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Abstract— Composite Cores Architecture (CCA), a class of 

dynamic heterogeneous architectures, enables the system to 
construct the right core at run-time for each application by 
composing cores together to build larger core or decomposing a 
large core into multiple smaller cores. While this architecture 
provides more flexibility for the running application to find the 
best run-time settings to maximize energy-efficiency, due to 
interdependence of various tuning parameters such as the type of 
the core, run-time voltage and frequency and the number of 
threads, it makes it more challenging for scheduling. Past 
research mainly addressed the scheduling problem in composite 
cores architecture by looking at one or two of these tuning 
parameters. However, as we will show in this paper, it is 
important to concurrently optimize and fine-tune these 
parameters to harness the power of heterogeneity in this 
emerging class of architecture. In addition, most previous work 
on CCA mainly studied traditional single threaded CPU 
applications. In this work, we investigate the scheduling 
challenges for multithreaded applications in CCA. First, through 
methodical investigation of power and performance results, we 
characterize various multithreaded applications on a CCA which 
can be composed into few big or many little cores and 
demonstrate how the interplay among various application, 
system, and architecture level parameters affect the performance 
and energy-efficiency. Furthermore, based on characterization 
results, a highly accurate regression-based model for energy-
efficiency prediction is developed to guide the scheduling 
decision. Using the predictive model, we developed a scheduling 
scheme for effective mapping of multithreaded applications onto 
CCA. The results show that the proposed scheduling scheme on 
average achieves close to 94% efficiency as compared to the 
Oracle scheduling. 
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I. INTRODUCTION 

Heterogeneous multicore processors offer significant 
advantages over homogeneous designs in terms of both 
performance and power by executing workloads on the most 
appropriate core type. By running multithreaded applications 
on heterogeneous architecture, each thread is able to run on a 
core that matches its resource needs more closely than one-
size-fits-all solution [11,27]. Commercially available 
heterogeneous architectures include Intel Quick IA [6], ARM’s 
big.LITTLE [8], and Nvidia Tegra 3 [7] that integrates a high 
performance big core with low power little core on a single 
chip. 

Although heterogeneous architectures take advantage of 
application characteristics variation at run-time and improve 
energy-efficiency, they create unique challenges in effective 
mapping of threads to cores.  As the core configurations in 
heterogeneous multicores become more diverse, they become 
more difficult to program effectively. In other words, the 
effectiveness of heterogeneous architectures significantly 
depends on the scheduling policy and how efficiently we can 
allocate applications to the most appropriate processing core 
[1,3,4,9,28,29]. Applying ineffective scheduling decisions can 

lead to performance degradation and excess power 
consumption in such architecture [1,11,17,24]. 

Composite cores architectures can provide further benefits 
by allowing the system to construct a right core for each 
running application. Several designs have been proposed that 
provide some level of heterogeneity. These proposals include 
Core Fusion [17], TFlex [18] and Composite Cores [1,11]. In 
[11,17] the concept of composite cores is proposed where a big 
core architecture can dynamically be decomposed into a 
smaller little core architecture. The authors in [1] adapted the 
concept of composite cores in 3D by further enabling the core 
composition and decomposition at a low granularity of 
processor building blocks such as register file and load and 
store queue. Their proposed architecture allows multiple 
smaller cores to be composed together to build a larger core or 
vice versa, as needed. While composite cores architecture 
provides more opportunity to construct the right core for the 
running applications, it is making the scheduling a difficult 
problem. 

Previous studies have mainly examined the advantages of 
using single threaded applications in CCA [1,2,13,17]. 
However, running multithreaded applications on CCA and 
composing ideal processor architecture for energy-efficiency is 
a more challenging problem, considering the possible number 
of cores and threads, type of core microarchitecture, or 
combinations of core types. Furthermore, the challenge of how 
many and what type of core to compose for each multithreaded 
application becomes even more complicated considering the 
impact of other tuning parameters on energy-efficiency such as 
operating voltage and frequency. In this work, we are exploring 
the CCA in the context of multithreaded applications. In 
particular, we investigate the scheduling challenges for 
multithreaded applications for CCA. We focus on the benefits 
of running multithreaded applications and how this architecture 
provides opportunities to improve the energy-efficiency.  

The main challenge for scheduling is to effectively tune 
system, architecture and application level parameters in CCA 
when running multithreaded applications. The particular 
parameters that are critical to performance and power and are 
considered in this work include core type, voltage/frequency 
settings and the number of running threads. While there has 
been number of work on mapping applications to 
heterogeneous architectures, to the best of our knowledge, 
there has been no prior effort to analyze and characterize 
multithreaded applications on composite cores with its unique 
architecture and develop effective scheduling scheme. In 
addition, previous studies on mapping applications to multicore 
architectures have focused primarily on 1) homogeneous 
architectures 2) static heterogeneous architectures where the 
number and type of cores are fixed at design time, and 3) 
configuring individual or a subgroup of tuning parameters at a 
time, such as application’s thread counts [5,9,21,22], 
voltage/frequency [2,3], or core type [4,8,11,17,18,19,22] and 



 

they have ignored the interplay among all of them. This study 
indicates that these parameters individually, while important, 
do not make a truly optimum configuration to achieve the best 
energy-efficiency on a CCA. The best configuration for a 
multithreaded application can be effectively found, only when 
these parameters are jointly optimized. Fig. 1 illustrates the 
tuning parameters influencing the scheduling decision in CCA. 
Also, recent prior work as well as the contribution of our work 
is shown in this figure.  

In this paper, through methodical investigation of power 
and performance, and comprehensive system and 
microarchitectural level analysis, we characterize various 
multithreaded applications from SPLASH-2 [14] and PARSEC 
[16] multithreaded benchmark suites on CCA to understand the 
power and performance trade-offs offered by various 
configuration parameters and to find how the interplay of these 
parameters affects the energy-efficiency. Our study is focusing 
on a CCA where many little cores (base) can be configured 
into few big cores (composed) and vice versa. Also, the metric 
that we use to characterize energy-efficiency is the energy 
delay product (EDP). The experimental results support that 
there is no unique solution for the best configuration for 
different applications. Given the dispersed pattern of optimum 
configuration, we have developed an accurate energy-
efficiency prediction model to guide scheduling of 
multithreaded applications and fine-tuning parameters in order 
to maximize the energy-efficiency.  

Contributions: This paper in brief makes the following 
contributions: 
 We investigate the performance and energy-efficiency 

sensitivity of various standard multithreaded benchmarks 
with various frequency settings, core types (base vs. 
composed), and number of threads in heterogeneous 
composite cores architecture. We observed that application 
performance and energy-efficiency sensitivity to one 
optimization parameter is significantly influenced by other 
optimization parameters. For instance, increasing the 
thread counts reduces the performance sensitivity to 
operating frequency or multithreaded application’s 
performance on base core shows to be more sensitive to 
frequency variation than on composed core.  

 We evaluate the interplay of tuning parameters on 
performance and energy-efficiency in our studied 
heterogeneous CCA. The studied parameters that are 
critical to performance as well as power and energy-
efficiency are core type, voltage/frequency settings and the 
number of running threads at microarchitecture, system 
and application levels, respectively. 

 Based on conducted workloads characterization, a linear 
regression model is proposed for energy-efficiency 

prediction of various configurations of application, system 
and architecture level parameters to guide the scheduling 
decisions. We evaluate two different regression models 
and determine that the quantile linear regression model 
[20] leads to an accurate estimation of the energy-
efficiency.  

The remainder of this paper is organized as follows. The 
background and previous work are briefly discussed in section 
II. The methodology and experimental setup details are given 
in Section III. Section IV presents the characterization results 
and provides the performance and energy-efficiency analysis of 
multithreaded applications on CCA. Then, the energy-efficient 
scheduling model is proposed in section V. Finally, Section VI 
presents the conclusion of this study. 

II. BACKGROUND AND RELATED WORK 

A. Heterogeneous Architectures  

The static heterogeneous architecture in [9] and [23] 
enables efficient thread-to-core mapping and permits a change 
in the mapping across phases of execution through thread 
migration. Prior research has shown that the potential benefit of 
a static heterogeneous architecture is greater with fine-grained 
thread migration than with coarse-grain migration [11]. In [10], 
an Intel Xeon is integrated with an Atom processor. Code 
instrumentation is used at the function or loop level to schedule 
different phases of the application on each processor. However, 
the separate core and memory subsystems in static 
heterogeneous architectures incur power and performance 
overheads for application migration, which makes dynamic 
mapping ineffective for fine-grained migration [11].  

Unlike static heterogeneous architecture where the number 
and type of cores are fixed at run-time, dynamic heterogeneous 
architectures can be configured at run-time. This provides more 
opportunity to map an application to a core which matches its 
resource needs more closely. Some of the first efforts to 
provide this kind of heterogeneity include Core Fusion [17] 
and TFlex [18]. Composite cores proposed a dynamic 
heterogeneous architecture where a big core can dynamically 
be decomposed into a smaller core [11]. The work in [1] and 
[2] extended the concept of composite cores into 3D stacking 
which enables fine-grain sharing of resources between cores on 
a stacked chip multiprocessor architecture. Their proposed 
architecture permits multiple smaller cores to be composed 
together making a larger core, given the performance and 
energy requirements of the running application. Previous work 
on dynamic heterogeneous architecture and specifically on 
composite core, has mainly studied mapping of single threaded 
applications. This work is different as it mainly focuses on 
multithreaded applications and how they would benefit from 
such architecture to maximize the energy-efficiency.  

B. Scheduling Challenges in Heterogeneous Architectures  

As mentioned before, a main challenge for heterogeneous 
architectures is the mapping and scheduling decision, which 
finds the most efficient application-to-core match at run-time. 
The work in [9] and [23] address the problem of dynamic 
thread mapping in static heterogeneous many-core systems. 
Prior research aimed to maximize performance under power 
constraints [3,9,12,23]. Our work is different as it first targets 
dynamic heterogeneous architectures where core size can be 
adapted at run-time, and second it aims to maximize the 
energy-efficiency by reducing the EDP. It is important to note 
that the power and performance of an application on different 

 
Fig.1. Tuning parameters influencing energy-efficiency in composite cores 
architecture and prior work on scheduling using these tuning parameters 



 

cores at various frequencies must be known for proper 
mapping. Traditional designs suggest selecting the best core 
based on a small sampling of applications on each core [21]. 
Other techniques [3,11,12,25,26], estimate core performance 
and adapt the resources without running applications on a 
particular core type using learning models. The work in [4] and 
[11] provide a model for performance estimation on two core 
types (i.e., big and little cores). The complexity of application 
mapping on a heterogeneous architecture increases 
exponentially by increasing number of core types and 
applications [3,23,24]. 

While previous studies have mainly examined the 
advantages of using single threaded applications, there is no 
prior work on effectively mapping multithreaded applications 
onto heterogeneous composite cores architecture. There have 
been several studies on mapping multithreaded applications on 
homogeneous architectures. The work in [5] suggested a 
framework called “Thread Reinforcer” to determine the 
appropriate number of threads for a multithreaded application 
on a homogeneous architecture. It examines the mapping 
between number of threads and number of cores to find the 
optimal or near optimal number of threads to minimize the 
execution time. The research in [4] proposed a scheduling 
method to predict application to core mappings that enhances 
performance. Using profiling parameters, it estimates 
performance and examines whether the workload needs to run 
on different core type. The work in [9] proposed a mapping 
strategy for multithreaded applications on static heterogeneous 
multicore architecture by initializing a maximum throughput 
mapping and iteratively performing a thread swap on adjacent 
types of cores until the power constraint is met. The research in 
[3] took a closer look at joint optimization of voltage and 
frequency as well as the microarchitecture. It proposed a 
platform, which is capable of scaling resources, i.e., bandwidth, 
capacity, voltage, and frequency, based on single-threaded 
application performance requirements at run-time while 
reducing EDP.  

As shown in Fig.1, our paper addresses the importance of 
joint cross-layer tuning of core type, frequency, and thread 
counts to maximize the energy-efficiency of multithreaded 
application running on CCA. It will then propose an accurate 
regression model for energy-efficiency prediction to guide the 
scheduling decision in a CCA. 

III. EXPERIMENTAL SETUP AND METHODOLOGY 

 This section provides the details of our experimental setup. 
We use Sniper [13] version 6.1, a parallel, high speed and 
cycle-accurate x86 simulator for multicore systems for 
simulation. McPAT [15] is integrated with Sniper and is used 
to obtain power consumption results. We study SPLASH-2 and 
PARSEC multithreaded benchmark suites for simulation. We 
use R, a free software environment for statistical analysis and 

developing energy-efficiency prediction models. For 
architectural simulation, we modeled a heterogeneous 
composite cores architecture based on the proposed work in 
[17,18]. Our study is focusing on a CCA where two little cores 
(base) can be configured into one big core (composed) and vice 
versa. We collect performance counters data on each 
architecture for characterization and drive the scheduling and 
mapping algorithms. We use these data to extract and evaluate 
the actual behavior of applications (I/O, CPU or memory 
intensive) for predicting energy-efficiency and assist 
scheduling decision.  

 Table I shows the microarchitectural configuration of base 
and composed core of CCA in our experiment. In this 
architecture, the L1 Cache size is 16KB for base core and 
32KB for composed core which is constructed by composing 
two base cores.  Contention and latency for composing the core 
includes two cycles wire delays for cross-core communication 
[1, 17]. Fig. 2 provides a conceptual overview of a four core 
CCA. In this paper, we investigate two baseline heterogeneous 
CCAs which consist of multiple base and composed cores: 1) 
8base/4comp, and 2) 4base/2comp. It is important to note that 
for benchmark simulation we applied the binding (one-thread-
per-core) model with #threads == #cores to maximize the 
performance of multithreaded applications [4, 5].  

IV. CHARACTERIZATION RESULTS 

In this section, we evaluate the applications performance 
and energy-efficiency sensitivity to tuning parameters of 
operating frequency, number of running threads, and the choice 
of microarchitectures (base vs. composed) in heterogeneous 
composite cores architecture. The studied parameters not only 
directly impact the power and performance of the processor, 
but they also influence one another. The optimal system and 
microarchitecture configuration to maximize energy-efficiency 
varies based on the characteristics of the application, which all 
together influence the best tuning parameters. Therefore, it is 
essential to investigate the interplay of these parameters to 
guide the optimal mapping and scheduling decision in CCA. 
These observations form the basis for developing the prediction 
model presented in section V. 

Note that the entire set of benchmark analysis results is 
quite extensive. Therefore, due to space limitations we only 
present the results for a limited number of representative 
benchmarks shown in Fig. 3. This figure depicts the overall 
performance in terms of execution time (represented as a bar 
graph) and EDP results (represented as a line graph) for four 
different multithreaded benchmarks across different core types, 
frequencies and number of threads. In this section, first we 
discuss the impact of changing each parameter on energy-
efficiency and next we perform a joint analysis to investigate 
the interplay of studied parameters and their influence on 
energy-efficiency in heterogeneous CCA.    

TABLE I.  ARCHITECTURAL SPECIFICATION 
Microarch. Parameter Base  Composed  

Number of Cores 4/8 2/4 

Issue-Commit width 2 4 

INT instruction queue 16 entries 32 entries 

FP instruction queue 16 entries 32 entries 

Reorder buffer  32 entries 64 entries 

Branch penalty 7cyc 14cyc 

iL1-dL1 Cache 16KB/4-way/2cyc 32KB/4-way/2cyc 

L2 Cache 4MB/8-way/32cyc 4MB/8-way/32cyc 

 

 

Fig. 2. Conceptual structure of a four core CCA [17]   



 

A. Frequency Sensitivity  

All benchmarks were simulated using a baseline composed 
core running with only a single thread. The operating 
frequency is swept from 1.6 GHz to 2. 8GHz with a step of 
400MHz and the voltage is changed between 0.7, 0.8, 0.9, and 
1V, respectively. As can be seen in Fig.3, some benchmarks 
are very sensitive to changing the frequency. For instance, in 
fmm and cholesky reducing the frequency almost linearly 
reduces the overall performance. Overall, as expected, as the 
frequency increases, the performance increases accordingly. 
The EDP results show that the higher frequency results in 
lower EDP.  

The next observation is that increasing the number of 
threads interestingly reduces the sensitivity to frequency. In 
other words, increasing the number of running threads 
increases the performance gain due to parallelization. 
Consequently, the overall performance as the number of 
threads increases is more influenced by the speedup gain as a 
result of parallelism rather than operating at higher frequency. 
Moreover, the results show that the base core is more sensitive 
to frequency scaling than the composed cores. This is also an 
interesting observation as the composed core has a large 
pipeline, allowing it to tolerate performance cost due to 
alterations in cache access latency as a result of frequency 
scaling. Note that changing clock frequency changes the 
number of cycles it takes for the processor to communicate 
with the cache.   

B. Core Type Sensitivity  

In this section, the results are reported for a baseline 
configuration with a core running a single thread at the highest 
frequency of 2.8 GHz and operating voltage of 1V. The 
changing parameter is the core type, which varies between a 
base core and a composed core architecture. Core type 
demonstrates constant behavior with regards to EDP. As shown 

in Fig. 3, there is a clear gap between the big composed and 
little base cores (in Thread1 and F2.8), with composed core 
having lower EDP. In these cases, the performance benefits of 
the composed core outweigh the energy savings of the base 
core.  

C. Thread Count Sensitivity 

Finally, each benchmark is simulated with varying number 
of threads. In this step, each simulation was performed at the 
same frequency of 2.8 GHz and operating voltage of 1V, when 
changing the number of threads from 1 to 8. As shown in Fig. 3 
(2.8GHz cases with varying threads), increasing the thread 
counts leads to better performance. Moreover, there is a large 
gap between the EDP values of base and composed core at 
lower number of threads. Particularly, we observe that by 
increasing the thread counts, the corresponding gap between 
different core types diminishes and makes the base core 
competitive to the composed core in terms of EDP.  

V. ENERGY-EFFICIENT SCHEDULING FRAMEWORK  

A. Joint analysis of (Core Type, Freqeucny, Thread Count)  

To understand the interplay among various tuning 
parameters and find the optimum configuration for maximizing 
the energy-efficiency, in this section all permutations of the 
parameters were simulated. We test four voltage/frequency 
settings on two core types and execute each multithreaded 
benchmark with 1 to 4 or 8 threads (depending on the core 
type), where each thread is assigned to a single core. These 
results are illustrated in Fig 3. Due to space limitations, we 
only demonstrate the results for 1, 4 and 8 running threads. 
Furthermore, the best evaluated execution time and EDP for 
each application is shown in each figure.      

As mentioned earlier, we examine two different 
heterogeneous CCAs consisting of multiple base and 
composed cores: 1) 8base/4comp, and 2) 4base/2comp. Table 

  

 
 

Fig. 3. Execution Time and EDP of a) barnes, b) fmm, c) cholesky, d) radiosity with various Core Types, Threads, Frequencies 



 

II presents the optimal set of results for both architectures. 
This table includes benchmarks name, followed by the best 
core configuration parameters (Core, Freq., #Thread) in terms 
of EDP across base and composed cores. We have also 
calculated the relative EDP variation for each benchmark, 
which indicates the relative difference between energy-
efficiency of the best configuration parameters in base and 
composed cores. We quantify variation parameter as follows:  

��� = �
��������_��� – ������������_���

��������_���

� × 100       (1) 

The variation parameter (Var) indicates whether it is 
justified to compose cores. For this purpose, a variation 
threshold is defined that decides what type of core architecture 
should be selected for executing the corresponding 
multithreaded application more energy-efficiently. The user-
defined threshold can be adjusted based on the architecture 
and available resources as well as the cost of core 
composition. Note that composing base cores to a big 
composed core is not free and comes with power as well as 
core utilization overhead. The core utilization overhead is in 
fact due to using additional cores to build bigger cores. When 
cores are composed to build a bigger core, fewer cores will be 
available for incoming or co-scheduled applications. In this 
work, we assume a 20% variation threshold. As a result, if the 
variation percentage between best-base and best-composed 
architectures is found to be lower than 20%, we use the base 
core for scheduling instead of composing to avoid power as 
well as core utilization costs.  

 As can be seen from Table II, for most studied 
applications the best running thread count is equal to the 
maximum available cores. For instance, barnes performs with 
2.4 GHz and 2.8 GHz on base and composed cores, 
respectively, while the best number of running threads on 
these two architectures are equal to 8 and 4, respectively. As 
shown, the variation for this application has negative value in 
some cases, which indicates it is more energy as well as core-
utilization efficient to run the application on base core. 
Therefore, given that the variation value is lower than pre-
defined threshold, rather than running the application on costly 
big composed core, we schedule the multithreaded application 
onto cost-effective little base core. From these observations, 
we conclude that while we can obtain significant performance 
gains, power and core utilization costs could be drastic when 
running application on big composed core. As a result, in 
those cases we choose the little base core as the optimal core 
configuration.  

In order to perform a comprehensive EDP characterization 
of studied architectures, we classified all possible 

configurations (core types and number of threads) into four 
classes. The first two are Fully-Base and Fully-Composed 
configurations that are referred to cases in which the lowest 
EDP is achieved with full utilization of the base and composed 
core, respectively. In other words, the optimum number of 
threads is equal to the maximum number of existing 
base/composed cores.  On the other hand, we use Partially-
Base and Partially-Composed configurations when the best 
number of threads is lower than maximum available cores.    

The diversity of optimum configurations across various 
applications demonstrates that when running a given 
multithreaded workload on a heterogeneous CCA, depending 
on the application and energy-efficiency optimization metric, 
different core configuration parameters (Core Type, V/Freq., 
#Thread) lead to the best energy-efficiency. In other words, 
simulation results support that there is no unique solution as 
the best configuration across various applications. As a result, 
we can see various configurations for maximizing energy-
efficiency across different applications. This dispersed pattern 
of optimum results implies the necessity of developing a 
prediction method to guide scheduling decision of unknown 
multithreaded applications onto heterogeneous composite 
cores architecture to enhance the energy-efficiency.  

B. Prediction Model for Energy-efficiency  

1) Model selection: Recent studies have proposed ordinary 
least squares regression (OLSR) modeling to estimate the 
power [10] and performance [3,11,19] of a processor at run-
time. In this work, we show that OLSR is not the best suited 
algorithm for performance and power estimation as outliers in 
particularly in heterogeneous CCA can mislead the model. In 
fact, various applications experience different phases with 
different behavior. In addition, superscalar processors are 
complex, which makes it difficult to develop a general model 
for their power/performance estimation. OLSR models are 
highly sensitive to the outliers and potentially produce 
misleading results as even a single point of data substantially 
impacts on the regression efficiency. Thus, in this paper, based 
on a comprehensive characterization of various applications, 
we evaluate a more robust regression algorithm in addition to 
OLSR referred as Quantile Linear Regression (QLR) model 
[20], to predict the energy-efficiency for various 
configurations in our studied CCA. The main advantage of 
QLR as compared to OLSR is its robustness against outliers. 
QLR model is useful to obtain a more comprehensive analysis 
of the relationship between variables and provides a richer 
characterization of the data, allowing us to consider the impact 
of a covariate on the entire distribution of target variable.  

TABLE II.  OPTIMAL CONFIGURATION WITH OPTIMIZATION TARGET OF EDP FOR DIFFERENT ARCHITECTURES 
 
Benchmark 

8Base/4Comp 4Base/2Comp 
Best-base Best-composed Var 

(%) 

Best-base Best-composed Var 
(%) Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread Freq. (GHz) #Thread 

barnes 2.4 8 2.8 4 -444.8 2.8 4 2.8 2 -475.4 
fmm 2.4 8 2.4 4 2.2 2.4 4 2.8 2 -2.9 
cholesky 2.4 8 2 4 28 2.4 4 2.8 2 5.8 
radix 2.8 8 2.8 4 -138.7 2.8 4 2.8 2 -236.2 
radiosity 2.4 8 1.6 4 -102.8 2.4 4 1.6 2 -128.1 
raytrace 2.4 5 2 4 -28.9 2.4 4 2.8 2 -152 
fft 2 4 2 2 36.3 2 4 2 2 36.3 
lu.cont 2.4 8 2.8 4 27.2 2 4 2 2 7.8 
blackscholes 2.8 6 2.4 4 83.85 2.8 4 2.4 2 77.08 
bodytrack 2 7 2 3 41.23 2 3 2 2 34.1 
ferret 2 6 2 4 62.4 2 4 2 2 54.3 

 



 

OLSR is a statistical method used to model the relation 
between a set of predictor variables and a response variable. It 
estimates the mean value of the response variable for given 
predictor variables. In linear regression, the regression 
coefficient represents the increase in the response variable 
produced by a single unit increase in the predictor variable 
associated with that coefficient. A more comprehensive picture 
of the effect of the predictors on the response variable can be 
obtained by using quantile regression. QLR model estimates 
the change in a specified percentile (quantile) of the response 
variable produced by a single unit change in the predictor 
variable. This allows comparing how some percentiles of the 
target variable may be more affected by certain estimator 
characteristics than other percentiles. This variation is reflected 
in the change in the size of the regression coefficient.  For the 
QLR model, a specific quantile of data is set instead of the 
mean value. We set the quantile of 0.1, which results in 
minimizing the median of the error values.  

 Although the use of non-linear regression or neural 
network models potentially provides more accurate energy-
efficiency of an application, they increase complexity of the 
design. The overhead in area, power and performance of 
implementing linear regression model in hardware is minimal 
and shown to be easily integrated into a core [11]. We show 
that the QLR model achieves higher accuracy as compared to 
OLSR. Fig. 4 illustrates a comparison between the derived 
coefficients of two different predictors using ordinary linear 
regression and quantile linear regression. As shown in each 
graph, black dotted line is the slope coefficient for the QLR 
and the red lines are the least squares estimate for OLSR and 
its confidence interval. The figure shows how the lower and 
upper quantiles are well beyond the least squares estimate. 
The figure further illustrates how the effects of L2 cache 
access and branch misprediction vary over quantiles, and how 
the magnitude of the effects at various quantiles differs 
considerably from the OLSR coefficient, even in terms of the 
confidence intervals around each coefficient (58% for L2-
access and 30% for branch miss predictor). This figure 
highlights that an ordinary least squares regression is not an 
optimal solution to capture the actual behavior of applications 

to predict the energy-efficiency.  

2) QLRM derivation and training: To derive the 
prediction model for energy-efficiency, we need to develop 
the training data set to train the prediction model. For this 
purpose, we consider a subset of applications from SPLASH-2 
and PARSEC multithreaded benchmark suites. The studied 
multithreaded applications represent divers compute, memory 
and I/O intensity behavior. For each benchmark, we collect 
twelve pieces of hardware performance counter data on all 
possible configurations of core types, voltage/frequency 
operating points and number of threads. These 
microarchitectural parameters are listed in Table III. These 
features represent pipeline front-end, pipeline back-end, cache 
subsystem, and main memory behaviors and are influential in 
the performance of standard applications. 

The inputs to QLR classifier include a set of workload 
metrics which are processor performance counters and the 
current configuration parameters (Core Type, Freq., 
#Threads). The quantile linear regression is trained using a 
subset of benchmarks (less than two third). The QLR model 
weights are estimated using training data. Given the twelve 
hardware performance counters, we use Principle Component 
Analysis (PCA) and correlation analysis on our training set to 
monitor the most vital microarchitecture parameters to capture 
application characteristics. By applying the attribute reduction 
method, we determine the four most related performance 
counters including L1 D-cache access, L2 cache-access, L2 
cache-miss and branch misprediction. These performance 
counters are included in QLR model as input parameters. 
Since the main purpose of this model is to predict energy-
efficiency across various application, system and 
microarchitectural parameters, we need to consider these 
tuning parameters in our model as well. Therefore, along with 
the identified key performance counter parameters, we include 
three tuning parameters (Core Type, Freq., #Thread) as input 
variables into our model to enable predicting the EDP for each 
configuration resulted by changing the core type, operating 
frequency and thread counts.  

After identification of the four key hardware performance 
parameters and considering the tuning parameters, we 
formulate the proposed EDP prediction model using quantile 
linear regression as follows:  

���� =  �0 + � �. ��

�

���

� + 5. �� + 6. �      (2) 

where 0 is the intercept, i denotes the corresponding 
coefficients of the regression model, and Pi are extracted 
hardware performance counters. Moreover, the core/thread 
configurations are given by CT, and f represents the frequency 
on the corresponding core architecture. The i coefficients can 
be interpreted as the expected change in EDP per unit change 
in L1 D-cache access, L2 cache-access, L2 cache-miss, branch 
misprediction, core/thread and frequency setting.  

This model predicts continuous values representing energy 
delay product as a function of performance counter inputs and 
tuning parameters, which is then used to make the scheduling 
decisions at run-time. During run-time, given an unknown 
application, the QLR model can then predict the EDP of all 
possible configurations based on a single run data. The 
configuration corresponding to the lowest estimated EDP is 
then selected for the run.    

Fig. 4. Quantile graphs for predictors:  a) L2-Access, b) Branch misprediction 

OLSR Confidence OLSR 

TABLE III. HARDWARE PERFORMANCE DATA USED FOR REGRESSION MODEL 
Category Hardware performance counter 

Memory 
subsystem 

L1 D-cache access, L1 D-cache miss, L1 I-cache 
access, L1I- cache miss, L2 cache access, L2 cache 
miss, I-TLB miss, D-TLB miss                                                                                

Instructions Integer instruction issue, Integer floating point issue 

Branch Branch instruction, Branch misprediction 

 



 

C. Eenrgy-Efficient Scheduling Algorithm  

Fig. 5 provides an overview of our scheduling scheme 
using the regression-based prediction model. As illustrated, 
our scheduling algorithm is split between an offline step and 
an online step. In offline analysis, we first extract an extensive 
set of data from multithreaded applications. The next step 
involves clustering and correlation analysis of extracted 
features that decreases the microarchitecture parameters to the 
ones that have the most impact on energy-efficiency. Using 
the selected performance data and various tuning parameters 
configuration, we train and develop the QLR classifier.  

In online tuning step, we run a multithreaded application 
with the most aggressive configuration setting where all 
tuning parameters are set at max (maximum number of 
threads, highest frequency, and for composed core). We then 
extract the hardware performance counters by profiling the 
multithreaded application. This is done by running the 
application and collecting the performance counters 
information for maximum setting. Profiling stage helps 
understanding the run-time characteristics and resource 
utilizations of the application. The regression classifier takes 
the key performance counter parameters and configuration 
settings as inputs, and outputs the system energy-efficiency for 
the given configuration. As a result, we schedule the 
application with tuning parameters selected by the quantile 
linear regression model to minimize the EDP.  

Note that the linear weights are estimated using training 
data set. Given the input configuration parameters during run-
time, the QLRM can predict the optimal energy-efficiency. 
The output with optimal energy-efficiency and corresponding 

new configuration is then chosen as the current operating point 
at run-time. The predictive model, by observing run-time 
behavior of a multithreaded application running with a 
specific configuration, predicts the right configuration 
parameters namely, the number of threads, operating voltage 
and frequency, and core type - whether composed or base - to 
achieve the maximum energy-efficiency. It is important to 
note that the QLRM can be simply trained for other objectives 
such as ED2P optimization.  

D. Evaluation Results  

Fig. 6 shows the comparison between the observed and 
predicted maximum energy-efficiency across various 
operating frequencies and core/thread configurations. In order 
to evaluate the accuracy of our prediction model, we calculate 
the value of relative mean absolute error defined as 
|��������� ������������ �����|

(������ �����)
× 100%. This metric indicates the 

relative difference between the predicted and observed 
maximum energy-efficiency. In order to validate our QLR 
learning model, we applied percentage split method to divide 
the dataset into two sets, using 60% (known applications) of 
the data to train the model and 40% (unknown applications) to 
simulate and test.  

In Table IV, average relative errors of applied linear 
regression model for energy-efficiency estimation of different 
operating points are presented. As shown, we characterized all 
possible configurations to 16 operating points consisting of 
various frequencies and core/thread configurations. Given the 
results, the proposed prediction classifier is most accurate in 
estimating the energy-efficiency of Fully-Comp architecture 
and Fully-Base architecture, respectively, both operating at 2 
GHz. Moreover, our regression model achieves an average 
error of 6.85% across all testing data samples and possible 
configurations. The presented results assist the scheduling 
decision of multithreaded applications on heterogeneous CCA 
including composing cores, setting operating voltage and 
frequency, and adapting the number of running threads.  

The performance overhead of implementing the QLRM in 
hardware and calculating values at each interval is negligible. 
The power overhead of implementing the QLRM is estimated 
at 5uW, which is further reduced by gating idle units during 
each interval [11]. In order to evaluate the efficiency of our 
prediction model, the following scheduling schemes are 
studied for comparison:   

- Composite-Oracle: This model is based on the composite 
cores architecture with an ideal application energy-efficiency 
predictor, where all future behavior of the application as well 
as the power and performance for various configurations are 
known in advance. Therefore, the Composite-Oracle adapts 
the cores, operating frequency and application thread counts 
and exploits all opportunities to maximize energy-efficiency. 
Since this scheme provides the upper bound for energy-
efficiency, it is used to normalize and compare other schemes.  

- Composite-QLRM: This scheme is based on the composite 
architecture with our proposed quantile linear regression to 
estimate the EDP for various core sizes, frequency/voltage 

Fig. 6. Comparison of actual and predicted EDP on various configurations 

 Fig. 5. Proposed scheduling scheme with energy-efficiency prediction 

TABLE IV. AVERAGE RELATIVE ERROR OF QLR MODEL  
 Core/Thread Configurations 

Freq. Full-Base Partial-Base Full-Comp Partial-Comp 
2.8 GHz 10.5% 10.74% 11.69% 2.03% 
2.4 GHz 22.49% 21.4% 4.67% 4.87% 
2.0 GHz 1.9% 3.9% 1.74% 3.1% 
1.6 GHz 3.35% 2.2% 3.6% 2.61% 



 

points and number of threads.  

- Elastic-Core [3]: This dynamic scheme proposed recently is 
closest to our work, and uses a linear regression model to 
predict the power and performance of single-threaded 
applications as a function of core type and frequency settings. 
Although it does not take number of threads into account, we 
set the thread counts to maximum values to better evaluate our 
model by fairly comparing it against a recent dynamic 
scheduling.   

- Performance Aggressive Scheduling (PAS): In this scheme, 
all tuning parameters are set at maximum value to achieve the 
maximum performance. Therefore, each application is 
executed on the high performance composed core with 
frequency of 2.8 GHz running with 4 threads.  

- Power Minimized Scheduling (PMS): This scheduling 
attempts to minimize power consumption. In other words, the 
cores always remain at little base core (no composition). Also, 
the frequency and number of threads are set to their minimum 
values.  

The energy-efficiency results of studied applications 
normalized to the Composite Oracle are shown in Fig. 7. The 
Composite-QLRM on average achieves close to 94% 
efficiency as compared to the Oracle model. The Composite-
QLRM has an improved energy-efficiency as compared to the 
Elastic-Core and PAS schemes by an average of 10% and 30% 
across all benchmarks, respectively. Also, it outperforms the 
PMS scheduling by 54% improved energy-efficiency. The 
results prove the accuracy of our proposed prediction model 
and effectiveness of proposed scheduling scheme to harness 
the power of heterogeneity in a composite cores architecture to 
significantly enhance its energy-efficiency.  

VI. CONCLUSION 
      Emerging heterogeneous composite cores architectures are 
complex processors with various tuning optimization knobs 
for improving performance and energy-efficiency. Scheduling 
multithreaded applications in these architectures is a 
challenging problem, given various optimization parameters at 
application (number of running threads), system (operating 
voltage and frequency), and architecture (core type, namely 
big vs. little) levels. In particular, the interplay among these 
tuning parameters and their influence on energy-efficiency, 
make the scheduling and tuning even a more challenging 
problem. In this paper, we respond to this challenge by 
developing a scheduling and tuning solution for this class of 
architecture. The space for tuning configuration parameters in 
a composite cores architecture is large with no unique solution 
for the most energy-efficient configuration for different 
multithreaded applications, calling for developing a model to 

predict energy-efficiency. We developed a predictive model 
for estimating the energy-efficiency of multithreaded 
applications in composite cores architecture. Our proposed 
model achieves an average 6.85% error rate across all testing 
data samples and possible configurations. Based on the 
predictive model, we developed a scheduling scheme for 
effective mapping of multithreaded applications to 
heterogeneous CCA by setting the tuning parameters to 
maximize the energy-efficiency. The results show that the 
proposed scheduling scheme on average achieves close to 
94% efficiency as compared to the Oracle scheduling.  
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