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Abstract— Most hospitals today are dealing with the big data
problem, as they generate and store petabytes of patient records
most of which in form of medical imaging, such as pathological
images, CT scans and X-rays in their datacenters. Analyzing such
large amounts of biomedical imaging data to enable discovery and
guide physicians in personalized care is becoming an important
focus of data mining and machine learning algorithms developed
for biomedical Informatics (BMI). Algorithms that are developed
for BMI heavily rely on complex and computationally intensive
machine learning and data mining methods to learn from large
data. The high processing demand of big biomedical imaging
data has given rise to their implementation in high-end server
platforms running software ecosystems that are optimized for
dealing with large amount of data including Apache Hadoop
and Apache Spark. However, efficient processing of such large
amount of imaging data running computational intensive learning
methods is becoming a challenging problem using state-of-
the-art high performance computing server architectures. To
address this challenge, in this paper, we introduce a scalable
and efficient hardware acceleration method using low cost
commodity FPGAs that is interfaced with a server architecture
through a high speed interface. In this work we present a full
end-to-end implementation of big data image processing and
machine learning applications in a heterogeneous CPU+FPGA
architecture. We develop the MapReduce implementation of K-
means and Laplacian Filtering in Hadoop Streaming environment
that allows developing mapper functions in non-Java based
languages suited for interfacing with FPGA-based hardware
accelerating environment. We accelerate the mapper functions
through hardware+software (HW+SW) co-design. We do a full
implementation of the HW+SW mappers on the Zynq FPGA
platform. The results show promising kernel speedup of up to
27× for large image data sets. This translate to 7.8× and 1.8×
speedup in an end-to-end Hadoop MapReduce implementation
of K-means and Laplacian Filtering algorithm, respectively.

I. INTRODUCTION

Use of biomedical imaging integrated into today’s health-
care technologies has opened the door to apply image pro-
cessing methods for both research and diagnostic purposes
and enable discovery to guide physicians in personalized
care. As every patient may receive a digital copy with the
high resolution image of their recently imaged body part,
we are increasingly creating a wealth of knowledge over
the population for the imaging data that is used for better
researching various diseases such as cancer, Alzheimer, and
Multiple sclerosis, to just name a few.

The biomedical imaging data is stored in distributed
database systems to be used for studying rare events that
occur very infrequently. With the ever-growing availability
of big biomedical imaging data in healthcare, rare event

prediction and analysis to explain changes from usual func-
tioning has become very important. Examples of such cases
are monitoring continuous data streams from ICU patients,
analyzing magnetic resonance imaging (MRI) medical images
to detect breast or brain cancer tumor pattern that is hard
to identify as cancerous or not in the concept of content
based image retrieval. However, the ability to detect such
rare event for decision-making lags behind our ability to mine
big biomedical imaging data. This is particularly critical for
streaming data, where the goal is to monitor and make decision
in real-time in order to alert when unusual event occurs.

The aim of medical image processing is to automatically
extract information from the both 2D and 3D images, e.g.,
automatically segmenting a brain MRI facilitates brain re-
search [1]. Furthermore, statistical analysis of large databases
of images are used to correlate characteristics with disease
outcome.

An example of a database that collects images modalities
like MRI and CT on different cancer types is the cancer
imaging archive (TCIA) [2], which is used for studies of
the molecular biology of cancer. An effort has been initiated
to link the imaging data to genomic data in the cancer
genomic atlas (TCGA) [3] for a more comprehensive analysis
of the cancer genome. One example is discussed in [4] in
which, cancer gene expression is linked to MRI imaging
results to analyze the survival time and disease progression
of Glioblastoma multiform.

Another imaging modality used in large volume for disease
outcome prediction purposes is digital pathology. These im-
ages have high resolution and are obtained from the tissue
biopsy of patients. An example is a recent longitudinal study
of 20 years of pathology data in 18 registered databases on
108196 women with DCIS [5]. Similar studies are conducted
over large database of images, in order to answer important
questions regarding prognosis and the course of treatment for
cancer patients.

Various image processing and machine learning techniques
are used for segmenting medical images. For unsupervised-
clustering region growing, K-means, Markov random field and
expected maximization are utilized. For supervised image pixel
classification, algorithms like KNN, Maximum likelihood or
Nave Bayes are used [6]. Some examples of image segmen-
tation are to cluster different parts of a brain like gray matter,
white matter, and CFS on MRI image modality; to classify
tumors on CT scans; or, to find the calcification and tumor
spots on digital mammograms [6].
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Another common image processing application is to use
pattern recognition techniques to classify part of a medical
image as a specific pattern. For instance, in the case of
pathology, images are used to decide if the region of interest
is cancerous. Different feature extraction techniques followed
by classifiers like SVM or random forest are used to classify
the region of interest. Feature extraction is usually achieved
through the use of image filters like Gaussian of Laplacian
or Sobel edge detector, in addition to the extraction of color
histograms. Feature extraction is applied both in the training
and test phase.

As explained in some examples above, there is a growing
need to find ways to access and analyze image data both
locally and also in distributed manner. In addition, faster
analysis of high volume images can pave the way to include
more image data in the study of interest. Given the enormity
of size of biomedical imaging data, Big data technologies can
help to significantly reduce the processing time of such data.
An efficient platform for large volume image processing is
Apache Hadoop.

Apache Hadoop is a Java-based, open-source implemen-
tation of MapReduce. MapReduce [7], a framework utilized
extensively for big-data applications, is a well-utilized imple-
mentation for processing large data sets in which, the programs
are parallelized and executed on a large cluster of commodity
servers. MapReduce consists of both map and reduce func-
tions. The map functions parcel out work to different nodes
in the distributed cluster and the reduce functions collate the
work and resolves the results.

Examples of implementation of big biomedical imaging data
in high-end server platforms, are HIPI [8] and picture archival
and communication systems (PACS) that are running in servers
equipped with high-end Xeon cores.

The challenge with big data environment including the
Hadoop MapReduce as well as the high-end server architec-
ture, is that none of them have been design and optimized to
address the computing demand of image processing of large
volume of biomedical data. Today’s server architectures in
fact, have been mainly optimized for web service applications,
which are mainly I/O intensive [9], [10]; however, biomedical
imaging analytics applications are combining two substan-
tially different characteristics: data intensity and computational
intensity [11]. These applications are relying on complex
machine learning and data mining algorithms in particular
for rare-event analytics using classification, regression, and
clustering methods that are computationally intensive.

In general, emerging big data analytics applications includ-
ing biomedical-imaging analytics require a significant amount
of server computational power. The costs of building and
running an Exascale computing server to process big data
applications and the capacity to which we can scale it, are
driven in large part by those computational resources, which
are not optimized to meet energy-efficiency and performance
demand of emerging analytics applications.

In response to performance and energy-efficiency challenge,
in other domains, hardware acceleration through specialization
have emerged as a promising solution partially in response
to the dark silicon challenge to enhance energy efficiency
by allowing each application to run on a computing system
that matches its resource needs more closely than a general
purpose computing one size-fits-all processing node [12], [13],
[14]. This will be just as true for Big biomedical imaging

analytics, if not more so. Integration of hardware accelerators
in server platforms has provided an opportunity to exploit the
high computational capacity of FPGAs and GPUs to improve
performance of this class of applications by many-fold. In
fact, FPGA and GPUs provide a cost-effective solution for
the scalability challenge we are facing in future data center,
as the size of data grows.

Although integration of GPU in todays high-end servers
provides opportunity to accelerate performance of biomedical
imaging application and has been studied extensively in recent
years [15], [16], it is not a power efficient solution [17],
[18]. To address the computing and energy-efficiency require-
ments of big biomedical imaging applications, and based on
the benchmarking and characterization results, we envision
a data-driven heterogeneous architecture for next generation
big data server platforms that leverage the power of FPGA
to build custom accelerators. Therefore in this paper we
present an implementation of image processing applications
in a heterogeneous CPU+FPGA architecture. We develop the
MapReduce implementation of K-means and image filtering in
Hadoop Streaming environment that allows developing mapper
functions in non-Java based language suited for interfacing
with FPGA-based hardware accelerating environment. We
accelerate the mapper functions through hardware+software
(HW+SW) co-design. We do a full implementation of the
HW+SW mappers on the Zynq FPGA platform. The results
show promising speedup of up to 17× for image data sets.

II. RELATED WORK

HIPI is a Hadoop image processing interface software that
is used to read and distribute image data on HDFS file system
of Hadoop in parallel manner. HIPI lets the user access each
image as a single file and hide the detail of MapReduce
framework. Users can use image processing and OpenCV
application for the image provided by HIPI interface. It can be
used on large scale imaging datasets [8]. [19] has used Hadoop
MapReduce platform for image analysis of remote sensing
images. They have used 8 different practical image processing
application to show that Hadoop can be used to process large
image data in addition to text data. [20] has implemented
kmeans for clustering of remote sensing images using MapRe-
duce platform, in which they have turned the image data to
text file, in order to read the images into the Hadoop platform.
In [21], FPMR is introduced as a MapReduce framework on
the FPGA with RankBoost as a case study, which adopts a
dynamic scheduling policy for better resource utilization and
load balancing. In [22], a hardware accelerated MapReduce
architecture is implemented on Tilera’s many core processor
board. In this architecture data mapping, data merging and
data reducing processing are offloaded to the accelerators.
The Terasort benchmark is utilized to evaluate the proposed
architecture. In [23] hardware acceleration is explored through
an eight-salve Zynq-based MapReduce architecture. It is im-
plemented for a standard FIR filter to show the benefits gained
through hardware acceleration in the MapReduce framework
where the whole low-pass filter is implemented on the FPGA.
In [24], a configurable hardware accelerator is used to speed up
the processing of multi-core and cloud computing applications
on the MapReduce framework. The accelerator is utilized
to carry out the reduce tasks. In [25], [26], [27], we used
hardware acceleration of MapReduce to accelerate machine-
learning kernels. In this paper, we used hardware acceleration

1135 

 

  



3

Fig. 1. Studied system architecture.

Fig. 2. Timing of various Hadoop phases

to enhance the performance of biomedical imaging applica-
tions.

III. SYSTEM ARCHITECTURE AND METHODOLOGY

The system studied in this paper, consists of a high-
performance CPU as the name node, which is connected to
several CPUs that are in turn, connected to FPGAs. The
FPGA+CPU work together as data nodes.

The name node runs the HDFS and is responsible for the
job scheduling between all the data nodes. It is configured to
distribute the computation workloads among the data nodes,
as shown in Fig. 1, where Intel Xeon E5-242 is deployed
as the master-node, and the data nodes are equipped with
FPGAs. Each data node has a fixed number of map and reduce
slots, the number of which, is statistically configured. In a
multi-node cluster name node and data nodes are usually on
different machines. However, on a single node platform as
the one studied in this paper, they are located on the same
node. Although Hadoop exploits the cluster infrastructure for
the big data applications, to evaluate the performance analysis,
we focus on a single node of the cluster.

We study two applications, Laplacian filtering of images for
edge detection purposes and K-means clustering of Biomedical
images. Filtering on an image is a neighborhood operation,
in which the value of any given pixel in the output image
is determined by applying some algorithm to the values of
the pixels in the neighborhood of the corresponding input
pixel. K-means clustering, a machine-learning algorithm that
divides the data into K different clusters, is utilized in image
processing to analyze remote sensing images.

We develop a MapReduce implementation of the applica-
tions and execute them on Hadoop Streaming environment
that allows developing mapper and reducer functions in non-
Java based language suited for interfacing with FPGA-based
hardware accelerating environment. We perform a thorough

analysis of individual execution phases in MapReduce envi-
ronment. This information is used to find out how much time is
spent in each phase of MapReduce execution including map,
reduce, sort, shuffle, cleanup and setup and to calculate the
execution time, when each of these phases are accelerated.

Fig. 2 shows the timing diagram of a MapReduce applica-
tion with 15 map jobs, 4 mapper slots and one reduce job. As
shown in Fig. 2, the map phase initiates with the start of the
first map task and finishes when the last map task completes
its execution. T1 shows the map time for the given example.

The timing information shows that for each mapper node,
there is a time interval before the end of previous map task and
the start of next map task. This time interval accounts for data
transfer between the name node and the data node, which is
not accelerated. However, the time interval throughout which,
the map task is being executed is accelerated through hardware
acceleration.

In order to have an estimation of the acceleration of the
mapper phase, the map functions are accelerated on the Zynq
FPGA boards. Zynq devices, which combine ARM cores
with an FPGA, allow HW+SW co-design of applications. We
calculate the speedup gained through HW+SW co-design of
the map functions on the Zedboards, in order to estimate the
range of speedup achievable on the data nodes when they are
accelerated with programmable logic. The ZedBoard featuring
XC7Z020 Zynq SoCs, integrate two 667 MHz ARM Cortex-
A9 with an Artix-7 FPGA with 85 KB logic cells and 560 KB
block RAM.

As discussed earlier, not all the execution time of the overall
MapReduce application is spent in the map function, thus,
the speedup realized on the map function are translated to
lower speedups on the overall MapReduce platform depicted
in Fig. 1. Thus the final acceleration is determined not only by
the extent to which we can accelerate the map function, but
also by the portion of the total execution time in the Hadoop
MapReduce that is devoted to the map function.

IV. RESULTS

We implemented filtering and K-means for 1264 and 1600
images, respectively, which were converted to text files with
a total size of 5GB. K-means is an unsupervised clustering
scheme that can be used directly for clustering on biomedical
images including blood cells on biopsy images [28], or alterna-
tively, as an initialization step for expected maximization and
random field. Image filtering is applied for feature extraction
of medical images as a first step toward image pattern classi-
fication. We have implemented Laplacian filter weights in our
filter implementation which can be used as a blob detector in
pathology images.

Fig. 3 shows the breakdown of the timing of various phases
in the MapReduce platform for these two applications. Fig.
3 shows that most of the execution time is devoted to the
map and reduce functions. While a significant portion of the
execution time is devoted to the map phase in the K-means
(i.e. 95%), only 48% of the execution times is spent in the map
phase in the filtering algorithm. For this application the reduce
function takes up a significant portion of the execution time,
which shows that the speedup can be significantly enhanced if
both map and reduce functions are accelerated. Such argument
however, is not applicable to the K-means in which, only 1%
of the execution time is devoted to the reduce phase.
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(a) (b)

Fig. 3. Timing break-down of different phases in (a) Laplacian filtering, (b)
K-means.

Fig. 4. Speedup of the map function versus the overall MapReduce platform.

Fig. 4 shows the speedup values of the map phase and
the overall Hadoop streaming implementation for these two
algorithms. With K-means a map function speedup of 27.3×
is translated to 7.87× on the overall MapReduce platform,
which is a 3.5× drop in the speedup. With Laplacian Filter
a map function speedup of 14.3× is translated to 1.75× on
the overall MapReduce platform, which is a 8.2× drop in
the speedup. The drop in speedup in the overall MapReduce
platform is higher for the filtering algorithm, since for this
algorithm the portion of time devoted to the map phase is
lower, and even if we were able to speedup the map phase
indefinitely, still the other phases take up a significant time to
finish.

V. CONCLUSION

Efficient processing of large amount of biomedical imaging
data running computational intensive learning methods is
becoming a challenging problem using state-of-the-art high
performance computing server architectures. In response, this
paper presents a method and framework to accelerate the pro-
cessing of large scale biomedical imaging applications using
commodity FPGA platform. Laplacian filtering of images for
edge detection purposes and K-means clustering of Biomedical
images has been studied for acceleration. A MapReduce
implementation of the two algorithms has been developed and
the computational intensive tasks were mapped to the FPGA.
The results show promising kernel speedup of up to 27× for
large image data sets. This translate to 7.8× and 1.8× speed
up in an end-to-end Hadoop MapReduce implementation of
K-means and Laplacian Filtering algorithm, respectively. The
framework and methodology can be used to accelerate other
computationally intensive biomedical image processing appli-
cations that are dealing with large scale imaging data.
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