
Reconfigurable STT-NV LUT-based Functional Units to
Improve Performance in General-Purpose Processors

Adarsh Reddy Ashammagari1, Hamid Mahmoodi2, Tinoosh Mohsenin3, Houman Homayoun1
1
Dept. of Electrical & Computer Engineering, George Mason University, Fairfax, VA

2
Dept. of Computer Engineering, San Francisco State University, SF, CA

3
Computer Science & Electrical Engineering Dept., University of Maryland Baltimore County

E-mail: {aashamma, hhomayou}@gmu.edu, mahmoodi@sfsu.edu, tinoosh@umbc.edu

ABSTRACT
Unavailability of functional units is a major performance bottleneck

in general-purpose processors (GPP). In a GPP with limited number

of functional units while a functional unit may be heavily utilized at

times, creating a performance bottleneck, the other functional units

might be under-utilized. We propose a novel idea for adapting

functional units in GPP architecture in order to overcome this

challenge. For this purpose, a selected set of complex functional

units that might be under-utilized such as multiplier and divider, are

realized using a programmable look up table-based fabric. This

allows for run-time adaptation of functional units to improving

performance. The programmable look up tables are realized using

magnetic tunnel junction (MTJ) based memories that dissipate near

zero leakage and are CMOS compatible. We have applied this idea

to a dual issue architecture. The results show that compared to a

design with all CMOS functional units a performance improvement

of 18%, on average is achieved for standard benchmarks. This

comes with 4.1% power increase in integer benchmarks and 2.3%

power decrease in floating point benchmarks, compared to a CMOS

design.

Categories and Subject Descriptors
C.1.1 [PROCESSOR ARCHITECTURES], Single Data Stream

Architectures: Pipeline processors Systems; C.4 [Performance of

Systems]

Keywords
STT Technology, Reconfigurable Functional Units, Performance

1 INTRODUCTION
With the current shrinking trend in CMOS technology, larger

processing capabilities can be incorporated within the same die

footprint. At the same time, the number of functions that are now

computationally realizable has also increased in leaps and bounds.

Therefore, an efficient allocation of functional resources becomes

crucial to the overall performance of any processing unit [3, 4, 5].

Under limited functional resources available to general-purpose

processors, major performance bottlenecks arise from functional

units unavailability. There are two ways to look into this problem (i)

one to increase the number of functional units in a general-purpose

processor (ii) transform and adapt the functional units to serve

different function needs. The first solution however is not design

efficient as will be discussed in Section 2. The next alternative that

we have addressed in this paper is adaptability and reconfigurability

between functional units. Incorporating adaptable functional units

results in better utilization of hardware, which leads to performance

improvement. Reconfiguring a unit to multiple functions requires an

on-chip programmable fabric. This reconfiguration is performed on

a Spin Transfer Torque Random Access Memory based look-up

table (STT-NV-LUT) that is a composed of Magnetic Tunnel

Junctions (MTJs). The advantages of using STT-NV technology are

its zero standby power and thermally robust behavior. Recently use

of MTJs has been explored for realizing low power programmable

Look Up Tables (LUT) in processor and Field Programmable Gate

Arrays (FPGAs) [12, 14, 16]. MTJs have been mainly used to

design low power and thermally robust logics [12, 16]. In latest

work MTJs has been used to reduce power and temperature in

processor architecture [12, 17]. MTJs therefore have computing

ability in addition to non-volatile storage property [12, 14, 17]. MTJ

based clocking and logic architecture have already been developed

in integration to CMOS [16]. In this paper, we utilize the STT-NV

based look up tables [12, 16], to build on-chip adaptable functional

units. Such look up tables show very little leakage power. Mapping

a function to look up tables generally results in lower performance

as compared to the custom implementation using standard cell logic

gates; however, the ability to reconfigure the function itself in real

time can potentially result in system performance improvement

when running applications.

In this paper, we have investigated adaptation and reconfiguration

from two perspectives: (i) in a static way (ii) in a dynamic way. In

the static way, reconfiguration of all idle units is done at the end of a

learning phase in the order of their activities. In this process, only

one reconfiguration is performed during program execution time. In

the dynamic mechanism, functional units are continuously

monitored and the reconfiguration decision is made periodically. All

of the functional units are reconfigured back to their original

functions in the reset mode, before applying the new

reconfiguration.

This is the first research paper that explores the opportunity and

benefits of deploying adaptable STT-NV logic in general-purpose

processors. While in this research we mainly focus on functional

units there are several other processor units that will benefit from a

reconfigurable and adaptable design. In general, some of the

benefits that stem from adaptable logic are (i) activity migration

based on thermal profiling of the processor (ii) failure tolerance by

segregating faulty units and performing fine grain reconfiguring

over good ones. For example, the integer ALU is one of the hottest

spot on the processor. Reconfiguring the int/multiply units and

applying activity migration can reduce the temperature significantly.

Such run-time reconfiguration would help migrate some of the adder

functionalities onto the multiply/divide unit and help reduce the

overall temperature of all units. Fine grain reconfiguration possible

through MTJ based coupling would enable reconfiguration between

an adder/multiplier and help segregate the faulty units by

reconfiguring some of the idle good ones while maintaining the chip

functionality. The novel contributions of this work are statically and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.

GLSVLSI '14, May 21 – 23, 2014, Houston, TX, USA.

Copyright 2014 ACM 978-1-4503-2816-6/14/05…$15.00.

http://dx.doi.org/10.1145/2591513.2591535

249

dynamically adaptive reconfiguration algorithms of functional units

and exploiting the STT-NV LUT properties to perform the

algorithms. The rest of the paper is organized as follows. Section 2

illustrates the functional unit conflict issue. Section 3 presents LUT

based reconfiguration circuitry and the circuit performance and

overhead metrics. Section 4 presents the proposed adaptive

algorithms. Section 5 discusses the results. Finally, section 6

concludes the work.

2 MOTIVATION
Functional unit unavailability (or alternatively functional unit

conflict) is one of the major performance bottlenecks in embedded

and high performance processors [1, 2]. Functional unit conflicts

occur when the processor pipeline has ready instructions, but not

available functional units of particular type (multiplier, for instance)

to execute. Note that in spite of high functional unit conflicts, it is

not design efficient to increase the number of functional units in

processor pipeline, as the complexity of additional functional unit

will be significant [6, 13, 15]. As studied in several works,

increasing the number of functional units not only increases the

power consumption of the processor but also significantly affects

the complexity of several back-end pipeline stages including

instruction queue, write-back buffers, bypass stage, register file

design and could severely affect the processor performance, as the

number of write-back ports increase significantly [6]. As the number

of functional units decides processor issue width, increasing the total

number of functional units (which is equivalent to the maximum

issue width) from 2 (which is very common in many embedded

processors) to 4, increases the critical path delay and the total power

of the processor by 15% and 18% accordingly [6]. The major

increase is due to the impact on the wakeup and bypass logic of the

processor. In addition, several studies indicated that the utilization

varies significantly across various functional units [10, 11]. In Figure

1(a) we report the percentage of execution time each of 4 groups of

functional units are idle in our studied architecture. While in some

architecture some functional units such as multiplier and adder can

be shared in our studied architecture we assume that there is no

sharing between functional units. As shown, on average integer

multiply and divide unit is idle most of the time. Except from apsi

which is idle for 96% of the time, for the rest of the benchmarks this

unit is idle more than 99% of time. The idleness is lower for floating

point add and floating point multiply and divide with average of

95% and 98% respectively. Integer add is the least idle unit; average

66% of program execution time. Such a large idle time in all

functional units provide an opportunity for applying reconfiguration

when the functional unit is not being used.

Figure 1. (a) % execution time, for which each group of functional
unit is idle (b) % times with functional units conflicts.

Now the question is to which unit the idle unit needs to be

reconfigured so that the performance benefit is maximized. To

provide more insight in Figure 1(b) we report the percentage of times

each group of functional units has been requested but was not

available (functional unit conflict) during program execution time.

Figure 2. Relative performance improvement when the number of
(a) int add (b) int mul/div (c) fp add (d) fp mul/div, and (e) all units
increase by 2X, 3X and 4X {vertical bar shows the % of
performance improvement}

Across most benchmarks mainly a single unit has a high conflict and

therefore is the performance bottleneck. Interestingly, this unit is not

the same for all benchmarks; i.e. in different benchmarks different

functional unit is the performance bottleneck. While in many

benchmarks integer add is the high conflict unit, in many others this

is the case for floating point adder; examples are apsi, art, eon,

facerec, lucas, mgrid, and wupwis. There are also few benchmarks

that integer and floating point multiply and divide are the

performance bottleneck units. Examples are applu, apsi and gap.

Another interesting observation can be seen by comparing the

results in Figure 1(a) and (b). For almost all benchmarks the same

unit that is the performance bottleneck is also idle for more than

80% of program execution time. For all of these cases such a large

conflict in spite of low utilization indicates that in most occasions

functional units are accessed in burst. Therefore there is no single

unit that is the performance bottleneck across different benchmarks.

Thus finding a performance bottleneck unit to reconfigure the idle

unit is a challenging problem and requires adaptive technique as we

are presenting later in section 4 of this paper.

2.1 Potential for Improving Performance
In spite of large idle time for the functional units, increasing the

number of functional units improve performance significantly. In

Figure 2 we report the performance improvement in terms of IPC

(average number of instruction committed per processor cycle) as

the number of functional units increase to 2X, 3X and 4X times.

Figure 2(a) shows that increasing the number of int add improve

performance significantly across many benchmarks. Interestingly, in

spite of a very high idle time of integer mul/div, floating point add

and floating point multiply and divide, increasing the number of

these units, improve performance significantly for many

benchmarks, as well. For instance in apsi and gap while int mul/div

is idle for more than 96% of the time, doubling the number of this

unit increase the performance by 13% and 23% respectively. To

better understand this we provide the functional unit conflict results

in Figure 1(b). Interestingly in these two benchmark the int mul/div

unit is the main source of conflict with 11% and 22%, respectively.

In fact in these benchmarks the int mul/divide is requested in burst.

While the average idle time is almost 95%, there are some intervals

that the unit is being accessed very frequently and therefore

additional int mul/divide unit during those intervals could reduce the

conflict and potentially improve performance.

Also in Figure 2(e) we report the speed up when increasing the

number of all functional units at the same time. Doubling the

number of functional units improve performance significantly by as

0%	
10%	
20%	
30%	
40%	

am
m
p	

ap
pl
u	

ap
si
	

ar
t	

bz
ip
2	

cr
a

y	
eo

n	
eq

ua
ke
	

fa
ce
re
c	

fm
a3
d	

ga
lg
el
	

ga
p	

gc
c	

gz
ip
	

lu
ca
s	

m
cf
	

m
es
a	

m
gr
id
	

pa
rs
er
	

pe
rl
bm

sw
im

	
tw

ol
f	

vo
rt
ex
	

vp
r	

w
up

w
i

A
ve
ra
g

H
u
n
d
re
d
s	

0%	
20%	
40%	
60%	
80%	

100%	

intalu	 intmul/div	 fpalu	 fpmul/div	
(a)	

(b)	

0
10
20
30
40 2x 3x 4x

0

10

20

30

0
10
20
30
40
50

0
5

10
15
20

0
20
40
60
80

am
m

p
ap

pl
u

ap
si

ar

t
bz

ip
2

cr
af

ty

eo
n

eq
ua

ke

fa
ce

re
c

fm
a3

d
ga

lg
el

ga

p
gc

c
gz

ip

lu
ca

s
m

cf

m
es

a
m

gr
id

pa

rs
er

pe

rlb
m

sw
im

tw

ol
f

vo
rt

ex

vp
r

w
up

w
is

A
ve

ra
g

(e)	

(a)	

(b)	

(c)	

(d)	

250

much as 50%. The average speedup is 19%. While there are some

benchmarks that tripling and quadrupling the number of functional

units improve their performance substantially (applu, art, facerec,

lucas, mesa, mgrid), the largest speed up is achieved when doubling

the resources. Further gains are seen with increased number of

functional unit, but the marginal gains drop off.

3 LUT BASED FUNCTIONAL UNITS
STT-NV technology utilizes Magnetic Tunnel Junctions (MTJ) to

realize nonvolatile resistive storage. There have been several

attempts to use MTJs for building logic circuits with the hope of

exploiting the leakage benefit of MTJs in order to reduce the power

[12, 16]. However, due to the significant energy involved in

changing the state of an MTJ, circuit styles that rely on changing

the state of MTJs in response to input changes do not show any

power and performance benefits [16]. An alternative to this

approach has been to realize logic in memory by using LUTs that

are built based on MTJs [12]. Resistive computation [12] replaces

conventional CMOS logic with Magnetic Tunnel Junction (MTJ)

based LUTs; it has been proposed for tackling the power wall.

3.1 Estimate of Area, Power, and Performance
To obtain an estimate of area, power, and performance of an LUT

based adder as compared to a static CMOS (ASIC) counterpart, we

have performed a case study on a 64-bit ripple carry adder and a

multiplier implemented in static CMOS, CMOS LUT based, and the

STT-NV LUT styles in a 32nm predictive technology node [19]. We

used a commercial FPGA tool in order to get a count of LUTs and

switch boxes (for routing) needed for each design. For static CMOS

design we used design compiler to synthesis functional units

(DesignWare) in a commercial 45nm technology and scaled the

results to 32nm. Table 1 shows the results of the 64-bit adder and

multiplier implemented in both styles. The results indicate that

except for the leakage power, the STT-NV design has overhead in

other metrics (especially for the adder).

Table 1. Comparison of adder and multiplier results in alternative styles

Metric Unit STT-NV
LUT style

CMOS LUT style Static CMOS
style

Delay adder 2.89 3.24 1

multiplier 2 3.73 1

Active mode
power

adder 6.46 6.70 1

multiplier 0.74 1.26 1

Standby mode
(leakage)
power

adder 0.17 3.87 1

multiplier 0.23 1.42 1

Area adder 3.89 4.61 1

multiplier 0.90 1.83 1

That means the performance of the reconfigurable adder in STT-NV

style will be 2.89X lower than that of the static CMOS adder

counterpart. Its standby mode power is 0.17X lower, but its active

mode power is 6.46X higher. Due to a larger delay of reconfigurable

STT-NV multiplier compared to the baseline CMOS style, the STT-

NV multiplier implementation needs to be pipelined two times

deeper than the original CMOS based implementation. However this

has shown to impact performance minimally [12]. Also in spite of

the advantage of a static CMOS based multiplier over the STT-NV

based design in terms of delay, it still makes a lot of sense to replace

it with the STT-NV design due to significant leakage advantage of

the STT-NV design. Due to low utilization and high operating

temperature of the multiplier, the standby power becomes the major

component of the total power. Also as results in the table 1 suggests,

the CMOS LUT based style has no obvious advantage over the

static CMOS style. While both STT-NV LUT and CMOS LUT are

reconfigurable, STT-NV LUT has advantage over CMOS LUT in

several metrics, noticeably leakage power. The leakage power of a

STT-NV style is at least 6X lower than the CMOS LUT counterpart.

Based on the results presented in table 1 we select IntALU to be a

non-reconfigurable static CMOS as the power and area increase for

a reconfigurable IntALU is significant. Other functional units

including multiplier and divider (Int and FP) are implemented with

STT-NV LUT reconfigurable style where they do not incur area

overhead (the area of STT-NV LUT style is even smaller than the

CMOS counterpart).

3.2 Estimate of Reconfiguration Overhead
The reconfiguration energy and performance estimation is

performed for configuring a 64X64 multiplier unit to a 64-bit adder

unit. This represents the worst-case scenario as reconfiguration

between any other pair of functional units takes less energy and

delay. Reconfiguring a LUT-based multiplier to an adder unit

involves programming the LUTs. We have taken the HDL of the

multiplier and adder units and synthesized them using a commercial

FPGA (with 6 input LUT) synthesis tool in order to get a count of

LUTs needed for each design. We have also taken into account the

routing overhead including the switch boxes. The multiplier unit can

be realized using 437 4-input LUTs and the adder using 65 such

LUTs. Hence, we assume reconfiguring the multiplier unit to the

adder or vice versa involves writing to at most 65 LUTs. Therefore,

the total number of STT-Non-Volatile (STT-NV) bits to be written

is 65 * 16 = 1040 bits or roughly 1 Kbits. The write access time to a

single bit STT-NV is estimated to be 25ns [9], which are 25 cycles

for 1GHz system clock. If LUTS are written in parallel using a 128-

bit wide data bus, the reconfiguration is estimated to take about 8

write operations (i.e. 200 cycles). The configuration bits for the

LUTs that are different between the adder and multiplier

configuration need to be stored in a ROM. A controller will read the

configuration bits from ROM and write to the STT-NV LUTs. For

the configuration energy estimate, we have ignored the energy of

reading the configuration bits from the ROM, since the

configuration energy is expected to be dominated by the energy of

writing to the STT-NV cells. Using the NVSIM tool, the write

energy per bit cell is estimated to be 7.9 pJ [9]. Hence, the total

energy estimated for the reconfiguration of LUTs is 1040 * 7.9 pJ =

8.2 nJ. The above estimates are conservative because we assume all

the bits of those 65 LUTS need to be re-written; whereas, in reality

some of the bits could be same between the two configurations. In

addition to programming LUT we also need to program the router

and switchboxes. The routing power overhead is not trivial. We

used the results of FPGA synthesis to estimate the routing energy as

3.7nJ.

4 ADAPTIVE RECONFIGURATION
In this section we are presenting the algorithms for the functional

unit reconfiguration to improve performance. The adaptive

algorithm we are proposing is derived from the observation made

from Figure 1 where multiply and divide units (both floating point

and integer) are idle for a substantial part of program execution time

– more than 95% of time for many applications. Note that in spite of

such high underutilization we would still need these types of

functional units. However due to the infrequency of multiply and

divide operations these functional unit are remaining idle for most of

program execution time. Since the adder units (float and integer) are

active noticeably compared to multiply and divide units, we only

make multiply and divide units reconfigurable – therefore only

integer and floating point multiply and divide operation can be

reconfigured to either int/fp adder or to each other, for instance a

multiplier to a divider. Also we have shown in Figure 2 the speedup

when increasing the number of int and fp adder and we found a

large performance benefit across most benchmarks. Therefore a

251

straightforward reconfiguration mechanism is to reconfigure

multiplier and divider at run-time to an adder. Note that as shown in

Figure 2 increasing the number of adder beyond a certain limit does

not improve performance noticeably for many benchmarks.

Therefore, it is not much performance beneficial to reconfigure all

idle integer and floating point multiplier and divider to an adder.

Also as seen in Figure 2 there are few benchmarks such as applu,

apsi and gap, which benefit significantly from increasing the number

of multiply and divide units. Based on all of these observations, in

this section we propose several algorithms to capture each

benchmark behavior and adapt the number of functional unit

required to maximize performance accordingly. We categorize these

algorithms into static and dynamic algorithms. The goal of these

algorithms is to find the idle functional units and reconfigure them

to the active units to improve performance. Note that in all of these

algorithms when a unit that has been reconfigured is requested and

therefore is not available it needs to be reconfigured back to its

original function. We refer to this re-reconfiguration as adjustment

process. The adjustment process is asynchronous - For example if a

multiplier is reconfigured to an adder and later in the program

execution a multiply operation request a multiply unit, then the

reconfigured adder need to be adjusted back to a multiplier,

immediately.

4.1 Static Adaptive Algorithm
In this algorithm the application is being profiled for an initial phase

(learning phase) and based on the profiling information the

reconfiguration decision is being made for the rest of program

execution. During the learning period active and idle functional

units are being identified. At the end of the learning period all idle

units are reconfigured to active units in the order of their activity.

The reconfiguration pseudo-code is shown in Figure 3.
For the first 100M cycles:
-Monitor functional units
-Identify the idle units: idle [1, 2, 3, … i]
 (i is the total number of idle units)
-Identify the active units: active [1,2,3, … j]
 (j is the total number of active units)
-Order active units based on their activity: active_order [i]
At the end of 100M cycles:
Loop: for all idle units (i)
-Reconfigure idle units to active units: idle[i] active_order [i%j]

Figure 3. Static Adaptive Algorithm pseudo code.

Note that the reconfiguration decision is made only once and after

an initial learning period (after the first 100M cycles which for many

benchmarks is larger than the initialization period). Since only one

reconfiguration is allowed at the end of the learning phase, at most

one adjustment process is performed during program execution

time.

4.2 Dynamic Adaptive Algorithms
We present two dynamic algorithms shown in Figure 4. We refer to

these algorithms as balanced idle to active and biased idle to most

active algorithms. In both of these reconfiguration algorithms the

functional units are monitored periodically and the reconfiguration

decision is made every N cycles based on the functional unit activity

in the previous N interval (due to space limitation we only report the

results for N=100K interval). Then, at the beginning of each 100K

interval, all idle functional units are reconfigured to the active ones.

Such a periodic monitoring and reconfiguring process is based on

the fact that many standard programs execute as a series of

nonstationary phases. Each phase is very different from the others,

while the program behavior within a phase is homogeneous. The

goal of these periodic algorithms is to capture program behavior to

find the right number of each type of functional unit for each

program phase. In both of these algorithms, in the beginning of

monitoring interval all units are reconfigured back to their original

functions (reset process) before applying the new reconfiguration –

for example if a multiplier reconfigured to an adder, then in the

beginning of every monitoring interval it should be first reset back

to a multiplier. Then, the dynamic reconfiguration based on the

monitoring information collected in the previous interval is applied.

Balanced idle to active (Dynamic-BIA): In this algorithm all idle

functional units are reconfigured to the active units in a balance

way. This is shown in Figure 4(a). The order of reconfiguration is

based on the activity results presented in Figure 1– first we

reconfigure the idle unit to int add, then the remaining idle units are

being reconfigured to fp add, fp multiply, int multiply, int divide and

fp divide, respectively. This algorithm implementation is simple –

we require a single bit for recording the idle functional unit during

every monitoring interval. If during the monitoring intervals the

functional unit was busy (even for a single cycle) we set the idle bit

to busy, otherwise the functional unit is idle.

Biased idle to most active (Dynamic-BMA): In this algorithm

(shown in Figure 4(b)) all idle functional units are reconfigured to

the most active units in a biased way and based on their activity.

From results reported in Figure 1 we observed that the integer adder

unit is always the most active unit therefore it make a lot of sense to

reconfigure most of idle units to an integer adder.

Figure 4. Dynamic Adaptive Algorithms (a) Balanced idle to active,
and (b) Biased idle to most active.

For the rest of the units including fp adder, int/fp multiplier and

divider the activity is monitored periodically and if they are busy

more than 10K cycles in a 100K cycles monitoring interval they are

considered as highly active unit. An idle unit will be then

reconfigured to the most active unit out of the highly active units.

The rest of idle units are reconfigured to int add. This algorithm is

more complex than the Balanced algorithm as it requires constant

monitoring of functional units activity, finding the highly active

units, and selecting the most active among the highly active units.

num	idle		
unit	=1	

num	idle		
unit	=3	

num	idle		
unit	=4	

Reconfigure	to	IntALU	

Reconfigure	to	non-
idle	unit	out	of	INT/

FP	MUL/DIV	

Reconfigure	
to	FpAdd	

num	idle		
unit	=2	

No	 No	 No	

#1	

FpAdd		
idle	

makes	two	groups	of	1	
and	1	unit	

makes	three	groups	
of	1	unit	each	

makes	two	groups	of	1	
and	3	units	

No	#1	

#1	 #1	

#1	

#1	

#3	

#1	
#1	 #1	

(a)	
Check	for	
Idle	Unit(s)	
Every	100K	

cycles		

Check	for	
Idle	Unit(s)	
Every	100K	

cycles		

num	idle		
unit	=1	

If	
num	
idle	
unit	
=2	

num	idle		
unit	=3	

num	idle		
unit	=4	

Reconfigure	to	IntALU	

Reconfigure	to	
the	most	“highly	
ac ve”		Unit	

Reconfigure	
to	FpAdd	

any	
“highly	ac ve”		

units	

FpAdd		
not	idle	

num	idle		
unit	=2	

No	 No	 No	

No	 No	

#1	 #2	

#1	

#1	

#3	

#1	

#1	
#1	

#1	

#1	#1	

makes	two	groups	of	1	
and	1	unit	

makes	two	groups	of	1	
and	2	units	

makes	two	groups	of	
1	and	3	units	

(b)	

252

5 METHODOLOGY AND RESULTS
In this section we present our simulation methodology and the

results demonstrating the performance benefit of a reconfigurable

STT- logic when deployed in the functional unit of the processor.

Table 2. Baseline Processor Configuration

Number of
cores

4 Register file 64 entry

L1 I-cache 8KB, ,4 way,
2 cycles

Memory 50 cycles

L1 D-cache 8KB, 4 way, 2
cycles

Instruction fetch
queue

8

L2-cache 256KB, 15
cycles

Load/store
queue

16 entry

Pipeline 12 stages Complex unit 2 INT

Processor
speed

1 GHz, 1V Issue dual, out-of-order

Fetch, dispatch 2 wide Arithmetic units 3 integer

As discussed earlier we only replace the integer and floating point

multiply and divide CMOS unit with a reconfigurable STT-Logic.

The int add and fp add remain unchanged in CMOS technology. Our

baseline architecture parameter is shown in Table 2. We model a 4-

core chip multiprocessor architecture using gem5 simulator. Each

core is a dual issue processor similar in functionality to IBM

PowerPC 750 FX architecture. We used SPEC benchmarks suite for

evaluation. The benchmarks were simulated for 2 billions

instructions after fast forwarding for 2 billions instructions. For the

power and delay overhead associated with reconfiguration we used

the results reported in sections 3.1 and 3.2.

5.1 Results
In this section we report the performance and power for the five

following architecture:

-Baseline-1X: All functional units are implemented in CMOS and

there is no reconfiguration. We assume that in baseline architecture

leakage power is suppressed by power-gating technique reported in

[8] with the performance loss below 2%.

-Baseline-2X: All functional units are implemented in CMOS and

the number of functional units increased by 2X compared to

baseline. As discussed in [6] in superscalar processors increasing the

number of functional unit impact the processor operating clock

frequency. Based on [6] we assume the clock operating frequency in

this design is reduced by 15%. Similar to Baseline-1X leakage

power in functional unit is being suppressed [8].

Static-Reconfig: Except int add and fp add other functional units are

implemented in STT-NV technology and therefore they are

reconfigured using static technique.

Dynamic-BIA-Reconfig: Except int add and fp add other functional

units are implemented in STT-NV technology and therefore they are

reconfigured using dynamic Balanced idle to active technique.

Dynamic-BMA-Reconfig: similar to Dynamic-BIA-Reconfig except

that the reconfiguration algorithm is dynamic Biased idle to most

active technique. In Figure 5 we report the performance

improvement of the static and dynamic algorithms normalized to the

CMOS baseline architecture with no reconfiguration (Baseline-1X).

We also report the performance impact of doubling the number of

functional units. Since doubling the number of functional unit

increases the issue width [6] and therefore impacts the operating

clock frequency, for all cases we report the IPC x Clock-Frequency

as a performance metric to account for the frequency impacts. In

Baseline-2X design, while 2X number of functional units could

potentially provide more opportunity to improve performance, in

many benchmarks we observe an overall performance loss. The

largest performance loss is in ammp, galgel, perl, and vortex; with

more than 10% performance degradation. Interestingly these are the

benchmarks where increasing functional unit does not improve IPC

significantly – therefore when taking into account the impact on

frequency (15%) we observe a large loss in terms of IPC x Clock-

Frequency. On average a Baseline-2X can only improve

performance by 2%. However, in a reconfigurable STT-NV design

since there is no impact on the clock frequency we can see a

noticeable performance improvement across most benchmarks. In

STT-NV reconfigurable architecture, for most integer benchmarks

including bzip2, crafty, eon, gap, gcc, gzip, mcf, parser, perlbmk,

twolf, vortex and vpr the static technique almost match the more

complex dynamic techniques. In fact for these benchmarks we

observed a lot of underutilization in the functional unit and the fp

units are not used for the entire program execution time. Therefore,

by simply monitoring during the learning phase we can identify

these idle units and reconfigure them to the heavily utilized units

like int adder/multiplier and divider. Since these benchmark

behavior remain almost the same after the learning phase, the simple

static technique can identify the best reconfiguration and apply it for

the entire program execution time. Unlike integer benchmark, for

floating point benchmark the static technique cannot capture the

program behavior in terms of functional unit utilization by simply

monitoring the processor during learning phase. This is particularly

the case for applu, mesa, mgrid, and wupwise. For these

benchmarks the static algorithm during the learning phase cannot

capture the performance bottleneck unit(s) (Figure 2(b)). In fact for

these benchmarks the behavior of the program changes significantly

after the learning phase. Comparing the two dynamic algorithms

show interesting results – in many cases the Dynamic-BIA

algorithm is able to capture program behavior at run-time and

accordingly reconfigure the idle functional unit to the performance

bottleneck ones. However there are few cases that this algorithm

also cannot find the performance bottleneck units. Examples are

applu, apsi and facerec where the dynamic-BIA algorithm attempts

to balance the reconfiguration instead of being biased towards the

performance bottleneck unit: fp add, fpmul, and fp add, respectively.

On the other hand, the dynamic-BMA is biased towards

performance bottleneck functional units by constantly monitoring all

functional unit activities. In Figure 6 we present the power

dissipation breakdown of functional units in Dynamic-BMA-

Reconfig and Baseline-1X designs. To have a better understanding

of the power dissipation among several benchmarks, we have

separated integer benchmarks (top) from floating point benchmarks

(bottom). Note that for Baseline-1X CMOS based design we

assumed an state-of-the-art power gating technique has been applied

to suppress the leakage power by up to 90% in floating points units

and up to 45% in integer units. [6]. In both integer and floating point

benchmarks, for IntMUL, IntDIV units the leakage power reduces in

STT-NV Reconfigurable based design compared to a CMOS based

design (results per unit not presented due to space limitation). In

integer benchmarks, for IntALU, the leakage power is lower in

Dynamic-BMA-Reconfig compared to CMOS Baseline-1X design.

Note that in CMOS based design there is small opportunity to

suppress leakage using power-gating techniques, as integer unit is

busy most of the times. Overall in integer benchmarks the total

leakage power of all functional units increase in Dynamic-BMA-

Reconfig design compared to CMOS Baseline-1X design. In fp

benchmarks the total leakage power of all functional units in

Dynamic-BMA-Reconfig design reduces substantially by up to 51%

compared to CMOS Baseline-1X design. The dynamic power

increases in both integer and floating point benchmarks in

reconfigurable design. This is somewhat expected as STT-NV

reconfigurable design attempts to put more functional units into

work and therefore they have higher dynamic power dissipation

compared to a CMOS based design. In integer benchmark Dynamic-

253

BMA-Reconfig design has on average 61% higher total power

dissipation compared to CMOS+PG design. This is mainly due to

significant rise in dynamic power and improving in performance for

STT-NV designs compared to a CMOS based design. In floating

point benchmark, the total power reduces by 22% in STT-NV

design compared to CMOS Baseline-1X design. Using McPAT

power simulator [7] we estimated the total processor power

dissipation to be increased on average by 4.1% in integer

benchmarks and to be reduced on average by 2.3% in floating point

benchmarks compared to a CMOS based design.

Figure 5. Relative performance improvement of various
architecture with and without STT-NV.

Figure 6. Total power (dynamic and leakage) of functional units for
Dynamic-BMA-Reconfig and Baseline-1X in (a) Integer and (b)
floating point benchmarks.

6 CONCLUSION
This paper proposes the novel concept of adaptive functional units

for improving performance in general-purpose processor.

Unavailability of functional units is a main source of performance

bottleneck in general-purpose architectures. With functional unit

adaptation we overcome this challenge. A selected set of complex

functional units that might be under-utilized such as multiplier,

divider, etc. are replaced with a programmable STT-NV based look

up table fabric. This allows for run-time reconfiguration of such

functional units to the functional units that might be creating

performance bottleneck, and hence improving performance via

functional redundancy and parallel computation. The results show

significant performance improvement across standard benchmark. In

addition to performance benefit, the new STT-NV based design and

architecture is more power-efficient in floating point benchmarks

compared to the a CMOS based design. Our future work will study

how STT-NV reconfigurable logic can be deployed in other

performance/power/temperature bottlenecks in processor

architecture to improve efficiency.

7 REFERENCES
[1] Kejariwal. A., et al., “Comparative Architectural Characterization of

SPEC 2000 and 2006 Benchmarks on the Intel Core Processor,”

SAMOS, 2008.

[2] Folegnani, D., and A. González. "Energy-effective issue logic.".
Proceedings. 28th Annual International Symposium on. IEEE, 2001.

[3] A. Kulkarni, H. Homayoun and T. Mohsenin “A Parallel and

Reconfigurable Architecture for Efficient OMP Compressive Sensing
Reconstruction”, The 24’th Annual Great Lakes Symposium on VLSI

(GLSVLSI’2014).

[4] Kulkarni and T. Mohsenin "Parallel and Reconfigurable architectures
for OMP compressive sensing reconstruction algorithm", In proceedings

of The SPIE Sensing Technology and Applications Conference, May

2014.
[5] Adam Page and Tinoosh Mohsenin, “An Efficient & Reconfigurable

FPGA and ASIC Implementation of a Spectral Doppler Ultrasound

Imaging System”, IEEE International Conference on Application-
specific Systems, Architectures and Processors (ASAP 24), June 2013.

[6] Palacharla, Subbarao, Norman P. Jouppi, and James E. Smith.

Complexity-effective superscalar processors. Vol. 25. No. 2. ACM,
1997.

[7] Sheng Li, et al. “McPAT: An Integrated Power, Area, and Timing

Modeling Framework for Multicore and Manycore Architectures”, in
Micro 2009

[8] Anita Lungu, Pradip Bose, et al, “Dynamic Power Gating with Quality

Guarantees” ISLPED, 2009.
[9] X. Dong, et al. "NVSim: A Circuit-Level Performance, Energy, and

Area Model for Emerging Nonvolatile Memory." TCAD, 2012.

[10] Homayoun, Houman, and Amirali Baniasadi. "Reducing execution unit
leakage power in embedded processors." Embedded Computer Systems:

Architectures, Modeling, and Simulation (2006).
[11] Homayoun, Houman, Kin F. Li, and Setareh Rafatirad. "Functional

units power gating in SMT processors." Communications, Computers

and signal Processing. 2005 IEEE Pacific Rim Conference on. IEEE
PACRIM

[12] Guo, X., et al., 2010: Resistive computation: Avoiding the power wall

with low-leakage, stt-mram based computing. Power, 371–382.
[13] J. Bisasky, H. Homayoun, F. Yazdani and T. Mohsenin, “A 64-core

platform for biomedical signal processing”, In proceedings of The

International Symposium on Quality Electronic Design (ISQED), 2013.
[14] H. Mahmoodi, S. Lakshmipuram, M. Arora, Y. Asgarieh, H.

Homayoun, B. Lin, D. Tullsen, Resistive Computation: A Critique,

IEEE Computer Architecture Letter, 2013.
[15] J. Stanislaus and T. Mohsenin, “Low-complexity FPGA implementation

of compressive sensing reconstruction,” IEEE International Conference

on Computing, Networking and Communications, (ICNC’13), January
2013.

[16] F. Ren and D. Markovic. True energy-performance analysis of the mtj-

based logic-in-memory architecture (1-bit full adder). Electron Devices,
IEEE Transactions on, 57(5):2010.

[17] Adarsh Reddy Ashammagari, Hamid Mahmoodi, Houman Homayoun,

Exploiting STT-NV Technology for Reconfigurable, High Performance,
Low Power, and Low Temperature Functional Unit Design, DATE

2014.

[18] J. Bisasky, J. Chander, and T. Mohsenin, “A many-core platform
implemented for multi-channel seizure detection,” In proceedings of

The IEEE International Symposium on Circuits and Systems

(ISCAS’12), 2012.
[19] Predictive technology models. http://ptm.asu.edu/.

-20%	

-10%	

0%	

10%	

20%	

30%	

40%	

50%	

a
m
m
p
	

a
p
p
lu
	

a
p
si
	

a
rt
	

b
zi
p
2
	

c
ra

y
	

e
o
n
	

e
q
u
a
k
e
	

fa
c
e
re
c
	

fm
a
3
d
	

g
a
lg
e
l	

g
a
p
	

g
c
c
	

g
zi
p
	

lu
c
a
s	

m
c
f	

m
e
sa
	

m
g
ri
d
	

p
a
rs
e
r	

p
e
rl
b
m
k
	

sw
im

	

tw
o
lf
	

v
o
rt
e
x
	

v
p
r	

w
u
p
w
is
e
	

A
v
e
ra
g
e
	

p
e
rf
o
rm

a
n
c
e
	i
m
p
ro
v
e
m
e
n
t	

in
	t
e
rm

s	
o
f	
	I
P
C
	x
	C
lo
c
k
	

F
re
q
u
e
n
c
y
	o
v
e
r	
B
a
se
li
n
e
-1
X
		 Baseline-2X	 Sta c-Reconfig	 Dynamic-BIA-Reconfig	 Dynamic-BMA-Reconfig	

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

T
w

o
fl

-D
y
n

a
m

ic
-

tw
o

lf
-B

a
s
e

li
n

e
-1

X

V
o

rt
e
x

-D
y
n

a
m

ic
-

V
o

rt
e
x

-B
a

s
e

li
n

e
-1

X

G
z
ip

-D
y
n

a
m

ic
-

G
z
ip

-B
a

s
e

li
n

e
-1

X

M
c
f-

D
y

n
a
m

ic
-B

M
A

-
M

c
f-

B
a

s
e

li
n

e
-1

X

P
e
rl

b
m

k
-D

y
n

a
m

ic
-

P
e

rl
b

m
k
-

P
a
rs

e
r-

D
y
n

a
m

ic
-

P
a
rs

e
r-

B
a

s
e

li
n

e
-1

X

V
p

r-
D

y
n

a
m

ic
-B

M
A

-
V

p
r-

B
a

s
e

li
n

e
-1

X

E
o

n
-D

y
n

a
m

ic
-B

M
A

-
E

o
n

-B
a

s
e

li
n

e
-1

X

C
ra

ft
y

-D
y
n

a
m

ic
-

C
ra

ft
y
-B

a
s
e

li
n

e
-1

X

G
a

p
-D

y
n

a
m

ic
-

G
a
p

-B
a

s
e

li
n

e
-1

X

b
z
ip

2
-D

y
n

a
m

ic
-

b
z
ip

2
-B

a
s
e

li
n

e
-1

X

G
c

c
-D

y
n

a
m

ic
-B

M
A

-
G

c
c
-B

a
s
e

li
n

e
-1

X

A
v

e
ra

g
e

-D
y
n

a
m

ic
-

A
v
e

ra
g

e
-

T
o

ta
l
F

u
n

c
ti

o
n

a
l

U
n

it
 P

o
w

w
e
r

(w
a
tt

)

Total Dynamic Total Leakage

(a)	

0
0.2
0.4
0.6

0.8
1

1.2
1.4

1.6

S
w

im
-D

y
n

a
m

ic
-

S
w

im
-B

a
s

e
li
n

e
-1

X

M
g

ri
d

-D
y
n

a
m

ic
-

M
g

ri
d

-B
a

s
e

li
n

e
-1

X

L
u

c
a
s

-D
y
n

a
m

ic
-

L
u

c
a

s
-B

a
s
e

li
n

e
-1

X

F
m

a
3

d
-D

y
n

a
m

ic
-

F
m

a
3

d
-B

a
s
e

li
n

e
-1

X

G
a
lg

e
l-

D
y
n

a
m

ic
-

G
a

lg
e

l-
B

a
s
e

li
n

e
-1

X

A
rt

-D
y

n
a
m

ic
-B

M
A

-
A

rt
-B

a
s

e
li
n

e
-1

X

A
p

s
i-

D
y
n

a
m

ic
-

A
p

s
i-

B
a

s
e

li
n

e
-1

X

M
e

s
a

-D
y
n

a
m

ic
-

M
e

s
a
-B

a
s
e

li
n

e
-1

X

A
m

m
p

-D
y
n

a
m

ic
-

A
m

m
p

-B
a
s

e
li
n

e
-1

X

F
a

c
e
re

c
-D

y
n

a
m

ic
-

F
a
c

e
re

c
-

S
ix

tr
a

c
k

-D
y
n

a
m

ic
-

S
ix

tr
a

c
k
-

A
p

p
lu

-D
y
n

a
m

ic
-

A
p

p
lu

-B
a

s
e

li
n

e
-1

X

W
u

p
w

is
e

-D
y
n

a
m

ic
-

W
u

p
w

is
e
-

E
q

u
a

k
e

-D
y
n

a
m

ic
-

E
q

u
a

k
e
-

A
v

e
ra

g
e

-D
y
n

a
m

ic
-

A
v
e

ra
g

e
-

T
o

ta
l

F
u

n
c

ti
o

n
a

l
U

n
it

 P
o

w
w

e
r

(w
a
tt

)

Total Dynamic Total Leakage

(b)	

254

http://ptm.asu.edu/

