
978-1-4244-6455-5/10/$26.00 ©2010 IEEE 499 11th Int’l Symposium on Quality Electronic Design

Post-Synthesis Sleep Transistor Insertion
for Leakage Power Optimization in Clock Tree Networks

Houman Homayoun1, Shahin Golshan1, Eli Bozorgzadeh1, Alex Veidenbaum1, Fadi J. Kurdahi2

1Center of Embedded Computer Systems
University of California, Irvine, CA

{hhomayou,ssgolsha,eli,alexv}@ics.uci.edu

2Department of Electrical and Computer Engineering
University of California, Irvine, CA

kurdahi@uci.edu

Abstract
Leakage power has grown significantly and is a major

challenge in SoC design. Among SoC's components, clock
distribution network power accounts for a large portion of
chip power. In this paper, we propose to deploy sleep
transistor insertion (STI) in the clock tree in order to reduce
leakage power. We characterize the effect of sleep transistor
sharing and sizing on clock tree wakeup time, leakage power,
and propagation delay. We use these characteristics during
leakage power optimization. We present post synthesis sleep
transistor insertion (PSSTI), a heuristic clustering algorithm
for sleep transistor insertion with the objective of total power
minimization in a given clock tree. Sleep transistor sharing
and sizing are deployed in order to meet the clock skew and
wakeup delay constraints. We explored the potential benefits
of STI using a standard industrial VLSI-CAD flow including
sleep-transistor insertion and routing after clock synthesis and
place-and-route of the benchmark circuits. Our results show
that clock tree leakage power is reduced by 19%-32%
depending on the topology of the synthesized clock tree.

Keywords
Sleep Transistor, Clock Tree

1. Introduction
Process scaling has enabled SoC’s designs to offer much

higher computational power. Technology scaling has,
however, led to higher power dissipation, especially leakage
power. In order to overcome such growing leakage problem,
several approaches at technology level, circuit level, and
architectural level have been proposed and have been applied
to many on-chip blocks such as SRAMs, registers and
arithmetic units. Clock distribution network power accounts
for more than 40% of the overall power consumption of high
performance VLSI chips due to frequent switching, driving
large capacitances and large number of inverter buffers
[1,2,3,4,17]. This paper focuses on leakage optimization in
clock tree networks.

Recently a number of works has been proposed to reduce
the power of clock trees. Clock gating has extensively been
proposed and applied to reduce power by masking off clock
signal where branches of clock tree are idle [1,13,14]. Clock
buffer sizing [5,6,7], power-aware placement [10,12],
exponentially tapering clock interconnect network [8] and
using multiple-supply voltage [9] have been proposed for low
power clock tree constructions. In addition, using high
threshold voltage (Vth) gates in the clock tree networks has
been studied in [11].

 Most of these techniques focused on reducing dynamic
power of the clock tree. Along with leakage power increase
due to technology scaling, the significant reduction in
dynamic power by applying aforementioned methods on
clock trees leads to more visible (and hence non-negligible)
contribution of leakage power in clock tree network. Hence,
leakage power optimization of clock tree is equally, if not
more, important to be addressed in the clock tree network.

For leakage power reduction, several techniques such as
supply and threshold voltage optimization, sleep transistor
insertion and power gating have been proposed and have
extensively been studied in literature [3,15,16]. In this paper,
we propose sleep transistor insertion in clock tree networks in
order to reduce leakage power. STI is a well known technique
for reducing leakage of an idle unit by isolating it from Vdd
and Vss. STI has been extensively applied in many on-chip
blocks such as SRAM memories [18,21]. However, to the
best of our knowledge, this is the first attempt to deploy STI
in the clock tree network to reduce the leakage power. In
comparison with using high Vth gates in a clock tree [11], our
proposed leakage optimization through sleep transistor
insertion is an orthogonal approach and our results show
significant leakage reduction in clock tree networks.

Figure 1. (a) H-tree clock network (b) source of leakage

Homayoun et al, Post-Synthesis Sleep Transistor …

Figure 1(a) shows an example of an H-tree clock network
which uses inverter buffer chains to drive the clock signal
from source to each flip-flop (sink). The source of
subthreshold leakage in the H-tree clock network is illustrated
in Figure 1(b). In order to reduce the leakage in the clock
buffers both footer and header sleep transistors are inserted
for all NMOS and PMOS transistors in the clock buffer.
However, aside from the area overhead, it increases the
propagation delay of the clock tree due to an increase in the
rise/fall time of the drivers. In order to overcome such effects
on the critical timing components we propose to deploy
zigzag sleep transistor insertion technique which has been
recently proposed to reduce peripheral circuit leakage power
of SRAM memories [18]. We show that zigzag insertion can
guarantee no effect on the driving flip-flop clock rise time.
However, using one sleep transistor per inverter logic
increases the area overhead of zigzag scheme. Moreover,
zigzag insertion can affect the fall time and propagation delay
of the clock signal. We propose to eliminate the impact of
zigzag scheme on fall time and propagation delay by
appropriately sizing the sleep transistors. To minimize area-
overhead and further improve leakage power savings, we use
sleep transistor sharing technique [18]. While sleep transistor
sharing is effective in reducing leakage, it has a drawback of
impacting circuit wakeup latency which occurs when the
circuit is transitioning from sleep mode to active mode.

Sleep transistor insertion and sharing techniques lead to
power saving when the underlying circuit is idle. Therefore, it
is crucial to model the idle time patterns of different clock
tree buffers during the course of execution.

In this paper we evaluate the benefits of sleep transistor
insertion and sharing in clock tree networks. In brief we make
the following contributions:
 We characterize the effects of sleep transistor sharing

and sizing on clock tree wakeup time, leakage power,
propagation delay and skew.

 We present post synthesis sleep transistor insertion
algorithm (PSSTI) on clock tree networks which
clusters the clock buffers sharing the same sleep
transistor with the objective of total power minimization
subject to clock timing constraints.

 We explored the potential benefits of PSSTI using a
standard industrial VLSI-CAD flow.

 We applied PSSTI on a subset of Express [24]
benchmarks. The sleep transistors were inserted and
routed for each clusters of clock buffers. The overall
power reduction and the impact on clock tree timing
components were obtained using standard industrial
tools.

Results on a subset of Express [24] benchmarks show
significant reductions in total power and leakage power by
16% and 32% on average, respectively.

2. SLEEP TRANSISTOR INSERTION
Inserting sleep transistors have been proposed to reduce

sub-threshold (IDsub) or weak inversion current [19]. IDsub is
an inverse exponential function of threshold voltage (Vth).
Threshold voltage is a function of source-to-bulk Voltage
(VSB).

 An effective way to reduce the leakage of a transistor is
to increase its source voltage (for an NMOS increasing VSB,
the source to bulk voltage) [19, 20]. Inserting a sleep
transistor (footer NMOS or header PMOS transistor) as
shown in Figure 2 delivers this effect. In this figure, by
coupling transistor N with slpN, source-to-body voltage (VM)
of transistor N increases. When both transistors are off, the
increase in VM increases the Vth of the transistor N and
therefore reduces sub-threshold leakage current [19].

Figure 2. Inserting sleep transistor to reduce leakage

3. ZIGZAG SLEEP TRANSISTOR SHARING
AND SIZING

To improve both leakage reduction and area-efficiency of
the zigzag scheme, one set of sleep transistor is shared
between multiple stages of inverters [18]. This is shown in
Figure 3, where sleep transistor is shared across multiple
levels of a buffer chain in a clock tree edge (buff21, buff22
and buff23) and across multiple edge of the clock tree (buff1,
buff2, buff3 and buff4). Intuitively, by sharing sleep
transistor, the virtual ground voltage (VM in Figure 3)
increases in comparison to when there is no sleep transistor
sharing [18].

While sleep transistor sharing is effective in reducing
leakage, it has a drawback of impacting circuit wakeup
latency which occurs when the circuit is transitioning from
sleep mode to active mode and requires the voltage of virtual
ground to reach to the ground voltage [18]. Note that by
increasing the number of clock buffers sharing one sleep
transistor, the load on the sleep transistor increases.
Assuming that n clock buffers are sharing one sleep transistor
the capacitive load on the sleep transistor is as i Cwire(i) +
Cdiff, where the Cwire(i) is the wire capacitance connecting the
sleep transistor to each of clock buffer pull down transistor
and Cdiff is the inverter pull down transistor diffusion
capacitance. As a result, increasing the number of clock
buffers sharing one sleep transistor makes sleep transistor
wakeup transition slower.

An effective way to minimize the impact of sharing on
wakeup delay is to appropriately size the sleep transistors.
The drawback of such resizing is on reducing leakage
reduction and increasing sleep transistor dynamic power as
explained next.

Homayoun et al, Post-Synthesis Sleep Transistor …

Figure 3. Zigzag sleep transistor sharing in clock tree network

Figure 4. Sleep transistor insertion for worse case wakeup
delay

In order to evaluate the benefit of sleep transistor sharing
and sizing, we designed and analyzed a 16 sink H-tree clock
network showing in Figure 1. We assume a symmetric
distribution of flip-flops. We designed a 2-level H-tree clock
network in a 0.1 x 0.1 mm chip in a 45 nm technology. We
placed a driver at each source and sink. Half of the chip area
is occupied by the flip-flops.

To model the interconnect we assume a coupling
capacitance of 0.0960 fF/m, and the capacitance to ground
of 0.2450 fF/m. The resistance is 0.1846 m/m. The
interconnect capacitance is assumed to be as
Cint = (2 Ccoupling + ω  Ccoupling)  l , where l is the wire
length and ω is the wire width ratio to the nominal width. In
clock tree design, one of the most effective techniques for
adjusting clock skew is wire-sizing. In our experiments, a 2x
wire is assigned to the first level of clock tree while a 1x wire
is assumed for the second level.

To control the transition time of the clock network (which
is important both for skew control and power dissipation
[20]) we assume the constraint of  = Cout / Cin to be 2.7,
where Cin is the input capacitance of the driving clock buffer
and Cout is the output load capacitance to drive. As indicated
in [20], based on this assumption, the buffer sizing minimizes
the delay of the chain of buffers. The proposed zigzag sharing

approach is applied to the designed clock network. All
simulations are done in a 45nm technology using Synopsys
Hspice at typical corner (25º) and the supply voltage of 1V.

In Table 1 we report the impact of sleep transistor sharing
on the wakeup delay. The sleep transistor is placed such that
it has the same distance from all shared buffers. The results
are for the worst case wakeup delay in which the distance
between the sleep transistor and the shared buffers are
assumed to be half of the maximum Manhattan distance
between the farthest buffers in the designed clock tree
network. This is shown in Figure 4 for buff1 and buff16.

The same table shows the impact of sleep transistor sizing
on the wakeup delay. More sharing of sleep transistor results
in larger wakeup delay. However, using a larger sleep
transistor can reduce the wakeup delay.

Table 1. Impact of sleep transistor sharing and sizing on the
wakeup delay

#shared
buffers

W(1X)
(ns)

W(2X)
(ns)

W(3X)
(ns)

W(4X)
(ns)

W(5X)
(ns)

W(6X)
(ns)

W(7X)
(ns)

W(8X)
(ns)

1 0.256 0.137 0.093 0.064 0.045 0.037 0.032 0.029
2 0.620 0.367 0.273 0.205 0.155 0.136 0.124 0.115
3 1.190 0.732 0.583 0.464 0.381 0.345 0.321 0.309
4 1.655 1.072 0.877 0.736 0.637 0.596 0.564 0.556
5 2.130 1.438 1.214 1.065 0.952 0.905 0.884 0.882
6 2.595 1.817 1.609 1.453 1.336 1.298 1.277 1.275
7 3.050 2.196 1.983 1.830 1.739 1.708 1.699 1.696
8 3.525 2.609 2.432 2.291 2.203 2.178 2.171 2.170
9 4.010 3.036 2.887 2.767 2.695 2.675 2.667 2.663
10 4.450 3.471 3.338 3.235 3.182 3.168 3.163 3.160

Figure 5. Relative leakage power reduction

The following equation expresses the switching delay of
the sleep transistor as a factor of number of shared buffers:
 Req (Cwire(i) + Cdiff). By increasing the size of sleep
transistor, its equivalent resistance (Req) becomes smaller
which makes the wakeup delay smaller. As we increase the
number of buffers sharing the sleep transistor, the equivalent
output capacitive load of the sleep transistor increases, which
increases the wakeup delay.

In Figure 5 we report the relative leakage power reduction
as a function of sleep transistor size, and the number of
sharing clock buffers. As the number of shared buffer
increases, leakage power reduces further. Our simulation
results show that the sleep transistor size does not have a

40%

50%

60%

70%

80%

90%

100%

W(1X) W(2X) W(3X) W(4X) W(5X) W(6X) W(7X) W(8X)

sleep transistor relative size

%
 le

a
k

a
g

e
 p

o
w

e
r

re
d

u
c

ti
o

n

1

2

3

5

4

6
7
8
9
10

Homayoun et al, Post-Synthesis Sleep Transistor …

significant impact on leakage power savings (shown in Figure
5).

In Figure 6, we report the impact of sleep transistor sizing
on propagation delay. As the results show, increasing the size
of sleep transistor reduces the propagation delay overhead.
Our simulation results indicate that increasing the number of
shared buffers has almost no impact on the propagation delay
overhead.

Figure 6. Impact of sleep transistor sizing on propagation
delay

4. POST SYNTHESIS CLOCK TREE LEAKAGE
POWER OPTIMIZATION

In the previous section, we have shown that STI
inherently reduces the leakage power dissipation of a group
of clock buffers by switching them to the sleep mode. In this
section, we first analyze the idle cycles of the clock buffers
and clusters of clock buffers in a clock tree. Then we present
the formulations to model the dynamic and static power
consumption of clock buffers when sleep transistors are
inserted, considering the idle/active intervals of each clock
buffer. Finally, we review the impact of STI on the timing
integrity of the clock tree (i.e. skew variations). Throughout
this section, we assume that the clock buffers have already
been sized and placed.

4.1. Idle time patterns of clock buffers
As an abstraction of a clock tree (H-tree), we represent a

clock tree with a rooted tree G(V, E), where the root is the
source of the clock signal, and the leaves are synchronized
with clock signals (e.g. flip-flop cells). Each edge represents
the lumped buffer which drives the signal from the source
point to sinks (Figure 7). As shown in Figure 7, each buffer
can be associated with the node it drives.

For each circuit, we define the operation period as the
total number of cycles it takes to perform the operation once
all the primary inputs are available, for example, OP in
Figure 7 is 4 cycles. We assume that the circuit resumes
operation once the outputs of the circuit are computed.

Figure 7. Abstract model of clock tree and the ITP each node

In order to explain the impact of sleep transistor insertion
as well as the impact of the clock topology itself on leakage
power saving, we need to know the idle time pattern (ITP) of
a clock buffer, which is defined as the active/idle cycles of
the clock buffer in one OP.

We first model the ITP as a continuous function of time
which maps each time instant to the value “1” / “0” when
idle/active. We then convert each ITP function to its discrete-
time ITP sequence, in which the ith element of this sequence
corresponds to the value of the ITP function at the ith clock
cycle. When the index is written in brackets, the ITP implies
the ITP sequence. For continuous ITP functions we use
parentheses. The parameter X represents the clock buffer
pertaining to the ITP. For simplicity, the ITP of a clock buffer
may be referred to as the ITP of the clock node it drives. For
example, the ITP of node 4 in Figure 7 is actually the ITP of
the clock buffer driving it.

We assume that the activity patterns of the flip-flops have
already been calculated in the previous stages of the design
flow. As the flip-flops are assigned to resources and the
active cycles are scheduled in scheduling and resource
binding stages, the activity pattern of each flip-flop is
determined. The leaves of a clock tree have the ITPs of the
corresponding flip-flops. This information is used to obtain
the ITP of each clock buffer in the clock tree. For example in
Figure 7, if the operation period is 4, the ITP sequence for
node 4 and node 5 are ITP4 = {1, 0, 0, 1} and ITP5 = {1, 1, 1,
0} respectively.

We can calculate ITP of each clock buffer X based on the
ITPs of its children nodes in a recursive fashion using eq. 1:





)(

)mod()(
XchildrenY

YXYX OPDtITPtITP (1)

Eq. 1 states that the internal node will be active at time
instant t, if the child node is going to be active at time instant
t + DX→Y, where DX→Y is the total delay (buffer delay and
wire delay) observed in the path from node X to node Y on
the clock tree. It is crucial to include the time shifts as we
move from the leaves of the clock tree towards the clock root,
since the lags perceived in the ITPs of the nodes closer to the
clock leaves relative to the nodes closer to the clock root
might reduce the common idle times among ITPs of such
nodes and as a result lighten the benefits of sleep transistor
sharing. Figure 8 illustrates the bottom-up calculation of ITP
for a parent node based on its children nodes.

0.90

0.95

1.00

1.05

1.10

1.15

1.20

W(1X) W(2X) W(3X) W(4X) W(5X) W(6X) W(7X) W(8X)

sleep transistor relative size

R
e

la
ti

v
e

 P
ro

p
a

g
a

ti
o

n
 D

e
la

y

Homayoun et al, Post-Synthesis Sleep Transistor …

 Figure 8. Example of bottom-up ITP generation

We define an idle pulse (IP) within an ITP as a range of
time over which the clock buffer is idle. For example, in
Figure 8, the ITP of node 2 contains an idle pulse over the
circularly contiguous range (t3, t1). If the width of an idle
pulse is less than one clock cycle, we are not able to exploit
the idle time using a sleep transistor (since it is not possible to
switch from active to idle and then from idle to active with a
single clock cycle).

Once the continuous time ITP of a clock buffer is
calculated, the discrete-time ITP sequence of a clock buffer
can be obtained as outlined in the following algorithm:

Figure 9. Algorithm for ITP sequence generation

As shown in Figure 9, the ith element of this sequence is
active if the continuous time ITP is active at the
corresponding time instant. If the continuous time ITP is idle
at the time instant, we have to see whether the ITP is idle in
one cycle after the time instant. If it is idle, then we can
safely set the current element of the ITP sequence to be idle.
Otherwise we have to set it to be active. An ITP sequence is
said to be safe if the continuous time ITP is not active over
the entire clock cycle i.
Lemma. ITP sequence generation produces a safe

sequence.
Proof. As shown in Figure 9, the only way we set an ITP

element to be idle is when it is currently idle at the
corresponding time instant and it will be idle one clock cycle
after the time instant. Therefore, the ITP will be idle through
this time cycle and it is safe to set to be idle □

An example of ITP sequence generation is illustrated in
Figure 10. As depicted, ITPX [2] and ITPX [5] are set to be
active, since in half of the corresponding clock cycles the
clock buffer is active.

Figure 10. An example of ITP sequence generation

So far we formulated the ITP of each clock buffer
individually. We now extend the concept of ITP to a cluster
of clock buffers which are going to share the same sleep
transistor. A cluster is denoted as C = {X1, …, Xn} where
Xi is a clocks buffer.

The following equation formulates the ITP of the cluster
C:

OPkkkITPkITP
CX XC

i i
 

0::][][(2)

Eq. 2 states that at clock cycle k, the cluster is considered
idle if and only if all its member clock buffers are idle at
cycle k.

4.2. Power formulation of sleep transistor clock
buffer couples

Once the ITP of a cluster of clock buffers is determined,
we determine the amount of power saving achieved by sleep
transistor insertion. In order to model the total power
consumption of clock buffer X coupled with sleep transistor
S, we sum up the dynamic power consumption, DP(X,S) and
leakage power consumption, LP(X,S) as stated in eq. 3:

P(X,S) = LP(X,S) + DP(X,S) (3)
In order to model the average leakage power of clock

buffer consumed during the course of one operation period
(OP), we need to consider the total number of idle cycles in
its ITP, which translates into the amount of leakage power
savings reached by turning off the clock buffer. This can be
achieved by summing up the lengths of all the idle pulses (IP)
of the ITP. However, we need to incorporate wakeup time of
sleep transistors in the total number of cycles during which
we can shut down the clock buffer. This parameter is referred
to as effective-idle-cycles (EIC). In eq. 4, the wakeup delay
(wc) is normalized based on the clock period:

  


Xi ITPIP i wcIPlengthXEIC)()((4)

Using the effective idle cycles, we model the leakage
power consumption of clock buffer X coupled with a sleep
transistor S as:

   OPXEICOPXEICLPLPSXLP XXS /)()()1(),(  (5)

In eq. 5, LPS and LPX refer to the leakage power
consumed by the sleep transistor S and the clock buffer X,
respectively. For the idle and active cycles, the clock buffer
consumes (1- αX).LPX and LPX respectively. The parameter αX
is the total leakage power reduction achieved by turning off
the clock buffer X through the sleep transistor S (Figure 5).
Note that we average the leakage power over the operation
period, since we are interested in reducing the effective
leakage power consumption of the clock buffer and sleep
transistor.

The dynamic power consumption of sleep transistor
coupled with a clock buffer in an operation period is directly
proportional to the number of times it toggles in the OP.
Given the ITP of a clock buffer, the total number of toggles
of the sleep transistor is calculated according to eq. 6:





OP

i

iXITPOPiXITPXtgl
1

),()mod1,()((6)

The function tgl indicates the number of times the sleep
transistor needs to alternate to switch on/off the clock buffer.

Algorithm ITP sequence generation
Inputs: the continuous ITP of clock buffer X, the operation
period (OP) in terms of no. of cycles, the clock period (T)
Output: the ITP sequence of clock buffer X

For every i from 0 to OP-1

 If ITPX (i .T) = 1 and ITPX ((i + 1 mod OP) .T)
= 1 then
 ITPX [i] ← 1 ///idle

else

Homayoun et al, Post-Synthesis Sleep Transistor …

The dynamic power dissipation of clock buffer paired
with sleep transistor is modeled as:

  OPXEICOPDPXtglDPSXDP XS /))(()(),( (7)

We assume that clock gating has been applied before
implementing the proposed sleep transistor insertion.
Therefore, the clock buffer only consumes dynamic power
when it is active (OP-EIC(X)). The sleep transistor consumes
dynamic power only when the clock buffer alternates
between idle and active status (tgl(X)).

We extend the concepts of dynamic power and leakage
power consumption to a cluster of clock buffers (C) which
share the same sleep transistor (S). Eq. 8 and eq. 9 are
extensions to leakage and dynamic power formulations
expressed in eq. 5 and eq. 7:

   OPCEICOPCEICLPLPCLP C
CXi

XiS /)()()1()()( 


 (8)

OPXEICOPDP

CtglDP
CDP

CXi
iXi

S

/))((

)(
)(


















 



 (9)

The parameters tgl(C) and EIC(C) are calculated using eq.
4 and eq. 6. Provided that the set of standard buffers used in
the design is limited, the reduction ratios (αC) and the wakeup
times (wc) for different clusters can be calculated and stored
in a lookup table before finding the optimum clustering
solution.

4.3. Impact of sleep transistor insertion on timing
integrity

In this section we will review the impact of STI on the
timing integrity of the sequential circuit. As STI modifies the
propagation delays of the clock buffers to which it is coupled,
there might be timing hazards as the clock signals reach the
flip-flops at unacceptably different times. An example of
such effect is depicted in:

Figure 11. Impact of propagation delay on clock integrity

As shown in Figure 11, buffers B2 and B3 are sharing a
sleep transistor. The output of flip-flop R1 is fed to the
combinational circuit and the output of the combination
circuit is registered in flip-flop R2. In this case, we refer to R1
and R2 as the source and destination flip-flops respectively.
The signals Ss and Sd represent the clock branches triggering
flip-flops R1 and R2 respectively.

The propagation delays from the clock source to the flip-
flops change due to sleep transistor insertion and as a result
the data integrity of the flip-flops might be violated. For
example, in Figure 11, the propagation delay overhead for the
clock branch Ss is more than the propagation delay overhead

for Sd, since in the branch leading to Ss there are two buffers
B2 and B3 sharing a sleep transistor, whereas in the branch
leading to Sd only one buffer B2 is connected to the sleep
transistor. Although the results in Figure 6 suggests that in
this simple example the propagation delay overhead is very
low, sleep transistor insertion and sharing must be performed
with caution in order to meet the clock skew constraints [22]:

(Sd – Ss) ≥ Dmax + tS – T (10)
(Sd – Ss) ≤ Dmin – tH (11)

Where tS, tH and T are the setup time, hold time and the
clock period of the circuit. Dmin and Dmax are the minimum
and maximum combinational circuit delays from the source
flip-flop to the destination flip-flop. The constraints
mentioned above must be held for every pair of source flip-
flop and destination flip-flop being connected by a
combinational circuit. Enforcing the constraint in inequality
10 prevents setup violation, while enforcing the constraint in
inequality 11 prevents hold violation.

5.

6. POST SYNTHESIS SLEEP TRANSISTOR
INSERTION ALGORITHM (PSSTI)

The problem of post-synthesis clock sleep transistor
insertion can be stated as:

Given a clock tree containing X1,…, Xn clock buffers, the
idle time patterns of the clock buffers, the leakage and
dynamic power of clock buffers and sleep transistors, the
wakeup delays (Figure 4), the reduction ratios (Figure 5) and
the propagation delays (Figure 6) in lookup tables,

- Find the optimum partitioning of X into
C ={C1,…,Cm} clusters where the total power of the
clock tree buffers is minimized

- Subject to the timing constraints defined on the
clock tree.

The problem of clustering in general is NP-hard. We
propose a heuristic algorithm to insert sleep transistors in the
synthesized clock tree in order to optimize the power
dissipation in clock tree buffers with no compromise in the
integrity of the clock tree functionality.

According to eq. 9 and eq. 10, we are able to determine
whether merging two clusters results in reduction in total
power dissipation or not. We define merging gain (MG) of
clusters C1 and C2 as:

)()()(),(212121 CCPCPCPCCMG  (12)

In eq. 12, P(C1), P(C2) and P(C1 C2) are the total power
consumptions of clusters C1, C2 and C1 C2 (the product of
merging) respectively.

Merging two clusters is performed by merging the set of
clock buffers of the two clusters and updating the ITP of the
new cluster according to eq. 2. In order to find the proper size
for the sleep transistor, we pick the smallest available sleep
transistor that meets the timing constraint so that the total
power overhead of the sleep transistor is minimal. If
MG(C1,C2) is negative, it indicates that merging C1 and C2

results in power reduction. Otherwise, we will not consider
merging C1 and C2 into a single cluster.

The highlight of our clustering algorithm is shown in
Figure 12. In our algorithm, we initially assume that each

Homayoun et al, Post-Synthesis Sleep Transistor …

individual clock buffer is clustered by its own and is coupled
with a distinctive sleep transistor. In each iteration of our
algorithm, we calculate MG(Ci ,Cj) for every pair of clusters
as stated in eq. 12 and compare the value with the best
reduction value obtained so far. At the beginning of every
iteration, the best reduction value is set to 0. If this merging
leads to further reduction in the total power compared to
previously obtained best reduction value, then the merging is
further examined to see whether it leads to any skew
violations in the clock tree or not. If the merging is skew-
violation-free, then such merging is accepted and the best
reduction value and the best merged cluster are saved.

We add the best cluster in terms of power reduction to the
set of valid clusters and invalidate the two clusters
constituting the best cluster. The termination condition of this
algorithm is reached when there is no further merging either
because there is no power reduction in merging clusters
(merging inherently leads to less number of idle cycles and
eventually more power consumption) or all the merging lead
to clock skew constraint violation.

If Elmore delay model is employed, all the delays from
clock source to the flip-flops can be calculated by traversing
the tree network two times in O(n) [23], where n is the
number of elements used in the clock tree (buffers and wires).
Once the source to flip-flop delays are calculated, the clock
skew constraints can be examined in O(m) to see whether
there is any clock skew violation in the clock tree or not. The
parameter m here refers to the number of clock skew
constraints between source-destination pairs of flip-flops.
Altogether, given a set of clock buffer clusters and the clock
tree, the complexity of finding clock skew violations is O(n +
m).

Figure 12. Outline of PSSTI

Calculating MG in the worst case takes O(OP. n), where
OP is the operation period and n is the number of clock
buffers in the design, provided that all the information
pertaining dynamic and leakage power consumptions is
available in lookup tables, accessible in O(1).

In order to analyze the complexity of PSSTI algorithm in
Figure 12, we start with the two inner FOR loops, through
which every pair of two clusters is examined (there are O(n2)
of such pairs). In case the pair turns out to be skew-violation-
free and also leads to the most power reduction, the pair is
merged into a single cluster and is added to the list of valid
clusters. In other words, in the worst case, we perform one
merge for every pair with complexity of O(OP. n) and we
check the skew violations in O(n + m). The total complexity
of execution of the two inner FOR loops is O(n3). Since each
execution of the two inner FOR loops results in a merging of
a cluster pair, and there are initially n clusters, the number of
times the inner FOR loops are executed is O(n). Therefore we
conclude that total complexity of PSSTI algorithm is O(n4).

7. EXPERIMENTAL RESULTS
In order to evaluate the performance of our proposed

technique, we applied PSSTI algorithm on a subset of the
popular academic DSP and multimedia benchmarks [24],
which comprise of 8-bits multipliers, adders and registers.
The experimental flow used in this work is depicted in Figure
13.

We first perform scheduling and resource allocation for
each benchmark under minimal latency constraints so that we
obtain the RTL level description netlist. Once scheduling and
resource binding is performed, the idle time pattern of each
flip-flop is extracted.

We explored the potential benefits of PSSTI using a
standard VLSI-CAD design flow, by leveraging Synopsys
Design Compiler [25] for synthesis and Synopsys Astro [26]
for floorplanning, power planning, placement, routing and
clock tree synthesis.

We have used standard cell from TSMC 45nm low power
(LP) library. For clock tree construction, we have used high
threshold voltage clock buffers as well. By doing so, we take
into account all benefits of using approaches like [11] in
which multi-threshold transistors for clock tree network is
used. We also enabled hierarchical clock gating to reduce the
dynamic power consumption.

We have utilized Synopsys Astro to generate different
clock topologies to evaluate and understand the impact of
clock topology on the effectiveness of PSSTI algorithm: For
each RTL netlist, we generated four clock tree with
maximum fan out of 2 (similar to binary clock tree), 4, 8 and
16. The clock tree information (including tree topology,
buffer size, buffer location and buffer power dissipation) is
then extracted once clock tree synthesis is done. All designs
are synthesized and placed and routed for 500 Mhz clock
frequency. The summary of design constraints is shown in
Table 2. Once the clock information is extracted, it is fed
into the STI search engine, which is an implementation of
PSSTI clustering algorithm. The search engine tries to cluster
the clock buffer together so that all the clock buffers in a
cluster share a sleep transistor. The main objective of the

Algorithm PSSTI:
Inputs: Clock buffers X = { X1,…, Xn } and their ITP set, the
lookup tables for wakeup delay overheads, propagation delay
overheads, leakage power reduction ratio (αX), leakage and
dynamic power of the sleep transistors and clock buffers and
clock skew constraints between every pair of source-
destination flip-flops.
Outputs: set of clusters C = { C1,…, Cm }

merged ← true
For every Xi in X
 add Ci to C where Ci ←{ Xi }
 Ci ← valid
While merged = true do {
 Best_reduction ← 0
 merged ← false
 For every valid Ci in C
 For every valid Cj in C , i ≠ j {
 Calculate MG(Ci , Cj)
 If MG(Ci , Cj) < Best_reduction then {
 Ck ← Ci Ų Cj

 If no_skew_violation(Ck) then {
 Best_reduction ← MG(Ci , Cj)

 merged ← false
 Cbest ← Ck }}}
 If (merged = true)
 Add Cbest to C
 Ci ← invalid
 Cj ← invalid }

Homayoun et al, Post-Synthesis Sleep Transistor …

Figure 13. Experimental flow

search engine is to minimize the total power consumption of
the clock tree without any clock skew violation. The lookup
tables (Figure 13) used in the search engine contain
information regarding the power benefits of sleep transistor
sharing, as well as propagation delay overheads and wakeup
time overheads on the clock buffers. In the lookup tables we
store the power benefit of sleep transistor sharing for
different cluster sizes, different clock buffer sizes and
different sleep transistor sizes. The results obtained using
HSPICE simulation and the same methodology explained in
Sec. 3.

Once the clusters are identified, the sleep transistor
network is constructed and routed. Note that this network is
routed to drive the sleep transistors. We use a separate netlist
and an additional place and routing flow to construct this
network.

We calculated the power consumption of the clock tree

Table 2. Design Synthesis Constraints

Technology TSMC45-LP Synthesis Frequency 550 MHz

Max Core Utilization 80%
Place and route

frequency
500 MHz

Max Allowed
Routing Congestion

2%
Clock Tree Max Fan

Out
2, 4, 8, 16

Hierarchical Clock
Gating

Enabled Target Skew 100 ps

Clock buffers
CLKBUFFX2, CLKBUFFX3, CLKBUFFX4, CLKBUFF8

CLKBUFF12, LKBUFF16, CLKBUFFX24, CLKBUFFX32

in two cases. In the first case, we assume no sleep transistor is
inserted in the clock tree. In the second case, we apply our
PSSTI algorithm on the clock tree to cluster the clock buffers
and insert sleep transistors for each cluster. For power
calculation we have taken into account the sleep transistor
leakage and switching power dissipation as well as the
additional routing network to drive them. Since the clock tree
is constructed using high threshold voltage clock buffers, all
power benefits of using low power cells are already taken
into account (similar to [11]). The results of our experiments
are shown in Table 3. For each benchmark and for each
maximum fan out constraint (2, 4, 8 and 16), we have
extracted the maximum clock skew and total power
consumption of the clock trees. It also contains the number of
clock buffers in the clock tree and the number of clock buffer
clusters calculated using our STI search engine. As reported,
there is a significant reduction in the leakage power of clock
trees after sleep transistor insertion. In fact we reached up to
40%, 36%, 28% and 22% reduction in total leakage power
consumption of the clock tree when sleep transistors are
inserted in netlists with maximum fan outs of 2, 4, 8 and 16
respectively. On average the leakage power improvements
are 32%, 29%, 24%, 19%.

Table 3. Experimental results

Benchmark
No. of clock buffers No. of clusters

Baseline clock max.
skew (ps)

Baseline total
 power (mW)

Leakage power
reduction (%)

Total power
reduction (%)

Clock tree fan out Clock tree fan out Clock tree fan out Clock tree fan out Clock tree fan out Clock tree fan out
2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16 2 4 8 16

arf 47 24 8 4 15 8 3 2 24 27 16 8 0.23 0.22 0.20 0.20 24.4 22.9 14.3 13.7 7.7 7.7 2.8 0.8

horner 30 15 6 3 9 5 2 1 24 22 21 10 0.21 0.20 0.19 0.19 33.8 30.9 26.7 11.9 15.8 15.6 10.7 1.2

fir1 40 21 7 4 13 8 3 2 20 26 25 16 0.19 0.18 0.16 0.16 17.4 15.0 9.8 9.2 5.8 4.9 2.0 1.2

motion 80 39 17 7 27 13 6 3 26 27 17 16 0.28 0.26 0.24 0.23 30.1 27.4 24.9 25.0 12.9 12.3 10.1 8.3

ewf 62 33 13 6 17 10 5 2 30 18 16 27 0.33 0.31 0.30 0.29 37.0 32.5 24.0 14.9 20.3 18.9 9.8 4.3

fir2 40 21 7 4 14 7 3 2 12 32 26 8 0.15 0.13 0.12 0.12 22.5 20.8 14.9 11.8 9.1 9.2 5.0 2.5

feedback 95 47 19 8 22 13 7 3 50 26 25 50 0.46 0.43 0.41 0.40 35.8 30.8 22.4 16.4 19.2 17.6 10.3 5.2

cosine1 111 58 23 10 26 14 7 4 43 49 33 51 0.60 0.57 0.54 0.52 41.1 40.6 34.8 29.6 21.8 26.9 19.3 11.3

h2v2 40 21 7 4 9 7 3 2 13 26 20 21 0.37 0.36 0.34 0.34 35.9 30.4 25.0 18.1 19.2 17.3 11.2 5.3

cosine2 111 58 23 10 28 15 7 4 41 21 25 71 0.61 0.58 0.55 0.53 38.7 38.3 32.0 31.0 19.0 23.1 16.7 12.2

collapse 111 58 23 10 37 21 8 4 30 32 15 55 0.58 0.55 0.52 0.50 30.5 25.5 22.4 21.0 12.4 10.2 8.2 5.8

interpolate 201 101 40 20 59 31 14 7 44 27 47 12 0.84 0.78 0.73 0.72 28.1 25.9 23.2 17.4 12.9 12.5 10.2 5.5

matmul 119 61 24 10 41 21 8 4 40 51 29 56 0.93 0.90 0.87 0.85 23.0 21.0 20.0 17.3 9.5 9.0 8.7 5.9

jpeg_fdct 160 80 32 14 39 21 10 5 38 17 11 62 1.24 1.19 1.15 1.13 33.1 29.3 22.8 19.7 17.6 17.8 11.8 8.7

idctcol 191 97 38 16 39 25 11 5 41 27 28 48 1.54 1.48 1.44 1.41 41.3 35.3 31.8 22.6 24.4 24.0 19.7 10.0

smooth 254 129 51 26 51 30 14 8 44 33 38 13 1.62 1.54 1.48 1.47 42.2 39.8 36.6 28.2 24.2 28.0 23.1 11.6

Average 105.8 53.9 21.1 9.8 27.9 15.6 6.9 3.6 32.5 28.8 24.5 32.8 0.63 0.60 0.57 0.56 32.2 29.2 24.1 19.2 15.7 15.9 11.2 6.2

Homayoun et al, Post-Synthesis Sleep Transistor …

The maximum (average) total power reduction obtained
through sleep transistor insertion for maximum fan outs of 2,
4, 8 and 16 are 25% (16%), 27% (16%), 23% (11%) and
13% (6%). As clock trees with maximum fan out of 2 use
more clock buffers compared to clock trees with higher fan
outs, it is more likely to find clock buffers with similar idle
time patterns, especially for the clock buffers closer to the
sinks, which leads to less dynamic power overhead for the
sleep transistor. Since the idle time pattern of each clock
buffer is in fact dependant on the idle time patterns of all the
children clock buffers (as stated in eq. 1), for high fan out
clock trees, the sleep transistors have to toggle between on
and off more frequently which results in more sleep
transistor dynamic power consumption. Therefore, for lower
fan out clock trees the overall power reduction is more
significant.

Our experiments show that the maximum allowable
routing congestion was met after sleep transistor insertion.
The core utilization also increased negligibly yet met the
design constraints. This indicates the sleep transistor
insertion and routing increases the area overhead
insignificantly. The clock skew variation caused by STI is
very negligible. No clock skew violation was reported after
sleep transistor insertion. The maximum skew observed in
the clock trees after applying STI was increased by 10%,
which satisfies clock skew constraints of the circuit.

8. CONCLUSION
In this paper we have proposed sleep transistor insertion

in a clock tree in order to reduce leakage power. We
characterized the effect of sleep transistor sharing and sizing
on clock tree wakeup time, leakage power, and propagation
delay. We have developed an algorithm which utilizes these
characteristics to reduce the leakage and the total power
dissipation through clustering clock buffers and sharing
sleep transistors. We have also combined our sleep transistor
insertion engine to the standard design synthesis flow for
ASIC designs (using industrial synthesis tools), including
data flow graph scheduling, resource binding, design
synthesis, placement and routing. Having explored the
power consumption of clock trees with different fan outs, we
noticed significant reductions in total power and leakage
power, by 16% and 32% on average respectively.

9. References
[1] M. Donno, E. Macci, and L. Mazzoni, “Power-Aware Clock

Tree Planning,” Proc. ACM/IEEE Int. Symp. Physical Design,
2004, pp. 138-147.

[2] N. Magen, A. Kolodny, U. Weiser, and N. Shamir,
“Interconnect-power Dissipation in a Microprocessor,” Proc.
Workshop on System Level Interconnect Prediction, 2004, pp.
7-13.

[3] Nam Sung Kim, Todd Austin, David Blaauw, et al, “Leakage
current: Moore’s law meets static power”, IEEE Computer
Society, pp. 68-75, 2003.

[4] Walid M. Elgharbawy, Magdy A. Bayoumi, “Leakage sources
and possible solutions in nanometer CMOS technologies”,
IEEE Circuits and Systems Magazine, pp. 6-17, 2005.

[5] V. Adler, E. G. Friedman, “Repeater Insertion to Reduce
Delay and Power in RC Tree Structures,” IEEE Asilomar
Conference on Signals, Systems and Computers, pp. 749-752,
Pacific Grove, CA, November 1997.

[6] J. Cong, C.-K. Koh; K.-S. Leung, “Simultaneous Buffer and
Wire Sizing for Performance and Power Optimization,”
ISLPED-96: ACM/IEEE International Symposium on Low-
Power Electronics and Design, pp. 271-276, Monterey, CA,
August 1996.

[7] Vittal, M. Marek-Sadowska, “Low-Power Buffered Clock
Tree Design,” IEEE Transactions on CAD/ICAS, Vol. 16, No.
9, pp. 965-975, September 1997.

[8] M. A. El-Moursy, E. G. Friedman, “Exponentially tapered H-
tree clock distribution networks”, IEEE Trans. VLSI Syst.
2005.

[9] M. Igarashi, et al.“A Low-Power Design Method using
Multiple Supply Voltages,” ISLPED-97.

[10] Weixiang Shen, et al, “Activity-aware registers placement for
low power gated clock tree construction”, in Proc ISVLSI, pp.
383-388, 2007.

[11] Weixiang Shen, et al., ”Leakage Power Optimization for
Clock Network Using Dual-Vth Technology”, ISCAS 2008.

[12] Yongseok Cheon, et al., “Power-Aware Placement”, in DAC
2005.

[13] Jaewon Oh and Massoud Pedram, “Gated clock routing for
low-power microprocessor design”, IEEE Transactions on
CAD/ICAS, Vol. 20, No. 6, pp. 715-722, June, 2001.

[14] Monica Donno, Alessandro Ivadldi, Luca Benini, Enrico
Macii, “Clock-tree power optimization based on RTL
clockgating”, in Proc. DAC, pp. 622-627, 2003.

[15] Ruchir Puri, Leon Stok, John Cohn, et al, “Pushing ASIC
performance in a power envelope”, in Proc. DAC, pp. 788-
793, 2003.

[16] Mongkol Ekpanyapong, Sung Kyu Lim, “Integrated retiming
and simultaneous Vdd/Vth scaling for total power
minimization”, in Proc. ISPD, pp. 142-148, 2006.

[17] David Chinnery and Kurt Keutzer, “Closing the Power Gap
Between ASIC & Custom”, Springer US.

[18] H. Homayoun and A. Veidenbaum, ZZ-HVS: Zigzag
Horizontal and Vertical Sleep Transistor Sharing to Reduce
Leakage Power in On-Chip SRAM Peripheral Circuits, ICCD
2008.

[19] J. Kao, S. Narendra, and A. Chandrakasan, “MTCMOS
hierarchical sizing based on mutual exclusive discharge
patterns,” DAC, June 1998.

[20] J. M. Rabaey et al., Digital integrated circuits: a design
perspective, Prentice Hall, Second. Edition, 2003.

[21] K. Agarwal, H. Deogun, D. Sylvester, K. Nowka. Power
gating with multiple sleep modes. In ISQED 2006.

[22] J. P. Fishburn, Clock Skew Optimization, IEEE transactions
on computers, V. 39, N. 7, P. 945-951, July 1990

[23] R. Gupta, et al., The Elmore delay as a bound for RC trees
with generalized input signals, in DAC 1995.

[24] http://www.ece.ucsb.edu/EXPRESS/benchmark/
[25] Design Compiler Ultra, Synopsys Incorporation
[26] Astro synthesis tool, Synopsys Incorporation

