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ABSTRACT 
With CMOS scaling leading to ever increasing levels of transistor 
integration on a chip, designers of high-performance embedded 
processors have ample area available to increase processor resources 
in order to improve performance. However, increasing resource sizes 
can increase power dissipation and also reduce access time, which can 
limit maximum achievable operating frequency. In this paper, we 
explore optimizations for the processor register file (RF), to improve 
performance and reduce the energy-delay product. We show that 
while increasing the size of the RF can potentially increase the IPC, 
overall it results in an increase in program execution time. In response 
we propose L2MRFS – a dynamic register file resizing scheme in 
tandem with frequency scaling, which exploits L2 cache misses to 
noticeably improve processor performance (11% on average) and also 
significantly reduce the energy-delay product (7%).   

Categories and Subject Descriptors: C.1.1 [Processor 
Architectures]: Single Data Stream Architectures; C.4 Performance of 
Systems 

General Terms: Performance, Design 

Keywords: Performance, Embedded Processor, Register File, 
Dynamic Resizing 

1. INTRODUCTION 
With the advent of the digital convergence era, high performance 
embedded applications are increasingly using complex out-of-order 
superscalar embedded processors to meet performance goals. 
Examples of such embedded processors include the NEC’s VR5500 
and VR77100 Star Sapphire [6], and the IBM PowerPC 750FX [7] 
processors. Technology scaling into the ultra deep submicron 
(UDSM) region has allowed hundreds of millions of gates to be 
integrated onto a single chip. Designers thus have ample silicon 
budget to add more processor resources (e.g., increasing register file 
size, reorder buffer size, etc) in order to exploit application 
parallelism and improve performance. However, restrictions with the 
power budget and practically achievable operating clock frequencies 
act as limiting factors that prevent unbounded increases in processor 
resource sizes. Increasing register file (RF) size for instance, increases 
its access time, which reduces processor frequency, since access times 
to the multi-ported RF is one of the most critical timing factors that 
determines the achievable processor operating frequency.  
In this paper, we present a novel technique for dynamically resizing 

the RF (L2MRFS) which in tandem with dynamic frequency scaling 
(DFS) significantly improves the performance and reduces energy-
delay product for embedded processors. Our approach exploits L2 
cache misses, adaptively reducing RF size during the period when 
there is no pending L2 cache miss, and using a larger RF during the 
L2 cache miss period. To enable single cycle access during RF 
resizing, the processor frequency is dynamically scaled. Such a 
dynamic frequency scaling (DFS) should be done fast, otherwise it 
can negatively impact performance during dynamic RF resizing. In 
our studied processor, IBM PowerPC 750FX, DFS is done in 
effectively zero cycle using a dual PLL architecture [11]. The RF size 
adaptation is realized using a circuit modification scheme that comes 
with minimal hardware modification, unlike costly banking or 
clustering techniques. Experimental results show that L2MRFS 
noticeably improves performance and also significantly reduces 
energy-delay product for out-of-order embedded processers.   
 

2. RELATED WORK 
There has been a lot of research that has proposed altering the 
structure of the register file (RF) for improving performance. One set 
of techniques uses localities of communication to split the 
microarchitecture into distributed clusters, each containing a subset of 
the RF. [1]-[2]. A critical issue in the design of such systems is the 
heuristics used to map instructions to clusters. These schemes have 
the potential to scale to larger issue widths but require complex inter-
cluster control logic to map instructions to clusters and to handle 
inter-cluster dependencies.  
Alternatively, other approaches retain a centralized microarchitecture, 
but partition the processor units such as the RF [3]-[4] to reduce 
access time and energy dissipation. Partitioning the RF into multiple 
banks for instance reduces the ports on the partitions, which reduces 
the pre-charging and sensing times and the related energy dissipation. 
But these reductions come at the cost of value multiplexing and port 
conflict problems. The major drawback of all these banking 
techniques in general is in the complexity that speculation adds and 
more specifically the complexity they introduce on handling the 
coherency in register caches and banking conflicts. This added 
complexity becomes even more critical for embedded processors that 
work in resource-constrained environments. 
None of the above schemes exploit the L2 cache misses for dynamic 
register file resizing. The technique that comes closest to our work is 
[5], which performs early register de-allocation based on L2 misses to 
improve performance. However, such a scheme increases complexity 
since it requires additional resources such as bit vectors to identify the 
sources and the destinations of the load-dependent instructions, 
additional bits in the ROB and possibly a backup register file to store 
de-allocated values. In contrast, we propose a much simpler 
architecture and circuit level approach that dynamically adapts the RF 
size on L2 cache misses to achieve significant performance 
improvements. 
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3. MOTIVATION FOR INCREASING RF SIZE 
Consider the case where during processor execution, a long latency 
L2 cache miss occurs. The processor executes some independent 
instructions but eventually ends up becoming stalled [12].  When a 
cache miss occurs, the load instruction that caused the L2 miss stays 
on top of the reorder buffer (ROB) and doesn’t allow the subsequent 
instructions to be committed. As a result, the subsequent instructions 
occupying the ROB and RF cannot be released until the miss returns. 
This gradually increases ROB and RF occupancy, and reduces the 
processor issue rate. Due to the long service time, either the ROB or 
RF can completely fills up with subsequent instructions and the 
processor ends up being stalled until the miss is serviced. The same 
scenario occurs for the load queue (LQ), store queue (SQ) and 
instruction queue (IQ) – the subsequent dependent instructions to the 
load with a miss cannot be issued due to data dependency. Such 
instructions reside in the IQ until the miss returns. 
Given the long cache miss service time, the above scenario can 
happen quite frequently. To estimate the frequency of stalls due to L2 
cache misses, we explored the PowerPC 750FX  architecture [7] with 
a separate IL1 (level 1 instruction cache) and DL1 (level 1 data cache) 
of 32KB with access time of 2 cycles and a unified L2 (level 2 cache) 
of size 256KB with an access time of 12 cycles. The size of ROB, IQ 
and RF was kept as 16, 8 and 24 respectively, and the miss penalty of 
accessing the main memory was 60 cycles.   
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Figure 1. Relative processor stall period due to L2 cache miss 

In Figure 1 we report how often the entire processor is stalled due to 
L2 cache misses. As the results indicate, the entire processor pipelines 
stalls by up to 40% of the program execution time. The average is 
almost 15%. The large idle period reported in Figure 1 impacts the 
processor performance significantly. One simple solution to reduce 
the occurrence of such an idle period is to increase the size of 
processor resources such as the RF, IQ, ROB and etc. With larger 
resources it is less likely that these resources will fill up completely 
during the L2 cache miss service time and potentially improve 
performance. It should be noted that the sizes of these resources have 
to be scaled up together; otherwise the non-scaled ones would become 
a performance bottleneck. 

4. IMPACT OF INCREASING RF SIZE 
While increasing the size of RF, (as well as ROB, LQ and IQ) can 
potentially increase processor performance by reducing the 
occurrences of idle periods, it has a critical impact on the achievable 
processor operating frequency. This is specifically the case for the RF, 
the size of which is a limiting timing factor that determines the 
maximum operating frequency of a processor as discussed in several 
other works [1] [3] [5]. Increasing the size of the RF increases its 
access time. This is mostly due to an increase in the length of the 
bitline. Figure 2 shows the delay breakdown among the various 
components of the RF, for 24, 32 and 48 entry RF configurations. 
Results are shown for a single read operation, with delays calculated 
using a modified version of CACTI4 [8]. A clear trend seen in this 
figure is the significant increase in bitline delay when the size of the 
RF increases. This can be explained as follows. The signal 
propagation delay of the bitline is relative to its equivalent 

capacitance. The equivalent capacitance on the bitline is  Ceq = N * 
diffusion capacitance of pass transistors + wire capacitance (usually 
10% of total diffusion capacitance) where N is the total number of 
rows. As the number of rows increases the equivalent bitline 
capacitance also increases. Since the propagation delay on the bitline 
is relative to RCeq, the propagation delay approximately increases with 
the number of rows. The propagation delay for the remaining RF 
components increases only slightly with an increase in RF size, as 
shown in the figure. 
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Figure 2. Breakdown of RF component delay with increasing size 
It is thus clear that increasing RF size increases its access time mostly 
due to increase in the bitline delay. A similar increase in access time 
occurs for the ROB and IQ. As a result, the achievable operating 
frequency of the processor is reduced when resource sizes are 
increased. Note that it is possible to apply banking or clustering 
techniques to improve RF access time, as has been proposed for high 
performance processors [3]-[4]. However banking or clustering the 
RF is a costly solution, due to the significant complexity that is 
introduce in handling banking conflicts and coherency in RF banks. 
Such complexity can be prohibitive, especially in the resource 
constrained environments in which embedded processors operate. 
 

Table 1. Reduction in clock freq with increasing resource size 

Processor Configuration Baseline Conf_1 Conf_2 
RF size 24 32 48 
ROB size 16 24 32 
IQ size 8 12 24 
RF access time (ns) 1.67 1.76 1.92 
Operating Freq (MHz) 595 568 520 

 

4.1 Static Register File Sizing 
In order to study the impact of statically increasing the size of the RF 
(and also ROB and IQ), we consider three different processor 
configurations, as shown in Table 1. The baseline configuration 
shown in the table has a 595 MHz operating frequency. Conf_1 
represents an intermediate configuration, with the RF, ROB and IQ 
upsized to 32, 24 and 12 entries, respectively. Using a modified 
version of CACTI4 [8], the access time for RF is found to increase to 
1.76 ns. As a result, the operating clock frequency for the processor 
cannot exceed 570 MHz for this configuration. The Conf_2 represents 
a configuration in which resources are upsized aggressively and the 
achievable operating clock frequency is reduced further to 520 MHz.  
Figure 3 shows the performance in terms of IPC for the different 
configurations described above (normalized to the baseline 
configuration), while operating at their maximum achievable 
operating frequency. Figure 4 provides more insight on the relative 
idle period processor stalls due to L2 cache misses for the different 
configurations.  
From Figure 3 it can be seen that in all cases, increasing the size of 
resources increases the IPC. Also the results in Figure 4 verify that 
increasing resources can potentially reduce the occurrences of idle 
time in the processor due to L2 cache misses. However, increasing the 
resources size, while effective in increasing IPC, causes the processor 
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to run slower (from 595MHz down to 568 and 520 MHz, as reported 
in Table 1). 
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Figure 3. Performance for different processor configuration in 
terms of IPC normalized to the baseline configuration 
Since the three configurations discussed above operate at different 
clock frequencies, we must take into consideration their maximum 
achievable operating clock frequency in addition to their IPC for 
performance comparison. Accordingly, in Figure 5 we report the 
execution time for the three designs. Interestingly in most benchmarks 
we observe the execution time increases with larger resource sizes. In 
other words, for the trade-off between having larger resources (and 
hence reducing the occurrences of idle period due to L2 cache misses 
as reported in Figure 4) and lowering the clock frequency, the latter 
becomes more important and plays a major role in deciding the 
performance. On average there is almost 0.5% performance 
degradation for intermediate configuration (Conf_1) compared to the 
baseline. The aggressive configuration (Conf_2) results in 
performance degradation by up to 10% and on average 4%, compared 
to the baseline.  
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Figure 4. Relative idle period processor stalls due to L2 cache 
misses for different configurations. 
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Figure 5. Normalized execution time for different configs with 
reduced operating frequency compared to baseline architecture 

5. DYNAMIC REGISTER FILE RESIZING  
Based on the observations made in the previous section, we realize the 
need for a dynamic RF scaling based on L2 cache misses, that allows 
the processor to use smaller RF (having a lower access time) during 
the period when there is no pending L2 cache miss (normal period) 
and a larger RF (at the cost of having a higher access time) during the 
L2 cache miss period. Note that the assumption is that the RF size 
decides the maximum achievable operating clock frequency both in its 

typical size or when it is being resized. During the normal period, RF 
is kept at its typical size (24 entries) and as such it can operate at the 
baseline operating frequency (almost at 595 MHz from Table 1). 
During the cache miss period we scale up the RF size, which results 
in an increase in its access time. Finally, the RF size is returned to its 
normal size once the L2 cache miss has been serviced and the scaled 
up part has no more data.  We refer to this technique as L2 miss driven 
register file scaling (L2MRFS). 
Note that to be able to satisfy accessing the RF in one cycle we need 
to reduce the operating clock frequency when we scale up its size. 
Such dynamic frequency scaling (DFS in brief) needs to be done fast, 
otherwise it could have a negative impact on the performance benefit 
of dynamic RF resizing. For this reason we need to use a PLL 
architecture capable of applying DFS with the least transition delay. 
Our studied architecture, the IBM PowerPC 750FX, has such a PLL 
architecture. PowerPC 750 [7] [11] uses a dual PLL architecture 
which allows fast DFS with effectively zero latency (one processor 
clock cycle is being skipped). With the benefit of such PLL 
architecture, there is almost no transition overhead associated with 
changing the operating clock frequency [11] when resizing the RF.  
It should also noted that this technique has a fairly simple 
implementation and does not add significant complexity to the 
embedded processor pipeline, since the scheduler in embedded 
processors already keeps track of miss load instructions in L2 caches.  
5.1 Circuit Modification 
In this section we propose circuit modifications to assist the 
architectural L2MRFS technique. As in the previous section, we 
assume that RF size decides the critical path before and after resource 
resizing. From Table 1, increasing RF size results in an access time 
greater than the baseline RF access time. The challenge here is to 
design the RF in such a way that its access time is dynamically being 
controlled such that at typical size (24 entries) it has the baseline 1.67 
ns access delay and at its scaled up size, 32 and 48, it has 1.76 ns and 
1.92 ns access delay respectively.  
Figure 6 shows our proposed solution which requires a minimal 
modification to a unified RF (unlike more complex banking schemes). 
Among all RF components, the bitline delay increase is responsible 
for the majority of RF access time increase (for instance this is 80% 
for a 48 entry RF compare to 24 entry RF as reported in Figure 2). 
This is due to the fact that bitline delay is decided by its equivalent 
capacitance which in turn is proportional to the number of RF entries 
(rows). 
 

 
Figure 6. Proposed circuit modification for RF 

Accordingly, for the Conf_2 architecture to be able to achieve an 
access delay close to the baseline RF access delay for a 48 entry RF 
when only 24 of its entries are being used, we need to reduce the 
equivalent capacitance on the bitline by eliminating the diffusion 
capacitance of the 24 unused entries. For this purpose, the RF is 
divided into two segments of 24 entries each which are connected 
through pass transmission gates as shown in Figure 6. This allows the 
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upper segment bitline to become isolated from the lower segment 
bitline if the pass gate is off. It should be noted that all other 
components such as the bitline, sense-amp, etc. are shared for both 
structures. During the normal period the upper segment is power 
gated and the transmission gate is turned off to isolate the lower 
bitline segment from the upper bitline segment. Only the lower 
segment bitline is pre-charged during this period. Since the upper 
bitline segment is floating, the bitline capacitance during normal 
period is decided by the lower segment bitline. As such, the bitline 
delay in this case remain close to the bitline delay of a 24-row register 
file (the only difference is the delay added by the source capacitance 
of the pass gate, which is negligible).  
In addition, we need to be able to detect when the upper segment is 
empty (for downsizing at the end of cache miss period when the 
added segment is empty). To do this, we have augmented the upper 
segment with one extra bit per entry. This bit is set when an entry 
(register) is taken and is being reset when the entry is released. By 
ORing these bits we can detect when the segment is empty. Since the 
remaining components of RF delay change very slightly, the RF 
access delay remains close to that for a 24-row RF when the upper 
segment is isolated. The delay of accessing the RF while the upper 
segment is isolated is 1.70 ns, which is only slightly larger than for a 
baseline 24-row register file (1.67 ns). When the upper segment is 
active and the RF has its full size, its access requires 1.77 ns for 
Conf_1 and 1.93 ns for Conf_2.  
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Figure 7. Experimental results: (a) normalized performance 
improvement for L2MRFS (b) normalized energy-delay product 
compare to conf_1 and conf_2 

6. RESULTS 
In this section we present experimental results to show how the 
dynamic RF resizing approach impacts processor performance. We 
use SPEC2K benchmarks executed with reference data sets, and 
compiled with the O4 option using the Compaq compiler. The 
architecture was simulated using an extensively modified version of 
MASE (SimpleScalar 4.0) [9]. The benchmarks were fast–forwarded 
for 500 million instructions, then fully simulated for 1 billion 
instructions.  We used a modified version of CACTI4 [8] for 
estimating access time for the RF. For estimating energy consumption 
of our adaptive technique we integrate Wattch [10] into our simulator 
infrastructure. We used process parameters for a 70nm process at 
595MHz with 1V supply voltage. 

In Figure 7(a) and (b) we report the result of using the proposed 
L2MRFS technique. In Figure 7(a) we report the performance 
improvement in terms of normalized execution time when we apply 
L2MRFS to Conf_1 (referred to as DYN_Conf_1) compare with 
Conf_1 and for DYN_Conf_2 compare to Conf_2. From Figure 7 (a), a 
performance improvement can be seen across all benchmarks for 
DYN_Conf_1 when normalized to Conf_1; the performance 
improvement is almost 6% on average.  The performance 
improvement for DYN_Conf_2 is even more, up to 14% for crafty and 
11% on average.  
In Figure 7 (b) we report the energy-delay products of DYN_Conf_1 
and DYN_Conf_2 compared to Conf_1 and Conf_2 respectively. As 
can be seen for all the benchmarks our dynamic RF resizing technique 
results in overall reduction in energy-delay product. The average 
energy-delay is reduced by 3.5% and 7% respectively for 
DYN_Conf_1 and DYN_Conf_2 compare to Conf_1 and Conf_2. 
Finally, it should be noted that while DYN_conf_2 delivers lower 
energy-delay and higher performance in terms of execution time, it 
requires more silicon budget and dissipates more power compared to 
DYN_Conf_1 (results are not reported due to space limitation). This in 
fact is due to having larger resources such IQ, RF and ROB. 

7. CONCLUSION 
In this paper, we presented a novel technique for dynamically resizing 
the RF (L2MRFS) which in tandem with dynamic frequency scaling 
(DFS) significantly improves the performance and reduces energy-
delay product for embedded processors. Our approach exploits L2 
cache misses, adaptively reducing RF size during the period when 
there is no pending L2 cache miss, and using a larger RF during the 
L2 cache miss period. The RF size adaptation is realized using a 
circuit modification scheme that comes with minimal hardware 
modification, unlike costly banking or clustering techniques. Our 
extensive experimental results have shown that L2MRFS noticeably 
improves performance (11% on average) and also significantly 
reduces energy-delay product (7%) for out-of-order embedded 
processers.   
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