
Using Lazy Instruction Prediction to Reduce
Processor Wakeup Power Dissipation

 Houman Homayoun

+
 Amirali Baniasadi

houman@houman-homayoun.com University of Victoria, ECE Department
 amirali@ece.uvic.ca

ABSTRACT
We study lazy instructions. We define lazy instructions
as those spending long periods in the issue queue.
Moreover, we investigate lazy instruction
predictability and show how their behavior could be
exploited to reduce activity and power dissipation in
modern processors. We show that a simple and small
64-entry table can identify up to a maximum of 50%
of lazy instructions by storing their past behavior. We
exploit this to a) reduce wakeup activity and power
dissipation in the issue queue and b) reduce the
number of in-flight instructions and the average
instruction issue delay in the processor.

We also introduce two power optimization
techniques that use lazy instruction behavior to
improve energy efficiency in the processor. Our study
shows that, by using these optimizations, it is possible
to reduce wakeup activity and power dissipation by up
to 34% and 29% respectively. This comes with a
performance cost of 1.5%. In addition, we reduce
average instruction issue delay and the number of in-
flight instructions by up to 8.5% and 7% respectively
with no performance cost.

1. INTRODUCTION
Modern high-performance processors execute
instructions aggressively, processing them in each
pipeline stage as soon as possible. This requires
fetching as many instructions as possible and
processing them as fast as we can. A typical processor
fetches several instructions from the memory, decodes
them and dispatches them to the issue queue.

Instructions wait in the issue queue for their
operands to become available. The processor
associates tags with each source operand and
broadcasts operand tags to all instructions in the issue
queue every cycle. Instructions compare the tags
broadcasted with the operand tags they are waiting for

+

The author was with the University of Victoria, Electrical and
Computer Engineering Department when this work was done.

 (referred to as instruction wakeup). Once a match is
detected, instructions are executed subject to resource
availability (referred to as instruction select). These
are energy demanding tasks making the issue queue
one of the major energy consumers in the processor
(the issue queue is estimated to consume about 27%
of the overall processor power [16]).

This aggressive approach appears to be inefficient
due to the following:

1- In order to improve ILP, high-performance
processors fetch as many instructions as possible to
maximize the number of in-flight instructions. High-
performance processors continue fetching instructions
even when there are already many in-flight
instructions waiting for their operands. A negative
consequence of this approach is that some instructions
enter the pipeline too early and long before they can
contribute to performance. Nevertheless, they
consume resources and energy.

2- Many instructions tend to wait in the issue
window for long periods. An example of such
instructions is an instruction waiting for data being
fetched from the memory. Under such circumstances,
the waiting instruction and consequently those
depending on its outcome have to wait in the issue
queue for several cycles. During this long period,
however, the processor attempts to wakeup such
instructions every cycle.

We exploit the two inefficiencies discussed above
and use instruction behavior to address them. We
study instruction issue delay (also referred to as IID).
In particular, we study lazy instructions, i.e., those
instructions that spend long periods in the issue
queue.

In this work we identify/predict lazy instructions.
By identifying lazy instructions we achieve the
following: First, by estimating the number of in-flight
lazy instructions, we identify occasions when the
front-end can be reconfigured to fetch fewer
instructions without compromising performance.

Second, once lazy instructions are identified
speculatively, we reduce wakeup activity by avoiding
to wakeup lazy instructions every cycle.

By using the above approaches we reduce
instruction wakeup activity, instruction wakeup power
dissipation, the number of in-flight instructions and
average issue delay by up to 34%, 29%, 7% and 8.5%
respectively while maintaining performance.

The rest of the paper is organized as follows. In
Section 2 we study issue delay prediction in more
detail. In Section 3 we explain our optimization
techniques. In Section 4 we present our experimental
evaluation. In Section 5 we review related work.
Finally, in Section 6 we summarize our findings.

2. ISSUE DELAY PREDICTION
In this work we adjust processor parameters
dynamically to reduce processor activity and
consequently power dissipation. We rely on
instruction behavior to identify occasions where we
can reduce the number of processed instructions while
maintaining performance.

Many studies show that the behavior of an
instruction in the issue queue is predictable [e.g., 5-8].
In this paper we focus on predicting lazy instructions
and the possible applications. Through this study we
define lazy instructions as those spending more than
10 cycles in the issue queue. We picked this threshold
after testing many alternatives.

There are many factors influencing IID
(instruction issue delay) including instruction
dependency and resource availability. Figure 1(a)
shows IID distribution for a subset of SPEC�2K
benchmarks. On average, about 18% of the
instructions are lazy instructions, i.e., they spend at
least 10 cycles in the issue queue (maximum: 32%).

We refer to the number of times an instruction
receives operand tags and compares them to its
operand tags as the instruction wakeup activity. Lazy
instructions, while accounting for about 18% of the
total number of instructions, impact wakeup activity
considerably. This is due to the fact that they receive
and compare the operands tags very frequently and
during long periods. To explain this better in Figure
1(b) we report the relative share of total wakeup
activity for each group of instructions presented in
Figure 1(a). On average, lazy instructions, despite
their relatively low frequency, account for more than
85% of the total wakeup activity.

Our study shows that lazy instructions tend to
repeat their behavior. This provides an opportunity to

identify them before they arrive in the issue queue.
We use this opportunity to avoid the extra wakeup
activity and to identify lazy instructions early enough.
We use a small 64-entry, PC-indexed table to predict
lazy instructions before they arrive in the issue queue.
We refer to this table as the LI-table. While exploiting
larger and more complex structures may improve
prediction accuracy, we avoid such structures to
maintain power and latency overhead at a low level.

To store lazy instructions we do the following: If
IID is more than 10, we store the instruction PC in the
LI-table (more on this later). We also associate each
table entry with a 2-bit saturating counter. If the lazy
instruction is already in the table we increment the
corresponding saturating counter. For the non-lazy
instructions with an entry in the table, we remove the
corresponding entry. To predict whether an
instruction is lazy, we probe the LI-table. The
instruction is marked as lazy, if the corresponding
counter is more than two. Note that the LI-table can
be accessed in parallel to fetch/decode and therefore
would not result in a deeper pipeline front-end.

We evaluate the proposed prediction scheme using
two criteria, i.e., prediction accuracy and prediction
effectiveness.

a)

b)

Figure 1: (a) Instruction issue delay distribution (b)
Instruction wakeup activity distribution.

0%

10%

20%

30%

40%

50%

60%

70%

80%

vpr gcc mcf equake ammp bzip2 parser twolf average

1 cycle 2- 5 cycles 6-10 cycles over 10 cycles

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

vpr gcc mcf equake ammp bzip2 parser twolf average

1 cycle 2- 5 cycles 6-10 cycles over 10 cycles

Lazy instruction prediction accuracy reports how
often instructions predicted to have an issue delay
more than 10 turn out to stay in the issue queue for
more than 10 cycles. This, while important, does not
provide enough information as it is silent regarding
the percentage of lazy instructions identified.
Therefore, we also report prediction effectiveness,
i.e., the percentage of lazy instructions identified.

While lazy instructions are identified by probing
the LI-table at dispatch, the table can be updated at
different stages. Two obvious update scenarios are
commit-update and issue-update. We report prediction
accuracy and effectiveness for both update scenarios.

In the first scenario, commit-update, lazy
instructions are allowed to update the LI-table only
after they have committed. Under this scenario wrong
path instructions will not update the table.

Note that lazy instructions spend a long period in
the pipeline and therefore update the LI-table long
after they have entered the pipeline. As such, by the
time a lazy instruction has committed, many lazy
instructions have entered the pipeline without being
identified. Also, it is quite possible that during this
long period, the instruction behavior may change and
therefore the stored information may not be valid by
the time it becomes available. The second scenario,
issue-update, allows lazy instructions to update the
LI-table as soon as they issue. This, while making
faster update possible, allows wrong path instructions
to interfere.

2.1. Prediction Accuracy
In Figure 2(a) we report prediction accuracy. Bars
from left to right report for commit and issue update
for the subset of SPEC�2K benchmarks studied here.
On average, prediction accuracy is 52% and 54% for
commit-update and issue-update respectively. Ammp
has the highest accuracy (97%) while bzip2 and vpr
fall behind other benchmarks. Our study shows that
lazy instructions change their behavior frequently for
these two benchmarks. This is consistent with the fact
that bzip2 and vpr have lower number of lazy
instructions and lazy instruction activity compared to
other benchmarks (see Figure 1). Note that the 50%
average accuracy should be viewed in the light of the
fact that only 18% of instructions are lazy
instructions.

2.2. Prediction Effectiveness
In Figure 2(b) we report prediction effectiveness. On
average, effectiveness is a bout 30%. Maximum

effectiveness is achieved for gcc where we accurately
identify more than half of the lazy instructions.
Minimum effectiveness is achieved for vpr, where
about 10% of lazy instructions are identified.

a)

b)

0%

10%

20%

30%

40%

50%

60%

70%

vpr gcc mcf equake ammp bzip2 parser twolf average
Commit Update Issue Update

Figure 2: a) Lazy instruction prediction accuracy b)
Lazy instruction prediction effectiveness.

3. OPTIMIZATIONS
In this section we introduce two optimization
techniques which use information available by using
an issue-update lazy instruction predictor. The two
techniques are selective instruction wakeup and
selective fetch slowdown. Selective instruction
wakeup avoids waking up all instructions every cycle.
Selective fetch slowdown reduces fetch speed if the
number of lazy instructions in the pipeline exceeds a
threshold. While the first technique impacts wakeup
activity, the second one impacts more than one
pipeline stage.

3.1. Selective Instruction Wakeup
As explained earlier, modern processors attempt to
wakeup all instructions in the issue queue every cycle.
As a result, instructions receive their source operands
at the earliest possible. This consequently improves
performance. However, it is unnecessary to wakeup
lazy instructions as aggressively as other instructions.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

vpr gcc mcf equake ammp bzip2 parser twolf average
Commit Update Issue Update

Ideally, if we had an oracle and knew in advance
when an instruction will issue, then a heuristic for
selectively waking up lazy instructions would require
waking up the lazy instruction only at the time it is
supposed to issue. Of course, we cannot have such an
oracle. An alternative is to predict instruction latency
and consequently issue time [7] and restrict
instruction wakeup to the predicted time. However,
this will impose inherent limitations on performance
by inaccuracies [2]. To avoid such complexities, we
take a more conservative approach: Once we have
predicted an instruction as a lazy instruction, instead
of attempting to wake it up every cycle, we wake it up
every two cycles.

The hardware structure for selective wakeup is
shown in Figure 3. We add a multiplexer per issue
queue entry to power gate the comparators every two
cycle. As we wakeup lazy instruction in even cycle,
we need to save the result tags produced in the odd
cycle. This requires using registers to keep the result
tags and broadcast them to lazy instructions when and
if free broadcast slots are available. Our study of
application behavior shows that broadcast results are
often available. In fact, on average, only one
broadcast slot is full every cycle.

 In our broadcast policy we assign higher priority
to result tags produced in the previous cycle. In the
rare case that all broadcast slots are full we stall
issuing instruction until an empty broadcast slot
becomes available. As presented in Figure 3, the
hardware overhead is negligible.

Figure 3: Hardware structure for selective wakeup.

3.2. Selective Fetch Slowdown

Modern processors rely on aggressive instruction
fetch to maintain ILP. Instruction fetch is responsible
for supplying the rest of the processor pipeline with
instructions. Instruction fetch rate should at least
match the instruction decode and execution rate
otherwise the processor resources will be
underutilized. Note that, if the instruction flow in the
pipeline is too slow, it will be inefficient to fetch too
many instructions. For example, if there are already
many instructions waiting for their operands in the
pipeline, we may be able to delay adding more
instructions to the already high number of in-flight
instructions without losing performance. This will
reduce the number of in-flight instructions which in
turn will result in less pressure on reservation stations
and pipeline activity.

In this section we use our estimation of the
number of in-flight lazy instructions to decide
whether fetching instructions at the maximum rate is
worthwhile. If the number of lazy instructions exceeds
a dynamically decided threshold we assume that it is
safe to slowdown instruction fetch. Accordingly, we
reduce the maximum cache lines fetched from two to
one.

To decide the dynamic threshold we record the
number of instructions predicted to be lazy every
1024 cycles. If the number of lazy instructions
exceeds one third of total number of in-flight
instructions we reduce the threshold by five. If the
number of lazy instructions drops below 5% of the
total number of in-flight instructions we increase the
threshold by five. Initially, we set this threshold to 15.
Note that the design parameters picked here are
selected to optimize energy efficiency for the
configuration used. Alternative processor
configurations may require different parameters to
achieve best results.

Selective fetch slowdown needs minimal hardware
modification as it only requires two counters and a
register to keep the number of lazy instructions, all
instructions and the dynamic lazy threshold
respectively.

4. METHODOLOGY AND RESULTS
In this section, we report our analysis framework. To
evaluate our techniques we report performance,
wakeup activity, average issue delay, average number
of in-flight instructions, power dissipation and how
often we slowdown fetch. We compare our processor
with a conventional processor that attempts to wakeup

Comp.

Source
Operand Tag

Result tag1 Result tag2 Result tag3 Result tag4

 Comp. Comp. Comp.

Comp. Comp. Comp. Comp.

Vcc

Vcc

MUX

Clk/2

Clk/2

1

1

Lazy controller

Lazy controller

Source
Operand Tag

Results tags produced in:

Broadcast Width

Comp: Comparator
 Mux : multiplexer

Broadcast
 Slot

Previous Cycle Current Cycle

MUX

 Comp.

 Comp.

all instructions every cycle and does not reduce the
fetch rate.
Note that activity measurements are less technology-
and implementation-dependent compared to power
measurements. Nonetheless, we also report power
analysis for the processor studied here. We detail the
base processor model in Table 1. We used both
floating point (equake and ammp) and integer (vpr,
gcc, mcf, bzip2, parser and twlf) programs from the
SPEC CPU2000 suite compiled for the MIPS-like
PISA architecture used by the Simplescalar v3.0
simulation toolset [1]. We used WATTCH [15] for
energy estimation. We modeled an aggressive 2GHz
superscalar microarchitecture manufactured under a
0.1 micron technology. We used GNU�s gcc compiler.
We simulated 200M instructions after skipping 200M
instructions.

Table 1: Base processor configuration.

Integer ALU # 8 Scheduler 128 entries,

RUU-like
FP ALU # 8 OOO Core any 8

instructions /
cycle

Integer
Multipliers/
Dividers

#4 Fetch Unit

Up to 8
instr./cycle. 64-
Entry Fetch
Buffer

FP
Multipliers/
Dividers

#4 L1 -
Instruction
Caches

64K, 4-way SA,
32-byte blocks,
3 cycle hit
latency

Instruction
Fetch
Queue

#64 L1 - Data
Caches

32K, 2-way SA,
32-byte blocks,
3 cycle hit
latency

Branch
Predictor

2k Gshare
bimodal
w/selector

Unified L2 256K, 4-way
SA, 64-byte
blocks,16-cycle
hit

Load/Store
Queue Size

64 Main
Memory

Infinite, 80
cycles

Reorder
Buffer Size

128 Memory
Port

#4

4.1. Results
In this section we report our simulation results. In
4.1.1 we report performance. In 4.1.2 we report
activity and power measurements. In 4.1.3 we report
average issue delay reduction and fetch slowdown
frequency.

4.1.1. Performance

In Figure 4 we report how selective wakeup and
selective fetch slowdown impact performance. To
provide better insight we also report performance for
a processor that never fetches more than one cache
line (referred to as the single line processor). In
Figure 4, bars from left to right report performance for
selective wakeup, selective fetch slowdown and the
single line processor. Across all benchmarks
performance cost is below 1.5% for selective wakeup.
Selective fetch slowdown, however, does not impact
performance. On the other hand, the single line
processor comes with a maximum performance cost
of 5.5%.

90%
91%
92%
93%
94%
95%
96%
97%
98%
99%

100%

vpr gcc mcf equake ammp bzip2 parser twolf average
Baseline Processor Selective Wakeup
Selective Fetch Slow Down Single Line Processor

Figure 4: Bars from left to right report performance for
selective instruction wakeup, selective fetch slowdown
and single line processor respectively.

4.1.2. Activity and Power
In Figure 5 we report activity and power
measurements. In Figure 5(a) we report how selective
instruction wakeup impacts wakeup activity. On
average, we reduce wakeup activity by 12% reaching
a maximum of 34% for ammp.

In Figure 5(b) we report average reduction in the
number of in-flight instructions for selective fetch
slowdown and the single line processor. Selective
fetch slowdown reduces the average number of in-
flight instructions by 4% (maximum 7%) without
compromising performance (see Figure 4). The single
line machine reduces average number of in-flight
instructions by 8.5% (maximum 16%); however, this
can be as costly as 5.5% performance loss as
presented earlier. In Figure 5(c) we report wakeup
power reduction as measured by wattch. Bars from
left to right report power reduction for selective
wakeup, selective fetch slowdown and the
combination of both techniques.

Selective wakeup reduces wakeup power
dissipation up to a maximum of 27% (for ammp).
Note that this is consistent with Figure 5(a) where

ammp has the highest activity reduction. Minimum
wakeup energy reduction is about 2% for bzip2.
Again this is consistent with Figure 5(a) where bzip2
has the lowest activity reduction.

Selective fetch slowdown reduces wakeup power
up to a maximum of 12% (for equake) and a
minimum of 1% (for bzip2 and ammp). This is
consistent with Figure 5(b) where equake has the
highest reduction in the number of in-flight
instructions and bzip2 and ammp have the lowest.

Using both techniques simultaneously, on average,
we reduce wakeup power by about 14%. Average
wakeup power reduction is 8.3% and 6.7% for
selective wakeup and selective fetch slowdown
respectively.

a)

0%

5%
10%

15%

20%

25%
30%

35%

40%

vpr gcc mcf equake ammp parser bzip2 twolf average

 b)

0%

5%

10%

15%

20%

vpr gcc mcf equake ammp parser bzip2 twolf average
Front-End Slowdown Single Line Fetch

 c)

0%

5%

10%

15%

20%

25%

30%

vpr gcc mcf equake ammp bzip2 parser twolf average
selective wakeup selective fetch slowdown Combination

Figure 5: Selective wakeup: activity reduction b)
Selective fetch slowdown: average in-flight instruction
reduction c) Wakeup power reduction.

Note that, compared to other processor structures, the
LI-table is a small structure and therefore comes
negligible power overhead.

4.1.3. Issue Delay and Slowdown Rate
In Figure 6(a) we report average reduction in IID
achieved by selective fetch slowdown. On average,
we reduce IID by 4% (maximum 8%).

Finally, in Figure 6(b) we report how often
selective fetch slowdown reduces fetch rate. On
average we reduce fetch rate about 50% of the time.
Note that for ammp we rarely reduce the fetch rate.
This explains why we do not witness any reduction in
average number of in-flight instructions or IID for
ammp as reported in Figure 5(b).

a)

0%

2%

4%

6%

8%

10%

vpr gcc mcf equake ammp parser bzip2 twolf average

 b)

0%

20%

40%

60%

80%

100%

vpr gcc mcf equake ammp parser bzip2 twolf average

Figure 6: a) Selective fetch slowdown: average issue
delay reduction b) Selective fetch slowdown: slowdown
rate.

5. RELATED WORK
Many studies have used instruction behavior to
optimize processor design. Such studies either
redesign different processor parts, such as the issue
queue, or reconfigure the processor dynamically.

Raasch et al. suggested adapting the issue queue
size and exploiting partitioned issue queues to reduce
the wakeup activity [11]. Our work is orthogonal to

and could be used on top of their approach to increase
savings.

Many studies use dependency chain information to
reduce issue queue complexity [5,6,8-10]. Our work is
different from these studies as it relies on issue delay
estimation without considering data dependency.

Brown et al., introduced methods to remove the
select logic from the critical path [4]. Brekelbaum et
al., introduced a new scheduler, which exploits
latency tolerant instructions in order to reduce
implementation complexity [3]. Stark et al., used
�grandparent� availability time to speculate wakeup
[12]. Ernst et al., suggested a wakeup free scheduler
which relied on predicting the instruction issue
latency [7]. Hu et al., studied wakeup-free schedulers
such as that proposed in [7] and explored how design
constrains result in performance loss and suggested a
model to eliminate some of those constrains [2]. Our
technique is different from all these studies as it takes
a more conservative approach and uses a less complex
scheme.

Huang et al., [13] showed that a large fraction of
instructions wake up no more than a single instruct-
ion. They proposed an indexing scheme which only
enables the comparator for a single dependent
instruction. Our technique is different as it uses
prediction to decide which comparators to disable.

Previous study has introduced front-end gating
techniques to stop fetching instructions when there is
not enough confidence in the in-flight instructions
[14]. Our work is different as it relies on lazy
instruction prediction.

6. CONCLUSION AND FUTURE WORK
In this work we studied lazy instructions and
introduced two related optimization techniques. We
showed that it is possible to identify a considerable
fraction of lazy instructions by using a small and
simple 64-entry predictor. By predicting and
estimating the number of lazy instructions we reduced
wakeup activity, wakeup power dissipation, average
instruction issue delay and the average number of in-
flight instructions while maintaining performance. We
relied on limiting instruction wakeup for lazy
instructions to even cycles and reducing the processor
fetch rate when the number of lazy instructions in the
pipeline exceeds a dynamically decided threshold.
Our study covered a subset of SPEC�2k benchmarks.

As mentioned, several approaches have been
proposed to reduce power dissipation of the issue
queue. One possible future avenue is to study the

possibility of their combination with our proposed
techniques.

While throughout this work we only focused on
lazy instructions it is possible to study fast
instructions; i.e., instructions which are issued
quickly. In addition we can use the information of
lazy/fast instruction prediction to reduce power
dissipation in other structure of a superscalar
processor.
7. ACKNOWLEDGMENTS
This work was supported by the Natural Sciences and
Engineering Research Council of Canada, Discovery
Grants Program and Canada Foundation for
Innovation, New Opportunities Fund.
REFERENCES
[1] D. Burger, T. M. Austin, and S. Bennett.
Evaluating Future Microprocessors: The SimpleScalar
Tool Set. Technical Report CS-TR-96-1308,
University of Wisconsin-Madison, July 1996.

[2] J. S. Hu, N. Vijaykrishnan, and M. J. Irwin.
Exploring Wakeup-Free Instruction Scheduling. In
Proc. of the 10th International Conference on High-
Performance Computer Architecture (HPCA-10
2004), 14-18 February 2004, Madrid, Spain.

[3] E. Brekelbaum, J. R. II, C. Wilkerson, and B.
Black. Hierarchical scheduling windows. In Proc. of
the 35th Annual IEEE/ACM International Symposium
on Microarchitecture, Nov. 2002.

[4] M. D. Brown, J. Stark, and Y. N. Patt. Select-free
instruction scheduling logic. In Proc. of the
International Symposium on Microarchitecture, Dec.
2001.

[5] R. Canal and A. Gonzalez. A low-complexity
issue logic. In Proc. of 2000 International
Conferences on Supercomputing, May 2000.

[6] R. Canal and A. Gonzalez. Reducing the
complexity of the issue logic. In Proc. of 2001
International Conferences on Supercomputing, June
2001.

[7] D.Ernst, A.Hamel, and T.Austin. Cyclone:a
broadcast-free dynamic instruction scheduler selective
replay. In Proc. of the 30th Annual International
Symposium on Computer Architecture, June 2003.

[8] A. R. Lebeck, J. Koppanalil, T. Li, J. Patwardhan,
and E. Rotenberg. A large, fast instruction window for
tolerating cache misses. In Proc. of the 29th Annual
International Symposium on Computer Architecture,
May 2002.

[9] P. Michaud and A. Seznec. Data-flow
prescheduling for large instruction windows in out-of-
order processors. In Proc. of the 7th International
Symposium on High Performance Computer
Architecture, Jan. 2001.

[10] S. Palacharla, N. P. Jouppi, and J. Smith.
Complexity-effective superscalar processors. In Proc.
of the 24th Annual International Symposium on
Computer Architecture, pages 206�218, June 1997.

[11] S. Raasch, N. Binkert, and S. Reinhardt. A
scalable instruction queue design using dependence
chains. In Proc. of the 29th Annual International
Symposium on Computer Architecture, May 2002.

 [12] J. Stark, M. D. Brown, and Y. N. Patt. On
pipelining dynamic instruction scheduling logic. In
Proc. of the International Symposium on
Microarchitecture, Dec. 2000.

[13] M. Huang, J. Renau, and J.Torrellas Energy-
Efficient Hybrid Wakeup Logic. In Proc. of the
international symposium on Low power electronics
and design-ISLPED�02, August 2002.

[14] S. Manne, A. Klauser and D. Grunwald. Pipeline
Gating: Speculation Control For Energy Reduction.
In Proc. Intl. Symposium on Computer Architecture,
Jun., 1998.

[15] D. Brooks, V. Tiwari M. Martonosi �Wattch: A
Framework for Architectural-Level Power Analysis
and Optimizations�, Proc of the 27th Int�l Symp. on
Computer Architecture, 2000.

[16] Gurhan Kucuk, Dmitry Ponomarev, Kanad
Ghose :Low-Complexity Reorder Buffer Architecture,
16th ACM International Conference on
Supercomputing (ICS'02), New York, June, 2002, pp.
57-66.

