
978-1-5386-3470-7/17/$31.00 ©2017 IEEE

Scheduling Multithreaded Applications onto
Heterogeneous Composite Cores Architecture

Hossein Sayadi, Houman Homayoun

Department of Electrical and Computer Engineering
George Mason University

Fairfax, VA, USA
{hsayadi, hhomayou}@gmu.edu

Abstract— Composite Cores Architecture (CCA), a class of

dynamic heterogeneous architectures, enables the system to
construct the right core at run-time for each application by
composing cores together to build larger core or decomposing a
large core into multiple smaller cores. While this architecture
provides more flexibility for the running application to find the
best run-time settings to maximize energy-efficiency, due to
interdependence of various tuning parameters such as the type of
the core, run-time voltage and frequency and the number of
threads, it makes it more challenging for scheduling. Past
research mainly addressed the scheduling problem in composite
cores architecture by looking at one or two of these tuning
parameters. However, as we will show in this paper, it is
important to concurrently optimize and fine-tune these
parameters to harness the power of heterogeneity in this
emerging class of architecture. In addition, most previous work
on CCA mainly studied traditional single threaded CPU
applications. In this work, we investigate the scheduling
challenges for multithreaded applications in CCA. First, through
methodical investigation of power and performance results, we
characterize various multithreaded applications on a CCA which
can be composed into few big or many little cores and
demonstrate how the interplay among various application,
system, and architecture level parameters affect the performance
and energy-efficiency. Furthermore, based on characterization
results, a highly accurate regression-based model for energy-
efficiency prediction is developed to guide the scheduling
decision. Using the predictive model, we developed a scheduling
scheme for effective mapping of multithreaded applications onto
CCA. The results show that the proposed scheduling scheme on
average achieves close to 94% efficiency as compared to the
Oracle scheduling.

Keywords— Heterogeneous architecture, Composite cores,
Energy-efficiency, Scheduling, Multithreaded applications,
Regression model

I. INTRODUCTION

Heterogeneous multicore processors offer significant
advantages over homogeneous designs in terms of both
performance and power by executing workloads on the most
appropriate core type. By running multithreaded applications
on heterogeneous architecture, each thread is able to run on a
core that matches its resource needs more closely than one-
size-fits-all solution [11,27]. Commercially available
heterogeneous architectures include Intel Quick IA [6], ARM’s
big.LITTLE [8], and Nvidia Tegra 3 [7] that integrates a high
performance big core with low power little core on a single
chip.

Although heterogeneous architectures take advantage of
application characteristics variation at run-time and improve
energy-efficiency, they create unique challenges in effective
mapping of threads to cores. As the core configurations in
heterogeneous multicores become more diverse, they become
more difficult to program effectively. In other words, the
effectiveness of heterogeneous architectures significantly
depends on the scheduling policy and how efficiently we can
allocate applications to the most appropriate processing core
[1,3,4,9,28,29]. Applying ineffective scheduling decisions can

lead to performance degradation and excess power
consumption in such architecture [1,11,17,24].

Composite cores architectures can provide further benefits
by allowing the system to construct a right core for each
running application. Several designs have been proposed that
provide some level of heterogeneity. These proposals include
Core Fusion [17], TFlex [18] and Composite Cores [1,11]. In
[11,17] the concept of composite cores is proposed where a big
core architecture can dynamically be decomposed into a
smaller little core architecture. The authors in [1] adapted the
concept of composite cores in 3D by further enabling the core
composition and decomposition at a low granularity of
processor building blocks such as register file and load and
store queue. Their proposed architecture allows multiple
smaller cores to be composed together to build a larger core or
vice versa, as needed. While composite cores architecture
provides more opportunity to construct the right core for the
running applications, it is making the scheduling a difficult
problem.

Previous studies have mainly examined the advantages of
using single threaded applications in CCA [1,2,13,17].
However, running multithreaded applications on CCA and
composing ideal processor architecture for energy-efficiency is
a more challenging problem, considering the possible number
of cores and threads, type of core microarchitecture, or
combinations of core types. Furthermore, the challenge of how
many and what type of core to compose for each multithreaded
application becomes even more complicated considering the
impact of other tuning parameters on energy-efficiency such as
operating voltage and frequency. In this work, we are exploring
the CCA in the context of multithreaded applications. In
particular, we investigate the scheduling challenges for
multithreaded applications for CCA. We focus on the benefits
of running multithreaded applications and how this architecture
provides opportunities to improve the energy-efficiency.

The main challenge for scheduling is to effectively tune
system, architecture and application level parameters in CCA
when running multithreaded applications. The particular
parameters that are critical to performance and power and are
considered in this work include core type, voltage/frequency
settings and the number of running threads. While there has
been number of work on mapping applications to
heterogeneous architectures, to the best of our knowledge,
there has been no prior effort to analyze and characterize
multithreaded applications on composite cores with its unique
architecture and develop effective scheduling scheme. In
addition, previous studies on mapping applications to multicore
architectures have focused primarily on 1) homogeneous
architectures 2) static heterogeneous architectures where the
number and type of cores are fixed at design time, and 3)
configuring individual or a subgroup of tuning parameters at a
time, such as application’s thread counts [5,9,21,22],
voltage/frequency [2,3], or core type [4,8,11,17,18,19,22] and

they have ignored the interplay among all of them. This study
indicates that these parameters individually, while important,
do not make a truly optimum configuration to achieve the best
energy-efficiency on a CCA. The best configuration for a
multithreaded application can be effectively found, only when
these parameters are jointly optimized. Fig. 1 illustrates the
tuning parameters influencing the scheduling decision in CCA.
Also, recent prior work as well as the contribution of our work
is shown in this figure.

In this paper, through methodical investigation of power
and performance, and comprehensive system and
microarchitectural level analysis, we characterize various
multithreaded applications from SPLASH-2 [14] and PARSEC
[16] multithreaded benchmark suites on CCA to understand the
power and performance trade-offs offered by various
configuration parameters and to find how the interplay of these
parameters affects the energy-efficiency. Our study is focusing
on a CCA where many little cores (base) can be configured
into few big cores (composed) and vice versa. Also, the metric
that we use to characterize energy-efficiency is the energy
delay product (EDP). The experimental results support that
there is no unique solution for the best configuration for
different applications. Given the dispersed pattern of optimum
configuration, we have developed an accurate energy-
efficiency prediction model to guide scheduling of
multithreaded applications and fine-tuning parameters in order
to maximize the energy-efficiency.

Contributions: This paper in brief makes the following
contributions:
 We investigate the performance and energy-efficiency

sensitivity of various standard multithreaded benchmarks
with various frequency settings, core types (base vs.
composed), and number of threads in heterogeneous
composite cores architecture. We observed that application
performance and energy-efficiency sensitivity to one
optimization parameter is significantly influenced by other
optimization parameters. For instance, increasing the
thread counts reduces the performance sensitivity to
operating frequency or multithreaded application’s
performance on base core shows to be more sensitive to
frequency variation than on composed core.

 We evaluate the interplay of tuning parameters on
performance and energy-efficiency in our studied
heterogeneous CCA. The studied parameters that are
critical to performance as well as power and energy-
efficiency are core type, voltage/frequency settings and the
number of running threads at microarchitecture, system
and application levels, respectively.

 Based on conducted workloads characterization, a linear
regression model is proposed for energy-efficiency

prediction of various configurations of application, system
and architecture level parameters to guide the scheduling
decisions. We evaluate two different regression models
and determine that the quantile linear regression model
[20] leads to an accurate estimation of the energy-
efficiency.

The remainder of this paper is organized as follows. The
background and previous work are briefly discussed in section
II. The methodology and experimental setup details are given
in Section III. Section IV presents the characterization results
and provides the performance and energy-efficiency analysis of
multithreaded applications on CCA. Then, the energy-efficient
scheduling model is proposed in section V. Finally, Section VI
presents the conclusion of this study.

II. BACKGROUND AND RELATED WORK

A. Heterogeneous Architectures

The static heterogeneous architecture in [9] and [23]
enables efficient thread-to-core mapping and permits a change
in the mapping across phases of execution through thread
migration. Prior research has shown that the potential benefit of
a static heterogeneous architecture is greater with fine-grained
thread migration than with coarse-grain migration [11]. In [10],
an Intel Xeon is integrated with an Atom processor. Code
instrumentation is used at the function or loop level to schedule
different phases of the application on each processor. However,
the separate core and memory subsystems in static
heterogeneous architectures incur power and performance
overheads for application migration, which makes dynamic
mapping ineffective for fine-grained migration [11].

Unlike static heterogeneous architecture where the number
and type of cores are fixed at run-time, dynamic heterogeneous
architectures can be configured at run-time. This provides more
opportunity to map an application to a core which matches its
resource needs more closely. Some of the first efforts to
provide this kind of heterogeneity include Core Fusion [17]
and TFlex [18]. Composite cores proposed a dynamic
heterogeneous architecture where a big core can dynamically
be decomposed into a smaller core [11]. The work in [1] and
[2] extended the concept of composite cores into 3D stacking
which enables fine-grain sharing of resources between cores on
a stacked chip multiprocessor architecture. Their proposed
architecture permits multiple smaller cores to be composed
together making a larger core, given the performance and
energy requirements of the running application. Previous work
on dynamic heterogeneous architecture and specifically on
composite core, has mainly studied mapping of single threaded
applications. This work is different as it mainly focuses on
multithreaded applications and how they would benefit from
such architecture to maximize the energy-efficiency.

B. Scheduling Challenges in Heterogeneous Architectures

As mentioned before, a main challenge for heterogeneous
architectures is the mapping and scheduling decision, which
finds the most efficient application-to-core match at run-time.
The work in [9] and [23] address the problem of dynamic
thread mapping in static heterogeneous many-core systems.
Prior research aimed to maximize performance under power
constraints [3,9,12,23]. Our work is different as it first targets
dynamic heterogeneous architectures where core size can be
adapted at run-time, and second it aims to maximize the
energy-efficiency by reducing the EDP. It is important to note
that the power and performance of an application on different

Fig.1. Tuning parameters influencing energy-efficiency in composite cores
architecture and prior work on scheduling using these tuning parameters

cores at various frequencies must be known for proper
mapping. Traditional designs suggest selecting the best core
based on a small sampling of applications on each core [21].
Other techniques [3,11,12,25,26], estimate core performance
and adapt the resources without running applications on a
particular core type using learning models. The work in [4] and
[11] provide a model for performance estimation on two core
types (i.e., big and little cores). The complexity of application
mapping on a heterogeneous architecture increases
exponentially by increasing number of core types and
applications [3,23,24].

While previous studies have mainly examined the
advantages of using single threaded applications, there is no
prior work on effectively mapping multithreaded applications
onto heterogeneous composite cores architecture. There have
been several studies on mapping multithreaded applications on
homogeneous architectures. The work in [5] suggested a
framework called “Thread Reinforcer” to determine the
appropriate number of threads for a multithreaded application
on a homogeneous architecture. It examines the mapping
between number of threads and number of cores to find the
optimal or near optimal number of threads to minimize the
execution time. The research in [4] proposed a scheduling
method to predict application to core mappings that enhances
performance. Using profiling parameters, it estimates
performance and examines whether the workload needs to run
on different core type. The work in [9] proposed a mapping
strategy for multithreaded applications on static heterogeneous
multicore architecture by initializing a maximum throughput
mapping and iteratively performing a thread swap on adjacent
types of cores until the power constraint is met. The research in
[3] took a closer look at joint optimization of voltage and
frequency as well as the microarchitecture. It proposed a
platform, which is capable of scaling resources, i.e., bandwidth,
capacity, voltage, and frequency, based on single-threaded
application performance requirements at run-time while
reducing EDP.

As shown in Fig.1, our paper addresses the importance of
joint cross-layer tuning of core type, frequency, and thread
counts to maximize the energy-efficiency of multithreaded
application running on CCA. It will then propose an accurate
regression model for energy-efficiency prediction to guide the
scheduling decision in a CCA.

III. EXPERIMENTAL SETUP AND METHODOLOGY

 This section provides the details of our experimental setup.
We use Sniper [13] version 6.1, a parallel, high speed and
cycle-accurate x86 simulator for multicore systems for
simulation. McPAT [15] is integrated with Sniper and is used
to obtain power consumption results. We study SPLASH-2 and
PARSEC multithreaded benchmark suites for simulation. We
use R, a free software environment for statistical analysis and

developing energy-efficiency prediction models. For
architectural simulation, we modeled a heterogeneous
composite cores architecture based on the proposed work in
[17,18]. Our study is focusing on a CCA where two little cores
(base) can be configured into one big core (composed) and vice
versa. We collect performance counters data on each
architecture for characterization and drive the scheduling and
mapping algorithms. We use these data to extract and evaluate
the actual behavior of applications (I/O, CPU or memory
intensive) for predicting energy-efficiency and assist
scheduling decision.

 Table I shows the microarchitectural configuration of base
and composed core of CCA in our experiment. In this
architecture, the L1 Cache size is 16KB for base core and
32KB for composed core which is constructed by composing
two base cores. Contention and latency for composing the core
includes two cycles wire delays for cross-core communication
[1, 17]. Fig. 2 provides a conceptual overview of a four core
CCA. In this paper, we investigate two baseline heterogeneous
CCAs which consist of multiple base and composed cores: 1)
8base/4comp, and 2) 4base/2comp. It is important to note that
for benchmark simulation we applied the binding (one-thread-
per-core) model with #threads == #cores to maximize the
performance of multithreaded applications [4, 5].

IV. CHARACTERIZATION RESULTS

In this section, we evaluate the applications performance
and energy-efficiency sensitivity to tuning parameters of
operating frequency, number of running threads, and the choice
of microarchitectures (base vs. composed) in heterogeneous
composite cores architecture. The studied parameters not only
directly impact the power and performance of the processor,
but they also influence one another. The optimal system and
microarchitecture configuration to maximize energy-efficiency
varies based on the characteristics of the application, which all
together influence the best tuning parameters. Therefore, it is
essential to investigate the interplay of these parameters to
guide the optimal mapping and scheduling decision in CCA.
These observations form the basis for developing the prediction
model presented in section V.

Note that the entire set of benchmark analysis results is
quite extensive. Therefore, due to space limitations we only
present the results for a limited number of representative
benchmarks shown in Fig. 3. This figure depicts the overall
performance in terms of execution time (represented as a bar
graph) and EDP results (represented as a line graph) for four
different multithreaded benchmarks across different core types,
frequencies and number of threads. In this section, first we
discuss the impact of changing each parameter on energy-
efficiency and next we perform a joint analysis to investigate
the interplay of studied parameters and their influence on
energy-efficiency in heterogeneous CCA.

TABLE I. ARCHITECTURAL SPECIFICATION
Microarch. Parameter Base Composed

Number of Cores 4/8 2/4

Issue-Commit width 2 4

INT instruction queue 16 entries 32 entries

FP instruction queue 16 entries 32 entries

Reorder buffer 32 entries 64 entries

Branch penalty 7cyc 14cyc

iL1-dL1 Cache 16KB/4-way/2cyc 32KB/4-way/2cyc

L2 Cache 4MB/8-way/32cyc 4MB/8-way/32cyc

Fig. 2. Conceptual structure of a four core CCA [17]

A. Frequency Sensitivity

All benchmarks were simulated using a baseline composed
core running with only a single thread. The operating
frequency is swept from 1.6 GHz to 2. 8GHz with a step of
400MHz and the voltage is changed between 0.7, 0.8, 0.9, and
1V, respectively. As can be seen in Fig.3, some benchmarks
are very sensitive to changing the frequency. For instance, in
fmm and cholesky reducing the frequency almost linearly
reduces the overall performance. Overall, as expected, as the
frequency increases, the performance increases accordingly.
The EDP results show that the higher frequency results in
lower EDP.

The next observation is that increasing the number of
threads interestingly reduces the sensitivity to frequency. In
other words, increasing the number of running threads
increases the performance gain due to parallelization.
Consequently, the overall performance as the number of
threads increases is more influenced by the speedup gain as a
result of parallelism rather than operating at higher frequency.
Moreover, the results show that the base core is more sensitive
to frequency scaling than the composed cores. This is also an
interesting observation as the composed core has a large
pipeline, allowing it to tolerate performance cost due to
alterations in cache access latency as a result of frequency
scaling. Note that changing clock frequency changes the
number of cycles it takes for the processor to communicate
with the cache.

B. Core Type Sensitivity

In this section, the results are reported for a baseline
configuration with a core running a single thread at the highest
frequency of 2.8 GHz and operating voltage of 1V. The
changing parameter is the core type, which varies between a
base core and a composed core architecture. Core type
demonstrates constant behavior with regards to EDP. As shown

in Fig. 3, there is a clear gap between the big composed and
little base cores (in Thread1 and F2.8), with composed core
having lower EDP. In these cases, the performance benefits of
the composed core outweigh the energy savings of the base
core.

C. Thread Count Sensitivity

Finally, each benchmark is simulated with varying number
of threads. In this step, each simulation was performed at the
same frequency of 2.8 GHz and operating voltage of 1V, when
changing the number of threads from 1 to 8. As shown in Fig. 3
(2.8GHz cases with varying threads), increasing the thread
counts leads to better performance. Moreover, there is a large
gap between the EDP values of base and composed core at
lower number of threads. Particularly, we observe that by
increasing the thread counts, the corresponding gap between
different core types diminishes and makes the base core
competitive to the composed core in terms of EDP.

V. ENERGY-EFFICIENT SCHEDULING FRAMEWORK

A. Joint analysis of (Core Type, Freqeucny, Thread Count)

To understand the interplay among various tuning
parameters and find the optimum configuration for maximizing
the energy-efficiency, in this section all permutations of the
parameters were simulated. We test four voltage/frequency
settings on two core types and execute each multithreaded
benchmark with 1 to 4 or 8 threads (depending on the core
type), where each thread is assigned to a single core. These
results are illustrated in Fig 3. Due to space limitations, we
only demonstrate the results for 1, 4 and 8 running threads.
Furthermore, the best evaluated execution time and EDP for
each application is shown in each figure.

As mentioned earlier, we examine two different
heterogeneous CCAs consisting of multiple base and
composed cores: 1) 8base/4comp, and 2) 4base/2comp. Table

Fig. 3. Execution Time and EDP of a) barnes, b) fmm, c) cholesky, d) radiosity with various Core Types, Threads, Frequencies

II presents the optimal set of results for both architectures.
This table includes benchmarks name, followed by the best
core configuration parameters (Core, Freq., #Thread) in terms
of EDP across base and composed cores. We have also
calculated the relative EDP variation for each benchmark,
which indicates the relative difference between energy-
efficiency of the best configuration parameters in base and
composed cores. We quantify variation parameter as follows:

��� = �
��������_��� – ������������_���

��������_���

� × 100 (1)

The variation parameter (Var) indicates whether it is
justified to compose cores. For this purpose, a variation
threshold is defined that decides what type of core architecture
should be selected for executing the corresponding
multithreaded application more energy-efficiently. The user-
defined threshold can be adjusted based on the architecture
and available resources as well as the cost of core
composition. Note that composing base cores to a big
composed core is not free and comes with power as well as
core utilization overhead. The core utilization overhead is in
fact due to using additional cores to build bigger cores. When
cores are composed to build a bigger core, fewer cores will be
available for incoming or co-scheduled applications. In this
work, we assume a 20% variation threshold. As a result, if the
variation percentage between best-base and best-composed
architectures is found to be lower than 20%, we use the base
core for scheduling instead of composing to avoid power as
well as core utilization costs.

 As can be seen from Table II, for most studied
applications the best running thread count is equal to the
maximum available cores. For instance, barnes performs with
2.4 GHz and 2.8 GHz on base and composed cores,
respectively, while the best number of running threads on
these two architectures are equal to 8 and 4, respectively. As
shown, the variation for this application has negative value in
some cases, which indicates it is more energy as well as core-
utilization efficient to run the application on base core.
Therefore, given that the variation value is lower than pre-
defined threshold, rather than running the application on costly
big composed core, we schedule the multithreaded application
onto cost-effective little base core. From these observations,
we conclude that while we can obtain significant performance
gains, power and core utilization costs could be drastic when
running application on big composed core. As a result, in
those cases we choose the little base core as the optimal core
configuration.

In order to perform a comprehensive EDP characterization
of studied architectures, we classified all possible

configurations (core types and number of threads) into four
classes. The first two are Fully-Base and Fully-Composed
configurations that are referred to cases in which the lowest
EDP is achieved with full utilization of the base and composed
core, respectively. In other words, the optimum number of
threads is equal to the maximum number of existing
base/composed cores. On the other hand, we use Partially-
Base and Partially-Composed configurations when the best
number of threads is lower than maximum available cores.

The diversity of optimum configurations across various
applications demonstrates that when running a given
multithreaded workload on a heterogeneous CCA, depending
on the application and energy-efficiency optimization metric,
different core configuration parameters (Core Type, V/Freq.,
#Thread) lead to the best energy-efficiency. In other words,
simulation results support that there is no unique solution as
the best configuration across various applications. As a result,
we can see various configurations for maximizing energy-
efficiency across different applications. This dispersed pattern
of optimum results implies the necessity of developing a
prediction method to guide scheduling decision of unknown
multithreaded applications onto heterogeneous composite
cores architecture to enhance the energy-efficiency.

B. Prediction Model for Energy-efficiency

1) Model selection: Recent studies have proposed ordinary
least squares regression (OLSR) modeling to estimate the
power [10] and performance [3,11,19] of a processor at run-
time. In this work, we show that OLSR is not the best suited
algorithm for performance and power estimation as outliers in
particularly in heterogeneous CCA can mislead the model. In
fact, various applications experience different phases with
different behavior. In addition, superscalar processors are
complex, which makes it difficult to develop a general model
for their power/performance estimation. OLSR models are
highly sensitive to the outliers and potentially produce
misleading results as even a single point of data substantially
impacts on the regression efficiency. Thus, in this paper, based
on a comprehensive characterization of various applications,
we evaluate a more robust regression algorithm in addition to
OLSR referred as Quantile Linear Regression (QLR) model
[20], to predict the energy-efficiency for various
configurations in our studied CCA. The main advantage of
QLR as compared to OLSR is its robustness against outliers.
QLR model is useful to obtain a more comprehensive analysis
of the relationship between variables and provides a richer
characterization of the data, allowing us to consider the impact
of a covariate on the entire distribution of target variable.

TABLE II. OPTIMAL CONFIGURATION WITH OPTIMIZATION TARGET OF EDP FOR DIFFERENT ARCHITECTURES

Benchmark

8Base/4Comp 4Base/2Comp
Best-base Best-composed Var

(%)

Best-base Best-composed Var
(%) Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread

barnes 2.4 8 2.8 4 -444.8 2.8 4 2.8 2 -475.4
fmm 2.4 8 2.4 4 2.2 2.4 4 2.8 2 -2.9
cholesky 2.4 8 2 4 28 2.4 4 2.8 2 5.8
radix 2.8 8 2.8 4 -138.7 2.8 4 2.8 2 -236.2
radiosity 2.4 8 1.6 4 -102.8 2.4 4 1.6 2 -128.1
raytrace 2.4 5 2 4 -28.9 2.4 4 2.8 2 -152
fft 2 4 2 2 36.3 2 4 2 2 36.3
lu.cont 2.4 8 2.8 4 27.2 2 4 2 2 7.8
blackscholes 2.8 6 2.4 4 83.85 2.8 4 2.4 2 77.08
bodytrack 2 7 2 3 41.23 2 3 2 2 34.1
ferret 2 6 2 4 62.4 2 4 2 2 54.3

OLSR is a statistical method used to model the relation
between a set of predictor variables and a response variable. It
estimates the mean value of the response variable for given
predictor variables. In linear regression, the regression
coefficient represents the increase in the response variable
produced by a single unit increase in the predictor variable
associated with that coefficient. A more comprehensive picture
of the effect of the predictors on the response variable can be
obtained by using quantile regression. QLR model estimates
the change in a specified percentile (quantile) of the response
variable produced by a single unit change in the predictor
variable. This allows comparing how some percentiles of the
target variable may be more affected by certain estimator
characteristics than other percentiles. This variation is reflected
in the change in the size of the regression coefficient. For the
QLR model, a specific quantile of data is set instead of the
mean value. We set the quantile of 0.1, which results in
minimizing the median of the error values.

 Although the use of non-linear regression or neural
network models potentially provides more accurate energy-
efficiency of an application, they increase complexity of the
design. The overhead in area, power and performance of
implementing linear regression model in hardware is minimal
and shown to be easily integrated into a core [11]. We show
that the QLR model achieves higher accuracy as compared to
OLSR. Fig. 4 illustrates a comparison between the derived
coefficients of two different predictors using ordinary linear
regression and quantile linear regression. As shown in each
graph, black dotted line is the slope coefficient for the QLR
and the red lines are the least squares estimate for OLSR and
its confidence interval. The figure shows how the lower and
upper quantiles are well beyond the least squares estimate.
The figure further illustrates how the effects of L2 cache
access and branch misprediction vary over quantiles, and how
the magnitude of the effects at various quantiles differs
considerably from the OLSR coefficient, even in terms of the
confidence intervals around each coefficient (58% for L2-
access and 30% for branch miss predictor). This figure
highlights that an ordinary least squares regression is not an
optimal solution to capture the actual behavior of applications

to predict the energy-efficiency.

2) QLRM derivation and training: To derive the
prediction model for energy-efficiency, we need to develop
the training data set to train the prediction model. For this
purpose, we consider a subset of applications from SPLASH-2
and PARSEC multithreaded benchmark suites. The studied
multithreaded applications represent divers compute, memory
and I/O intensity behavior. For each benchmark, we collect
twelve pieces of hardware performance counter data on all
possible configurations of core types, voltage/frequency
operating points and number of threads. These
microarchitectural parameters are listed in Table III. These
features represent pipeline front-end, pipeline back-end, cache
subsystem, and main memory behaviors and are influential in
the performance of standard applications.

The inputs to QLR classifier include a set of workload
metrics which are processor performance counters and the
current configuration parameters (Core Type, Freq.,
#Threads). The quantile linear regression is trained using a
subset of benchmarks (less than two third). The QLR model
weights are estimated using training data. Given the twelve
hardware performance counters, we use Principle Component
Analysis (PCA) and correlation analysis on our training set to
monitor the most vital microarchitecture parameters to capture
application characteristics. By applying the attribute reduction
method, we determine the four most related performance
counters including L1 D-cache access, L2 cache-access, L2
cache-miss and branch misprediction. These performance
counters are included in QLR model as input parameters.
Since the main purpose of this model is to predict energy-
efficiency across various application, system and
microarchitectural parameters, we need to consider these
tuning parameters in our model as well. Therefore, along with
the identified key performance counter parameters, we include
three tuning parameters (Core Type, Freq., #Thread) as input
variables into our model to enable predicting the EDP for each
configuration resulted by changing the core type, operating
frequency and thread counts.

After identification of the four key hardware performance
parameters and considering the tuning parameters, we
formulate the proposed EDP prediction model using quantile
linear regression as follows:

���� = �0 + � �. ��

�

���

� + 5. �� + 6. � (2)

where 0 is the intercept, i denotes the corresponding
coefficients of the regression model, and Pi are extracted
hardware performance counters. Moreover, the core/thread
configurations are given by CT, and f represents the frequency
on the corresponding core architecture. The i coefficients can
be interpreted as the expected change in EDP per unit change
in L1 D-cache access, L2 cache-access, L2 cache-miss, branch
misprediction, core/thread and frequency setting.

This model predicts continuous values representing energy
delay product as a function of performance counter inputs and
tuning parameters, which is then used to make the scheduling
decisions at run-time. During run-time, given an unknown
application, the QLR model can then predict the EDP of all
possible configurations based on a single run data. The
configuration corresponding to the lowest estimated EDP is
then selected for the run.

Fig. 4. Quantile graphs for predictors: a) L2-Access, b) Branch misprediction

OLSR Confidence OLSR

TABLE III. HARDWARE PERFORMANCE DATA USED FOR REGRESSION MODEL
Category Hardware performance counter

Memory
subsystem

L1 D-cache access, L1 D-cache miss, L1 I-cache
access, L1I- cache miss, L2 cache access, L2 cache
miss, I-TLB miss, D-TLB miss

Instructions Integer instruction issue, Integer floating point issue

Branch Branch instruction, Branch misprediction

C. Eenrgy-Efficient Scheduling Algorithm

Fig. 5 provides an overview of our scheduling scheme
using the regression-based prediction model. As illustrated,
our scheduling algorithm is split between an offline step and
an online step. In offline analysis, we first extract an extensive
set of data from multithreaded applications. The next step
involves clustering and correlation analysis of extracted
features that decreases the microarchitecture parameters to the
ones that have the most impact on energy-efficiency. Using
the selected performance data and various tuning parameters
configuration, we train and develop the QLR classifier.

In online tuning step, we run a multithreaded application
with the most aggressive configuration setting where all
tuning parameters are set at max (maximum number of
threads, highest frequency, and for composed core). We then
extract the hardware performance counters by profiling the
multithreaded application. This is done by running the
application and collecting the performance counters
information for maximum setting. Profiling stage helps
understanding the run-time characteristics and resource
utilizations of the application. The regression classifier takes
the key performance counter parameters and configuration
settings as inputs, and outputs the system energy-efficiency for
the given configuration. As a result, we schedule the
application with tuning parameters selected by the quantile
linear regression model to minimize the EDP.

Note that the linear weights are estimated using training
data set. Given the input configuration parameters during run-
time, the QLRM can predict the optimal energy-efficiency.
The output with optimal energy-efficiency and corresponding

new configuration is then chosen as the current operating point
at run-time. The predictive model, by observing run-time
behavior of a multithreaded application running with a
specific configuration, predicts the right configuration
parameters namely, the number of threads, operating voltage
and frequency, and core type - whether composed or base - to
achieve the maximum energy-efficiency. It is important to
note that the QLRM can be simply trained for other objectives
such as ED2P optimization.

D. Evaluation Results

Fig. 6 shows the comparison between the observed and
predicted maximum energy-efficiency across various
operating frequencies and core/thread configurations. In order
to evaluate the accuracy of our prediction model, we calculate
the value of relative mean absolute error defined as
|��������� ������������ �����|

(������ �����)
× 100%. This metric indicates the

relative difference between the predicted and observed
maximum energy-efficiency. In order to validate our QLR
learning model, we applied percentage split method to divide
the dataset into two sets, using 60% (known applications) of
the data to train the model and 40% (unknown applications) to
simulate and test.

In Table IV, average relative errors of applied linear
regression model for energy-efficiency estimation of different
operating points are presented. As shown, we characterized all
possible configurations to 16 operating points consisting of
various frequencies and core/thread configurations. Given the
results, the proposed prediction classifier is most accurate in
estimating the energy-efficiency of Fully-Comp architecture
and Fully-Base architecture, respectively, both operating at 2
GHz. Moreover, our regression model achieves an average
error of 6.85% across all testing data samples and possible
configurations. The presented results assist the scheduling
decision of multithreaded applications on heterogeneous CCA
including composing cores, setting operating voltage and
frequency, and adapting the number of running threads.

The performance overhead of implementing the QLRM in
hardware and calculating values at each interval is negligible.
The power overhead of implementing the QLRM is estimated
at 5uW, which is further reduced by gating idle units during
each interval [11]. In order to evaluate the efficiency of our
prediction model, the following scheduling schemes are
studied for comparison:

- Composite-Oracle: This model is based on the composite
cores architecture with an ideal application energy-efficiency
predictor, where all future behavior of the application as well
as the power and performance for various configurations are
known in advance. Therefore, the Composite-Oracle adapts
the cores, operating frequency and application thread counts
and exploits all opportunities to maximize energy-efficiency.
Since this scheme provides the upper bound for energy-
efficiency, it is used to normalize and compare other schemes.

- Composite-QLRM: This scheme is based on the composite
architecture with our proposed quantile linear regression to
estimate the EDP for various core sizes, frequency/voltage

Fig. 6. Comparison of actual and predicted EDP on various configurations

 Fig. 5. Proposed scheduling scheme with energy-efficiency prediction

TABLE IV. AVERAGE RELATIVE ERROR OF QLR MODEL
 Core/Thread Configurations

Freq. Full-Base Partial-Base Full-Comp Partial-Comp
2.8 GHz 10.5% 10.74% 11.69% 2.03%
2.4 GHz 22.49% 21.4% 4.67% 4.87%
2.0 GHz 1.9% 3.9% 1.74% 3.1%
1.6 GHz 3.35% 2.2% 3.6% 2.61%

points and number of threads.

- Elastic-Core [3]: This dynamic scheme proposed recently is
closest to our work, and uses a linear regression model to
predict the power and performance of single-threaded
applications as a function of core type and frequency settings.
Although it does not take number of threads into account, we
set the thread counts to maximum values to better evaluate our
model by fairly comparing it against a recent dynamic
scheduling.

- Performance Aggressive Scheduling (PAS): In this scheme,
all tuning parameters are set at maximum value to achieve the
maximum performance. Therefore, each application is
executed on the high performance composed core with
frequency of 2.8 GHz running with 4 threads.

- Power Minimized Scheduling (PMS): This scheduling
attempts to minimize power consumption. In other words, the
cores always remain at little base core (no composition). Also,
the frequency and number of threads are set to their minimum
values.

The energy-efficiency results of studied applications
normalized to the Composite Oracle are shown in Fig. 7. The
Composite-QLRM on average achieves close to 94%
efficiency as compared to the Oracle model. The Composite-
QLRM has an improved energy-efficiency as compared to the
Elastic-Core and PAS schemes by an average of 10% and 30%
across all benchmarks, respectively. Also, it outperforms the
PMS scheduling by 54% improved energy-efficiency. The
results prove the accuracy of our proposed prediction model
and effectiveness of proposed scheduling scheme to harness
the power of heterogeneity in a composite cores architecture to
significantly enhance its energy-efficiency.

VI. CONCLUSION
 Emerging heterogeneous composite cores architectures are
complex processors with various tuning optimization knobs
for improving performance and energy-efficiency. Scheduling
multithreaded applications in these architectures is a
challenging problem, given various optimization parameters at
application (number of running threads), system (operating
voltage and frequency), and architecture (core type, namely
big vs. little) levels. In particular, the interplay among these
tuning parameters and their influence on energy-efficiency,
make the scheduling and tuning even a more challenging
problem. In this paper, we respond to this challenge by
developing a scheduling and tuning solution for this class of
architecture. The space for tuning configuration parameters in
a composite cores architecture is large with no unique solution
for the most energy-efficient configuration for different
multithreaded applications, calling for developing a model to

predict energy-efficiency. We developed a predictive model
for estimating the energy-efficiency of multithreaded
applications in composite cores architecture. Our proposed
model achieves an average 6.85% error rate across all testing
data samples and possible configurations. Based on the
predictive model, we developed a scheduling scheme for
effective mapping of multithreaded applications to
heterogeneous CCA by setting the tuning parameters to
maximize the energy-efficiency. The results show that the
proposed scheduling scheme on average achieves close to
94% efficiency as compared to the Oracle scheduling.

ACKNOWLEDGMENT
This work was supported in parts by the National Science
Foundation under grant CSR-1526913 and CPS-1329829.

REFERENCES
[1] H. Homayoun et al., “Dynamically heterogeneous cores through 3D

resource pooling”, HPCA-12, pp. 1-12, February 2012.
[2] V. Kontorinis et al., “Enabling dynamic heterogeneity through core-on-

core stacking”, DAC-14, pp. 1-6, June 2014.
[3] M. K. Tavana et al., “ElasticCore: enabling dynamic heterogeneity with

joint core and voltage/frequency scaling”, DAC-15, pp. 1-6, June 2015.
[4] K. V. Craeynest et al., “Scheduling heterogeneous multi-cores through

performance impact estimation (PIE),” ISCA-12, pp. 213-224, 2012.
[5] K. Pusukuri et al.,“Thread reinforcer: dynamically determining number

of threads via OS-level monitoring”, IISWC-11, pp. 116-125, 2011.
[6] N. Chitlur et al., “QuickIA: Exploring heterogeneous architectures on

real prototypes”, HPCA-12, pp. 1-8, February 2012.
[7] NVidia. The benefits of multiple CPU cores in mobile devices.

http://www.nvidia.com/content/PDF/tegra_white_papers/Benefits-of-
Multi-core-CPUs-in-Mobile-Devices_Ver1.2.pdf, 2010.

[8] P. Greenhalgh. Big.LITTLE processing with ARM Cortex_A15 &
Cortex_A7:http://www.arm.com/files/downloads/big_LITTLE_Final_Fi
nal.pdf, September 2011.

[9] G. Liu et al., “Dynamic thread mapping for high performance, power-
efficient heterogeneous many-core systems”, ICCD-13, pp. 54-61, 2013.

[10] J. Cong et al., “Energy-efficient scheduling on heterogeneous multi-core
architectures,” ISLPED-12, pp. 345-350, 2012.

[11] A. Lukefahr et al., “Composite cores: Pushing heterogeneity into a
core”, MICRO-12, pp. 317-328, 2012.

[12] R. Cochran et al., “Pak & Cap: Adaptive DVFS and thread packing
under power caps”, MICRO-11, Decemeber 2011.

[13] T. E. Carlson et al., “An evaluation of high-level mechanistic core
models”, TACO-14, vol. 11, October 2014.

[14] S. C. Woo et al., “The SPLASH-2 programs: characterization and
methodological considerations”, ISCA-95, pp. 24-36, 1995.

[15] S. Li, et al., “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures”, In MICRO, 2009.

[16] C. Bienia et al., “Parsec 2.0: A new benchmark suite for chip-
multiprocessors,” in 5th Annual Workshop on Modeling Benchmarking
and Simulation, June 2009

[17] E. Ipek et al., “Core fusion: Accommodating software diversity in chip
multiprocessors”, ISCA-07, June 2007.

[18] C. Kim et al., “Composable lightweight processors,” MICRO, 2007.
[19] B.C. Lee et al., “Accurate and Efficient Regression Modeling for

Microarchitectural Performance and Power Prediction”, SIGPLAN-06.
[20] R. Koenker, “Quantile regression,” No. 38, Cambridge university press.
[21] R. Kumar et al., “Single-ISA Heterogeneous Multi-core Architectures

for Multithreaded Workload Performance,” ISCA-04, June 2004.
[22] M. Becchi et al., “Dynamic thread assignment on heterogeneous

multiprocessor architectures”, ACM CF, 2006.
[23] G. Liu et al., “Procrustes: Power Constrained Performance Improvement

Using Extended Maximize-Then-Swap Algorithm”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, Vol. 34,
No. 10, pp.1664–1676, October 2015.

[24] M. K. Tavana et al., “Realizing complexity-effective on-chip power
delivery for many-core platforms by exploiting optimized mapping”,
ICCD-15, September 2015.

[25] C. Dupach et al., “Dynamic adaptation using machine learning”, ACM
TACO-13, Vol. 10, No. 4, December 2013.

[26] J. Martinez et al., “Dynamic multicore resource management: A
machine learning Approach”, In MICRO, 2009.

[27] M. Malik et al., “Big vs Little Core for Energy-Efficient Hadoop
Computing”, DATE-17, March 2017.

[28] K. Neshatpour et al., “Big Data Analytics on Heterogeneous Accelerator
Architectures”, CODES+ISSS, 2016.

[29] H. Homayoun, “Heterogeneous Chip Multiprocessor Architectures for
Big Data Applications” ACM CF, 2016.

Fig. 7. Normalized energy-efficiency of applications on various scheduling
schemes relative to Oracle scheduling

