the HP ports in the PS. Each of these 
DMAs connected to one accelerator IP and take care of data 
transfer between accelerator and processor. As a result, we can 
process four images in parallel at the same time. Therefore, the 
idea is to split the image into four smaller chunks and transfer 
each of them separately using one of the four HP ports to 
accelerator IPs. The received data are then merged to build the 
complete image. With this method we can reduce the execution 
time by a factor of four. All execution time results include the 
data transfer time and they are based on the maximum 
frequency i.e. 84.9MHz, 68.7MHz, 76.3MHz, 64.1MHz and 
51.3MHz for Image threshold, Image scaling, Average 
Subtraction, Sobel and Gaussian, respectively.  
C. CPU implementation: 

We conducted our study using both Intel Atom and ARM 
CPU. The Intel ATOM C2758 has four active processing cores 
and two levels of cache hierarchy. The processor hosted the 
Ubuntu 13.10 operating system with a Linux 3.11 kernel. The 
ARM architecture is NVIDIA’s "4-Plus-1" 2.32GHz ARM 
quad-core Cortex-A15 CPU. Both platforms have four active 
processing cores, therefore application multithreading up to 
four parallel threads is enabled. The NVIDIA version also uses 
Ubuntu Linux as its OS. Table 1 summarizes the key 
architectural parameters of the microservers. We use Perf to 
capture the performance characteristics of the studied 

Table 1: Architectural Parameters 

Processor Intel ATOM C2758 ARM Cortex-A15 

Max. Operating Frequency 2.40 GHz 2.32 GHz 

Micro-architecture Silvermont ARMv6 

L1I Cache 32 KB 32 KB 

L1D Cache 24 KB 32 KB 

L2 Cache 4×1 MB 2 MB 

System Main Memory 8 GB 2 GB 

In-order/Out-of-order Out-of-order Out-of-order 

Word Width 64 bits 32 bits 
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applications on ATOM. Perf exploits Performance Monitoring 
Unit (PMU) in the processor to measure performance as well 
as other hardware events accurately. Because this tool is not 
available for monitoring the ARM on the Tegra processor, the 
clock() function of the C API was used.  This function factors 
in if multicore processing is used to execute the code.  For 
measuring power dissipation of the microserver, Wattsup PRO 
power meter is used. Wattsup power meter measures and 
records power consumption at one second granularity. The 
power reading is for the entire system, including core, cache, 
main memory, hard disks and on-chip communication buses. 
We have collected the average power consumption of the 
studied applications and subtracted the system idle power to 
calculate the dynamic power dissipation of the entire system.  

III. RESULTS 
To compare different platform, we have presented the 

performance and EDP results in this section. Additionally, the 
average performance and EDP results over all applications 
were calculated to investigate the optimal platform based on 
best performance and maximum energy efficiency for all 
applications. To compare the results in the best case scenario 
with GPU and FPGA, the CPU frequencies of 2.4 and 1.2 were 
used for execution time and EDP respectively. Also the 
compiler software optimization was set to -O3 (the most 
optimized case).  
A. Single core and Multi-core CPU implementation 

The results of the single-core and multi-core 
implementation of all studied applications on CPU platform 
(ATOM and ARM) with the biggest image size are compared 
in Table 2. Both ATOM and ARM demonstrate that for all the 
applications multi-core provides better performance compared 
to the single core but they clearly needs more power. 
Interestingly, for energy-efficiency (EDP), multicore results 
outperform single core in both CPU platforms. Comparing 
ATOM and ARM results, ATOM provides better performance 
than ARM and in terms of energy-efficiency, in most cases it 
results in the lowest energy-efficiency. Considering multicore, 
as compared to the single core, provides better performance 
and EDP, the rest of the paper compares the multi-core CPU 
implementation with FPGA and GPU. 
B. Performance Analysis 

Figure 3 illustrates the speedup achieved on FPGA, GPU 
and ATOM architecture compared to the ARM (considered as 
a baseline) for all the studied applications. Image threshold and 
Image scaling results illustrate that FPGA has the highest 
speedup for small images (60x60 and 120x120) and GPU 

provides maximum speedup for larger images (250x250-
1600x1200). Image average subtraction shows that FPGA 
shows the largest speedup for image size up to 500x500 and 
GPU has dominated at the larger image sizes (700x700-
1600x1200). The result for Sobel filtering illustrates that 
FPGA has attained the highest speedup on all the image sizes 
except for the largest image size where GPU has better 
performance. In Gaussian blur, FPGA has achieved the highest 
speedup only at the smallest image size. ATOM shows highest 
speedup for image sizes ranges from 120x120 to 500x500 and 
GPU provides the maximum speedup for the larger image 
sizes. In sum, with image sizes larger than 500x500, GPU is 
the winner in terms of speedup. Comparing the ATOM and 
ARM results, ATOM outperforms ARM for all the image sizes 
expect at the smaller image size.  
C. Energy Efficiency Analysis  

In order to characterize the energy efficiency, we evaluate 
Energy Product Delay (EDP) metric to investigate trade-off 
between power and performance when running image 
processing applications on FPGA, GPU and multicore CPU 
(ATOM and ARM). Figure 4 shows the EDP of the studied 
architectures (A = FPGA, GPU, ATOM) compared to ARM. 
The power is almost constant for FPGA with values ranging 
1.735-1.755 for studied applications. However, power varies 
significantly: 0.86-6.06, 0.5-3.512, and 0.20-2.4 for GPU, 
ATOM, and ARM, respectively for the applications across 
different image sizes. 

For non-computationally intensive vision applications; 
image scaling, threshold and averaging, for small image size 
of below 250x250, FPGA is a more efficient implementation 
than GPU and multicore CPU. However as the size of image 
increases the trend quickly moves to GPU. The gap between 
GPU and FPGA increases as the size of image increases.  

Table 2: Single core and Multi core CPU Results 

Single Multi Single Multi
Exe(msec) 2.01 1.25 0.901 0.708
EDP(Jsec) 1.29E-05 3.68E-06 2.27E-06 1.95E-06
Exe(msec) 40.47 23.65 29.09 14.56
EDP(Jsec) 3.60E-03 9.54E-05 4.13E-04 2.12E-04
Exe(msec) 8.48 6.38 16.6 8.35
EDP(Jsec) 1.80E-04 1.20E-04 1.20E-03 6.60E-04
Exe(msec) 23.93 11.43 19.01 9.67
EDP(Jsec) 1.45E-03 1.35E-03 2.44E-03 9.70E-04
Exe(msec) 150 75.3 131.079 66.81
EDP(Jsec) 4.90E-02 3.10E-04 5.21E-04 2.86E-04Sobel Filter

ARM ATOM

Image Thresholding

Image Scaling

Average Subtraction

Gaussian Blur Filter

 
Figure 3. Speedup on studied architectures (A = FPGA/GPU/ATOM) compared to ARM of various image processing applications over several image sizes

0
1
2
3
4
5
6
7

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

60
x6

0

12
0x

12
0

25
0x

25
0

50
0x

50
0

70
0x

70
0

10
00

x1
00

0

16
00

x1
20

0

Threshold Scaling Average Sobel Gaussian

Sp
ee

du
p

Image Size

FPGA GPU ATOM(Multicore) ARM (Multicore)

6.64  7.05

8.42
12.98

26.97  
58.26  

102.74  
165.97  

27.98
61.16

106.08
173.25

562



However, for computationally intensive vision applications a 
different trend is observed. While for small image size of 
below 500X500 FPGA is clearly a winner in terms of energy-
efficiency, for larger image sizes GPU becomes competitive 
with FPGA. For Gaussian filter, FPGA is always the efficient 
platform compared to other platforms across all studied image 
sizes. Comparing ATOM and ARM, while in some cases 
ATOM is competitive with ARM and other platforms in terms 
of energy-efficiency, in most cases it results in the higher 
energy efficiency. This is due to the fact that ATOM ISA (X86) 
and machine width (64 bits) mainly designed in response to 
high performance demand and not necessarily low power 
concerns [21].  
D. Average per Pixel Analysis 

Figure 5a shows the results for performance and EDP over 
each pixel across different platforms. Figure 5b demonstrates 
the performance and EDP over each pixel across different 
applications. EDP results demonstrates that FPGA has the best 
result in case of small images for both computational intensive 
and non-intensive applications. However, GPU is the best 
platform for processing large images. As we can observe, a 
similar trend is seen for application execution time.  

IV. DISCUSSION 
The GPU results show that its EDP value is almost 

insensitive to image size by showing only a small increasing 
trend. This is due to the overhead for processing small images 

and the speedup advantage at large image sizes. Further the 
power consumption was nearly constant during the code 
execution. These factors lead to a near constant EDP value. It 
is expected that if the image size continues to increase then the 
EDP would continue its slow increase and its overall advantage 
compared to other platforms would grow since the EDP slope 
rates differ.  

Additionally, for the GPU its EDP advantage over the 
other processing technologies was much greater for image 
thresholding, image scaling, and average subtraction as 
compared to Sobel or Gaussian filtering for image sizes greater 
than 250 by 250. It is only at the smaller image sizes that the 
FPGA outperforms the GPU in terms of EDP. This is due to 
the image thresholding, image scaling, and average subtraction 
exploiting the GPUs shared memory layout and SIMD design. 
Because these are scalar operations on an array of values each 
GPU thread can process the values in parallel. The FPGA must 
synthesize this hardware which is not as efficient as the bare 
metal GPU design. Additionally, the Sobel and Gaussian filters 
had additional processing steps or a combination of multiple 
gather/scatters which can be directly synthesized in the FPGA. 
Further, the Sobel filter requires a square root operator which 
is not as efficiently performed in the GPU. All of these factors 
lead to the GPU’s performance difference. 

The ARM processor performed consistently well, especially 
at small image sizes. Its performance often exceeded the 

 
Figure 4. EDP on studied architectures (A = FPGA/GPU/ATOM) vs ARM of various image processing applications over several image sizes 
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Figure 5(a). Per pixel performance and EDP across different platforms  

         
 Figure 5(b). Per pixel performance and EDP across different applications (Non-intensive – NI- and intensive – I-) 
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performance of the GPU and ATOM, while just trailing the 
FPGA. This in part is due to the ARM’s efficient instruction 
set, however at higher image sizes the GPU is able to more 
efficiently process the larger images. 

The results for the FPGA show that its overall EDP 
performance is dependent on the image size being processed. 
This is due to its varying execution time with nearly constant 
power consumption. As can be seen in the execution time 
figure the overall trend is that at very low image sizes the 
FPGA performs the best and then as the image size increases 
its execution time is become comparable with the ARM 
multicore. In case of ARM and ATOM multicore 
implementation, execution time and EDP result increases 
almost exponentially for bigger size images, due to sequential 
execution characteristic of CPU in compared with GPU and 
FPGA. Figure 6 shows the speedup and EDP results averaged 
across over all the studied applications on various architectures 
(A = FPGA/GPU/ATOM) compared to ARM. We can 
observe, on average across all studied applications FPGA has 
the best results for image sizes smaller than 700x700 in case of 
execution time. In case of EDP, GPU is the most efficient 
platform for image sizes larger than 500x500 while FPGA 
yields the best EDP for smaller image sizes.  

V. CONCLUSIONS  
Low power yet high performance image processing on 

embedded vision platform has many application in various 
domains including healthcare, security, telecomm and IoT, just 
to name a few. Heterogeneous architectures combining on chip 
accelerator such as FPGA and GPUs with multicore general 
purpose CPUs are emerging as promising solutions to 
significantly improve the energy-efficiency of this class of 
applications. Therefore, the question of which of these 
architectures provide the best power and performance results 
for computer vision applications becomes important. Our 
experimental results across a number of OpenCV applications 
demonstrate that for compute-intensive applications such as 
Gaussian blur and Sobel filter, FPGA achieves highest 

performance for image sizes smaller than 500X500 while GPU 
is the winner for larger images, compared to other platforms. 
The similar trend is observed for energy efficiency, the results 
demonstrate that FPGA has the lowest EDP for small image 
sizes and GPU for the bigger images as EDP remains almost 
unchanged for GPU across various image sizes. Overall, the 
large performance and EDP gap is observed between hardware 
implementation on FPGA and software implementation on 
GPU and multicore CPU across various OpenCV applications 
and different image sizes.  
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Figure 6. Speedup and EDP of studied architectures (A = FPGA/GPU/ATOM) 

compared to ARM averaged across applications over several image sizes 
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