
Dynamic Register File Resizing and Frequency Scaling to Improve
Embedded Processor Performance and Energy-Delay Efficiency

Houman Homayoun†, Sudeep Pasricha†, Mohammad Makhzan‡, Alex Veidenbaum†

 †Center for Embedded Computer Systems ‡Department of Electrical and Computer Engineering
 University of California, Irvine, CA University of California, Irvine, CA
 {hhomayou, sudeep, alexv}@ics.uci.edu mmakhzan@uci.edu

ABSTRACT
With CMOS scaling leading to ever increasing levels of transistor
integration on a chip, designers of high-performance embedded
processors have ample area available to increase processor resources
in order to improve performance. However, increasing resource sizes
can increase power dissipation and also reduce access time, which can
limit maximum achievable operating frequency. In this paper, we
explore optimizations for the processor register file (RF), to improve
performance and reduce the energy-delay product. We show that
while increasing the size of the RF can potentially increase the IPC,
overall it results in an increase in program execution time. In response
we propose L2MRFS – a dynamic register file resizing scheme in
tandem with frequency scaling, which exploits L2 cache misses to
noticeably improve processor performance (11% on average) and also
significantly reduce the energy-delay product (7%).

Categories and Subject Descriptors: C.1.1 [Processor
Architectures]: Single Data Stream Architectures; C.4 Performance of
Systems

General Terms: Performance, Design

Keywords: Performance, Embedded Processor, Register File,
Dynamic Resizing

1. INTRODUCTION
With the advent of the digital convergence era, high performance
embedded applications are increasingly using complex out-of-order
superscalar embedded processors to meet performance goals.
Examples of such embedded processors include the NEC’s VR5500
and VR77100 Star Sapphire [6], and the IBM PowerPC 750FX [7]
processors. Technology scaling into the ultra deep submicron
(UDSM) region has allowed hundreds of millions of gates to be
integrated onto a single chip. Designers thus have ample silicon
budget to add more processor resources (e.g., increasing register file
size, reorder buffer size, etc) in order to exploit application
parallelism and improve performance. However, restrictions with the
power budget and practically achievable operating clock frequencies
act as limiting factors that prevent unbounded increases in processor
resource sizes. Increasing register file (RF) size for instance, increases
its access time, which reduces processor frequency, since access times
to the multi-ported RF is one of the most critical timing factors that
determines the achievable processor operating frequency.
In this paper, we present a novel technique for dynamically resizing

the RF (L2MRFS) which in tandem with dynamic frequency scaling
(DFS) significantly improves the performance and reduces energy-
delay product for embedded processors. Our approach exploits L2
cache misses, adaptively reducing RF size during the period when
there is no pending L2 cache miss, and using a larger RF during the
L2 cache miss period. To enable single cycle access during RF
resizing, the processor frequency is dynamically scaled. Such a
dynamic frequency scaling (DFS) should be done fast, otherwise it
can negatively impact performance during dynamic RF resizing. In
our studied processor, IBM PowerPC 750FX, DFS is done in
effectively zero cycle using a dual PLL architecture [11]. The RF size
adaptation is realized using a circuit modification scheme that comes
with minimal hardware modification, unlike costly banking or
clustering techniques. Experimental results show that L2MRFS
noticeably improves performance and also significantly reduces
energy-delay product for out-of-order embedded processers.

2. RELATED WORK
There has been a lot of research that has proposed altering the
structure of the register file (RF) for improving performance. One set
of techniques uses localities of communication to split the
microarchitecture into distributed clusters, each containing a subset of
the RF. [1]-[2]. A critical issue in the design of such systems is the
heuristics used to map instructions to clusters. These schemes have
the potential to scale to larger issue widths but require complex inter-
cluster control logic to map instructions to clusters and to handle
inter-cluster dependencies.
Alternatively, other approaches retain a centralized microarchitecture,
but partition the processor units such as the RF [3]-[4] to reduce
access time and energy dissipation. Partitioning the RF into multiple
banks for instance reduces the ports on the partitions, which reduces
the pre-charging and sensing times and the related energy dissipation.
But these reductions come at the cost of value multiplexing and port
conflict problems. The major drawback of all these banking
techniques in general is in the complexity that speculation adds and
more specifically the complexity they introduce on handling the
coherency in register caches and banking conflicts. This added
complexity becomes even more critical for embedded processors that
work in resource-constrained environments.
None of the above schemes exploit the L2 cache misses for dynamic
register file resizing. The technique that comes closest to our work is
[5], which performs early register de-allocation based on L2 misses to
improve performance. However, such a scheme increases complexity
since it requires additional resources such as bit vectors to identify the
sources and the destinations of the load-dependent instructions,
additional bits in the ROB and possibly a backup register file to store
de-allocated values. In contrast, we propose a much simpler
architecture and circuit level approach that dynamically adapts the RF
size on L2 cache misses to achieve significant performance
improvements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2008, June 8–13, 2008, Anaheim, California, USA.
Copyright 2008 ACM 978-1-60558-115-6/08/0006…$5.00.

68

5.3

3. MOTIVATION FOR INCREASING RF SIZE
Consider the case where during processor execution, a long latency
L2 cache miss occurs. The processor executes some independent
instructions but eventually ends up becoming stalled [12]. When a
cache miss occurs, the load instruction that caused the L2 miss stays
on top of the reorder buffer (ROB) and doesn’t allow the subsequent
instructions to be committed. As a result, the subsequent instructions
occupying the ROB and RF cannot be released until the miss returns.
This gradually increases ROB and RF occupancy, and reduces the
processor issue rate. Due to the long service time, either the ROB or
RF can completely fills up with subsequent instructions and the
processor ends up being stalled until the miss is serviced. The same
scenario occurs for the load queue (LQ), store queue (SQ) and
instruction queue (IQ) – the subsequent dependent instructions to the
load with a miss cannot be issued due to data dependency. Such
instructions reside in the IQ until the miss returns.
Given the long cache miss service time, the above scenario can
happen quite frequently. To estimate the frequency of stalls due to L2
cache misses, we explored the PowerPC 750FX architecture [7] with
a separate IL1 (level 1 instruction cache) and DL1 (level 1 data cache)
of 32KB with access time of 2 cycles and a unified L2 (level 2 cache)
of size 256KB with an access time of 12 cycles. The size of ROB, IQ
and RF was kept as 16, 8 and 24 respectively, and the miss penalty of
accessing the main memory was 60 cycles.

0%
5%

10%
15%
20%
25%
30%
35%
40%

ap
si

bz
ip2

cr
af

ty
eo

n

eq
ua

ke ga
p

gz
ip

lu
ca

s
m
es

a
mgr

id

pa
rs

er

six
tra

ck

wup
wis

e

av
er

ag
e

Figure 1. Relative processor stall period due to L2 cache miss

In Figure 1 we report how often the entire processor is stalled due to
L2 cache misses. As the results indicate, the entire processor pipelines
stalls by up to 40% of the program execution time. The average is
almost 15%. The large idle period reported in Figure 1 impacts the
processor performance significantly. One simple solution to reduce
the occurrence of such an idle period is to increase the size of
processor resources such as the RF, IQ, ROB and etc. With larger
resources it is less likely that these resources will fill up completely
during the L2 cache miss service time and potentially improve
performance. It should be noted that the sizes of these resources have
to be scaled up together; otherwise the non-scaled ones would become
a performance bottleneck.

4. IMPACT OF INCREASING RF SIZE
While increasing the size of RF, (as well as ROB, LQ and IQ) can
potentially increase processor performance by reducing the
occurrences of idle periods, it has a critical impact on the achievable
processor operating frequency. This is specifically the case for the RF,
the size of which is a limiting timing factor that determines the
maximum operating frequency of a processor as discussed in several
other works [1] [3] [5]. Increasing the size of the RF increases its
access time. This is mostly due to an increase in the length of the
bitline. Figure 2 shows the delay breakdown among the various
components of the RF, for 24, 32 and 48 entry RF configurations.
Results are shown for a single read operation, with delays calculated
using a modified version of CACTI4 [8]. A clear trend seen in this
figure is the significant increase in bitline delay when the size of the
RF increases. This can be explained as follows. The signal
propagation delay of the bitline is relative to its equivalent

capacitance. The equivalent capacitance on the bitline is Ceq = N *
diffusion capacitance of pass transistors + wire capacitance (usually
10% of total diffusion capacitance) where N is the total number of
rows. As the number of rows increases the equivalent bitline
capacitance also increases. Since the propagation delay on the bitline
is relative to RCeq, the propagation delay approximately increases with
the number of rows. The propagation delay for the remaining RF
components increases only slightly with an increase in RF size, as
shown in the figure.

0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55

RF-24 RF-32 RF-48

de
la

y
(n

s)

input driver decoder wordline
bitline sense_amp output driver

Figure 2. Breakdown of RF component delay with increasing size
It is thus clear that increasing RF size increases its access time mostly
due to increase in the bitline delay. A similar increase in access time
occurs for the ROB and IQ. As a result, the achievable operating
frequency of the processor is reduced when resource sizes are
increased. Note that it is possible to apply banking or clustering
techniques to improve RF access time, as has been proposed for high
performance processors [3]-[4]. However banking or clustering the
RF is a costly solution, due to the significant complexity that is
introduce in handling banking conflicts and coherency in RF banks.
Such complexity can be prohibitive, especially in the resource
constrained environments in which embedded processors operate.

Table 1. Reduction in clock freq with increasing resource size

Processor Configuration Baseline Conf_1 Conf_2
RF size 24 32 48
ROB size 16 24 32
IQ size 8 12 24
RF access time (ns) 1.67 1.76 1.92
Operating Freq (MHz) 595 568 520

4.1 Static Register File Sizing
In order to study the impact of statically increasing the size of the RF
(and also ROB and IQ), we consider three different processor
configurations, as shown in Table 1. The baseline configuration
shown in the table has a 595 MHz operating frequency. Conf_1
represents an intermediate configuration, with the RF, ROB and IQ
upsized to 32, 24 and 12 entries, respectively. Using a modified
version of CACTI4 [8], the access time for RF is found to increase to
1.76 ns. As a result, the operating clock frequency for the processor
cannot exceed 570 MHz for this configuration. The Conf_2 represents
a configuration in which resources are upsized aggressively and the
achievable operating clock frequency is reduced further to 520 MHz.
Figure 3 shows the performance in terms of IPC for the different
configurations described above (normalized to the baseline
configuration), while operating at their maximum achievable
operating frequency. Figure 4 provides more insight on the relative
idle period processor stalls due to L2 cache misses for the different
configurations.
From Figure 3 it can be seen that in all cases, increasing the size of
resources increases the IPC. Also the results in Figure 4 verify that
increasing resources can potentially reduce the occurrences of idle
time in the processor due to L2 cache misses. However, increasing the
resources size, while effective in increasing IPC, causes the processor

69

to run slower (from 595MHz down to 568 and 520 MHz, as reported
in Table 1).

0.90

0.95
1.00

1.05
1.10

1.15
1.20

ap
si

bzip
2

cr
aft

y
eo

n

eq
ua

ke ga
p

gz
ip

luca
s

mes
a

mgrid

par
se

r

six
tra

ck

wup
wise

av
er

ag
e

Baseline Conf-1 Conf-2

Figure 3. Performance for different processor configuration in
terms of IPC normalized to the baseline configuration
Since the three configurations discussed above operate at different
clock frequencies, we must take into consideration their maximum
achievable operating clock frequency in addition to their IPC for
performance comparison. Accordingly, in Figure 5 we report the
execution time for the three designs. Interestingly in most benchmarks
we observe the execution time increases with larger resource sizes. In
other words, for the trade-off between having larger resources (and
hence reducing the occurrences of idle period due to L2 cache misses
as reported in Figure 4) and lowering the clock frequency, the latter
becomes more important and plays a major role in deciding the
performance. On average there is almost 0.5% performance
degradation for intermediate configuration (Conf_1) compared to the
baseline. The aggressive configuration (Conf_2) results in
performance degradation by up to 10% and on average 4%, compared
to the baseline.

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%

ap
si

bz
ip2

cr
af
ty

eo
n

eq
ua

ke ga
p

gz
ip

lu
ca

s
m

es
a

m
gr

id

pa
rs

er

six
tra

ck

wup
wise

av
er

ag
e

Baseline Conf_1 Conf_2
Figure 4. Relative idle period processor stalls due to L2 cache
misses for different configurations.

0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12

ap
si

bz
ip2

cr
aft

y
eo

n

eq
ua

ke ga
p

gz
ip

lu
ca

s
m
es

a
m
gr

id

pa
rs

er

six
tra

ck

wup
wise

av
er

ag
e

Baseline Conf-1 Conf-2
Figure 5. Normalized execution time for different configs with
reduced operating frequency compared to baseline architecture

5. DYNAMIC REGISTER FILE RESIZING
Based on the observations made in the previous section, we realize the
need for a dynamic RF scaling based on L2 cache misses, that allows
the processor to use smaller RF (having a lower access time) during
the period when there is no pending L2 cache miss (normal period)
and a larger RF (at the cost of having a higher access time) during the
L2 cache miss period. Note that the assumption is that the RF size
decides the maximum achievable operating clock frequency both in its

typical size or when it is being resized. During the normal period, RF
is kept at its typical size (24 entries) and as such it can operate at the
baseline operating frequency (almost at 595 MHz from Table 1).
During the cache miss period we scale up the RF size, which results
in an increase in its access time. Finally, the RF size is returned to its
normal size once the L2 cache miss has been serviced and the scaled
up part has no more data. We refer to this technique as L2 miss driven
register file scaling (L2MRFS).
Note that to be able to satisfy accessing the RF in one cycle we need
to reduce the operating clock frequency when we scale up its size.
Such dynamic frequency scaling (DFS in brief) needs to be done fast,
otherwise it could have a negative impact on the performance benefit
of dynamic RF resizing. For this reason we need to use a PLL
architecture capable of applying DFS with the least transition delay.
Our studied architecture, the IBM PowerPC 750FX, has such a PLL
architecture. PowerPC 750 [7] [11] uses a dual PLL architecture
which allows fast DFS with effectively zero latency (one processor
clock cycle is being skipped). With the benefit of such PLL
architecture, there is almost no transition overhead associated with
changing the operating clock frequency [11] when resizing the RF.
It should also noted that this technique has a fairly simple
implementation and does not add significant complexity to the
embedded processor pipeline, since the scheduler in embedded
processors already keeps track of miss load instructions in L2 caches.
5.1 Circuit Modification
In this section we propose circuit modifications to assist the
architectural L2MRFS technique. As in the previous section, we
assume that RF size decides the critical path before and after resource
resizing. From Table 1, increasing RF size results in an access time
greater than the baseline RF access time. The challenge here is to
design the RF in such a way that its access time is dynamically being
controlled such that at typical size (24 entries) it has the baseline 1.67
ns access delay and at its scaled up size, 32 and 48, it has 1.76 ns and
1.92 ns access delay respectively.
Figure 6 shows our proposed solution which requires a minimal
modification to a unified RF (unlike more complex banking schemes).
Among all RF components, the bitline delay increase is responsible
for the majority of RF access time increase (for instance this is 80%
for a 48 entry RF compare to 24 entry RF as reported in Figure 2).
This is due to the fact that bitline delay is decided by its equivalent
capacitance which in turn is proportional to the number of RF entries
(rows).

Figure 6. Proposed circuit modification for RF

Accordingly, for the Conf_2 architecture to be able to achieve an
access delay close to the baseline RF access delay for a 48 entry RF
when only 24 of its entries are being used, we need to reduce the
equivalent capacitance on the bitline by eliminating the diffusion
capacitance of the 24 unused entries. For this purpose, the RF is
divided into two segments of 24 entries each which are connected
through pass transmission gates as shown in Figure 6. This allows the

70

upper segment bitline to become isolated from the lower segment
bitline if the pass gate is off. It should be noted that all other
components such as the bitline, sense-amp, etc. are shared for both
structures. During the normal period the upper segment is power
gated and the transmission gate is turned off to isolate the lower
bitline segment from the upper bitline segment. Only the lower
segment bitline is pre-charged during this period. Since the upper
bitline segment is floating, the bitline capacitance during normal
period is decided by the lower segment bitline. As such, the bitline
delay in this case remain close to the bitline delay of a 24-row register
file (the only difference is the delay added by the source capacitance
of the pass gate, which is negligible).
In addition, we need to be able to detect when the upper segment is
empty (for downsizing at the end of cache miss period when the
added segment is empty). To do this, we have augmented the upper
segment with one extra bit per entry. This bit is set when an entry
(register) is taken and is being reset when the entry is released. By
ORing these bits we can detect when the segment is empty. Since the
remaining components of RF delay change very slightly, the RF
access delay remains close to that for a 24-row RF when the upper
segment is isolated. The delay of accessing the RF while the upper
segment is isolated is 1.70 ns, which is only slightly larger than for a
baseline 24-row register file (1.67 ns). When the upper segment is
active and the RF has its full size, its access requires 1.77 ns for
Conf_1 and 1.93 ns for Conf_2.

(a)

0%
2%
4%
6%
8%

10%
12%
14%
16%

ap
si

bz
ip2

cra
fty eo

n

eq
ua

ke gap gz
ip

luca
s

mes
a

mgr
id

par
se

r

six
tra

ck

wupw
ise

av
er

ag
e

DYN_Conf_1 DYN_Conf_2

(b)

0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

ap
si

bzip
2

cr
aft

y
eo

n

eq
ua

ke ga
p

gz
ip

luca
s

mes
a

mgr
id

pa
rs

er

six
tra

ck

wup
wise

av
er

ag
e

DYN_Conf_1 DYN_Conf_2
Figure 7. Experimental results: (a) normalized performance
improvement for L2MRFS (b) normalized energy-delay product
compare to conf_1 and conf_2

6. RESULTS
In this section we present experimental results to show how the
dynamic RF resizing approach impacts processor performance. We
use SPEC2K benchmarks executed with reference data sets, and
compiled with the O4 option using the Compaq compiler. The
architecture was simulated using an extensively modified version of
MASE (SimpleScalar 4.0) [9]. The benchmarks were fast–forwarded
for 500 million instructions, then fully simulated for 1 billion
instructions. We used a modified version of CACTI4 [8] for
estimating access time for the RF. For estimating energy consumption
of our adaptive technique we integrate Wattch [10] into our simulator
infrastructure. We used process parameters for a 70nm process at
595MHz with 1V supply voltage.

In Figure 7(a) and (b) we report the result of using the proposed
L2MRFS technique. In Figure 7(a) we report the performance
improvement in terms of normalized execution time when we apply
L2MRFS to Conf_1 (referred to as DYN_Conf_1) compare with
Conf_1 and for DYN_Conf_2 compare to Conf_2. From Figure 7 (a), a
performance improvement can be seen across all benchmarks for
DYN_Conf_1 when normalized to Conf_1; the performance
improvement is almost 6% on average. The performance
improvement for DYN_Conf_2 is even more, up to 14% for crafty and
11% on average.
In Figure 7 (b) we report the energy-delay products of DYN_Conf_1
and DYN_Conf_2 compared to Conf_1 and Conf_2 respectively. As
can be seen for all the benchmarks our dynamic RF resizing technique
results in overall reduction in energy-delay product. The average
energy-delay is reduced by 3.5% and 7% respectively for
DYN_Conf_1 and DYN_Conf_2 compare to Conf_1 and Conf_2.
Finally, it should be noted that while DYN_conf_2 delivers lower
energy-delay and higher performance in terms of execution time, it
requires more silicon budget and dissipates more power compared to
DYN_Conf_1 (results are not reported due to space limitation). This in
fact is due to having larger resources such IQ, RF and ROB.

7. CONCLUSION
In this paper, we presented a novel technique for dynamically resizing
the RF (L2MRFS) which in tandem with dynamic frequency scaling
(DFS) significantly improves the performance and reduces energy-
delay product for embedded processors. Our approach exploits L2
cache misses, adaptively reducing RF size during the period when
there is no pending L2 cache miss, and using a larger RF during the
L2 cache miss period. The RF size adaptation is realized using a
circuit modification scheme that comes with minimal hardware
modification, unlike costly banking or clustering techniques. Our
extensive experimental results have shown that L2MRFS noticeably
improves performance (11% on average) and also significantly
reduces energy-delay product (7%) for out-of-order embedded
processers.

8. REFERENCES
[1] A. Terechko, M. Garg, H. Corporaal, “Evaluation of speed and

area of clustered VLIW processors”, VLSI Design, 2005.
[2] O. Ergin, et al., “Increasing Processor Performance through Early

Register Release”, in ICCD 2004.
[3] J.H. Tseng et al., “Banked Multiported Register Files for High-

Frequency Superscalar Microprocessors”, ISCA 2003.
[4] R. Balasubramonian, et al. “Reducing the complexity of the

register file in dynamic superscalar processors.” in MICRO-34,
2001.

[5] J. Sharkey and D. Ponomarev, “An L2-Miss-Driven Early Register
Deallocation for SMT Processors”, in ICS 2007.

[6] Stijn Eyerman, et al. “Efficient Design Space Exploration of High
Performance Embedded Out-of-Order Processors”, in DATE
2006.

[7] IBM Corporation. PowerPC 750 RISC Microprocessor Technical
Summary. www.ibm.com.

[8] “Cacti4,” http://quid.hpl.hp.com:9081/cacti/.
[9] SimpleScalar4 tutorial, SimpleScalar LLC.

http://www.simplescalar.com /tutorial.html
[10] D. Brooks, V. Tiwari and M. Martonosi. “Wattch: A framework

for architectural-level power analysis and optimizations.” in ISCA
2000.

[11] S. Geissler et al., “A low-power RISC microprocessor using dual
PLLs in a 0.13/spl mu/m SOI technology with copper
interconnect and low-k BEOL dielectric”, in ISSCC 2002.

[12] H. Li et al., “VSV: L2-miss-driven variable supply-voltage
scaling for low power.” in MICRO, 2003.

71

