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ABSTRACT
As computer systems increasingly focus on balancing the perfor-
mance and power efficiency of software applications together with
temperature variations of the machine, they need to understand how
software applications utilize the various architecture components
differently. This paper develops a power and temperature model-
ing framework to provide such timely feedback, which can then
be used to support a dynamic optimization system to attain bet-
ter energy efficiency for applications. In particular, we present a
framework that combines McPAT [17], a cycle accurate architec-
ture simulation model, with runtime hardware performance counter
statistics, to attain component-wise power consumption breakdown
of applications while running at GHz speed. Our framework is able
to consistently achieve 98% accuracy when compared to the actual
system-level power consumption measured using a real-time power
meter [1]. Finally, we present a preliminary study to demonstrate
the potential of using our framework to support the optimizations
of applications for better energy efficiency.

Categories and Subject Descriptors
I.6.5 [SIMULATION AND MODELING]: Model Development

General Terms
Performance, Measurement, Experimentation

Keywords
application categorization, machine learning

1. INTRODUCTION
As technology scaling, process variation, and thermal problems

start to severely constrain both the design and utilization of Chip
Multiprocessors (CMPs), computer systems need to balance the
often-conflicting concerns of manageable power, temperature, and
performance. To attain high performance while constrained by a
power or temperature budget, these systems need to adequately rea-
son about the management and optimization of applications, and
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thereby they need timely feedback of how each application dynami-
cally utilizes the various hardware components . While many CPUs
nowadays include integrated circuit level sensors to provide timely
measurement of such statistics, only one sensor can typically be
accommodated per core due to its physical size. Core level or pro-
cessor level measurements, however, are often insufficient when
reasoning about application-level power behavior. In particular, to
identify potentials of improving energy efficiency through redistri-
bution of hardware activity, an optimization system needs a a suffi-
ciently detailed breakdown of the power trade-offs among hardware
components, e.g., the distribution of dynamic power consumptions
illustrated in Fig 1, which are commonly estimated through archi-
tecture level power simulations.

Figure 1: Dynamic Power Consumption Breakdown of Sparse Ma-
trix Vector Multiplication code on Intel Sandy Bridge Machine es-
timated using our framework

Existing architecture level simulation models, e.g., CACTI [25],
Wattch [5], and McPAT [17], provide detailed breakdown of the
interactions between hardware components on both existing and
emerging architectures. However, they are typically connected with
cycle accurate simulators such as GEM5 [4] and PTLsim [28],
which require applications to be compiled into a restrictive set of
machine-level instructions, and an overly long time is often re-
quired to simulate a non-trivial application. On the other hand,
pure statistics-based modeling approaches [22, 23, 27] use runtime
hardware usage statistics to estimate the overall power consump-
tion of microprocessors but cannot provide a sufficiently detailed
breakdown of the power consumption.

This paper aims to adapt cycle-accurate simulation models for
power and temperature to provide accurate timely component-wise
breakdown of application behaviors while running at GHz speed.
In particular, we adapted McPAT [17], an integrated framework for
modeling power, area, and timing, to use runtime hardware per-
formance counter statistics as input to compute component-wise
breakdown of application-level dynamic power consumptions. The
dynamic power output from McPAT is then combined with HotSpot,
a thermal model [10], to estimate component-wise temperature of
the microprocessor when running the applications. Such a model
not only provides accurate and detailed feedback of the power ef-



ficiency tradeoffs of applications in a timely fashion, it also allows
future microprocessor design to better address the performance needs
of existing applications.

Fig 2 illustrates the workflow of our overall framework, which
includes five key components. The Activity Estimation component
estimates McPAT activity factors, specifically runtime statistics of
hardware components, from the cumulative hardware performance
values collected at runtime when evaluating an application. These
activity factors are then used as input to McPAT to estimate the dy-
namic power consumption of various hardware components. Then,
a set of calibration formulas, generated using the Offline calibration
component, are used to systematically correct any inaccuracies of
the McPAT modeling output, by the Result Calibration component.
Finally, the calibrated dynamic power breakdown is used as input
to the HotSpot component, which reports component-wise temper-
ature breakdown of the microprocessor components.

Note that while four of the components: Activity Estimation,
McPAT, Result Calibration, and HotSpot, are invoked every time
an input application needs to be monitored or analyzed, the Offline
Calibration component is invoked only once when installing Mc-
PAT and HotSpot on a targeting machine. The calibration is needed
to increase the accuracy level of McPAT, which has a published er-
ror rate of 22.61% [17], so that the modeling output are accurate
enough to support runtime application-level optimizations. Since
different applications can be mis-modeled by McPAT in dramati-
cally different fashions, our offline calibration process uses a large
number of micro benchmarks to systematically categorize applica-
tion behaviors into different groups based on their runtime charac-
teristics. A distinct calibration formula is then generated via re-
gression analysis for each group. Once the calibration formulas are
generated, they can be used by the Result Calibration component
to quickly correct all errors from the original McPAT output. Our
framework is able to achieve 98% accuracy when compared with
the power consumption readings reported by a power meter [1].

The contributions of the paper include the following.

• We present a framework for accurately modeling the dynamic
power consumption and temperature implications of appli-
cations in a timely fashion, by incorporating runtime perfor-
mance statistics with McPAT [17] and HotSpot [10].
• We present a systematic offline calibration approach that can

be used to increase the accuracy of the abstract modeling re-
sults by McPAT and other architecture simulation models.
• We present a use case study demonstrating the potential of

using our modeling framework to support optimizations of
applications to achieve better energy efficiency.

The rest of the paper is organized as follows. Section 2 dis-
cusses how McPAT activity factors are estimated from hardware
counter values. Section 3 presents our calibration process. Sec-
tion 4 describes the estimation of component-wise temperature us-
ing HotSpot. The accuracy of the power and thermal models are
validated in Section 6. Sections 7 and 5 demonstrates a use case
and discusses the generality of our framework. Finally, Section 8
discusses related work, and conclusions are drawn in Section 9.

2. ESTIMATING ACTIVITY FACTORS
To model the dynamic power consumed by each hardware com-

ponent, McPAT [17] takes an input activity factor, which repre-
sents the statistics of utilizing the component, and then computes
the overall power consumed by the component using equation (1).

P = Pdynamic + Pshort−circuit + Pleakage

= α · C · Vdd · δV · fclk + Vdd · Isc + Vdd · Ileak (1)

Figure 2: Modeling Workflow

Here Pdynamic is the dynamic power used in charging and dis-
charging the capacitive loads when the circuit switch states, Pshort−

circuit is the power consumed by momentary short through the
pull-up and pull-down devices, and Pleakage is the power con-
sumed due to leakage current through the transistors. Pdynamic

is calculated by multiplying the activity factor α of the component
with the total load capacitance C, supply voltage Vdd, voltage swing
during switching δV , and clock frequency fclk. The activity factor
α changes as applications vary their component utilization patterns.

To estimate McPAT activity factors while running the applica-
tion, all the relevant hardware counters need to be monitored simul-
taneously. Table 1 shows our mapping between hardware counter
statistics and a subset of the McPAT activity factors for an Intel
Sandy Bridge microprocessor.

McPAT input Estimation using Hardware Counters
total_cycles PAPI_TOT_CYC
total_instructions UOPS_DISPATCHED:CORE
int_instructions total_instructions-PAP_FP_INS-PAPI_BR_INS

L2.read_misses L2.total_miss∗all_loads
(all_stores+allloads)

L3.read_accesses PAPI_L3_TCR

L2.read_misses L3.totalmiss∗all_loads
(all_stores+all_loads)

Table 1: McPAT input estimation from hardware counters

3. CALIBRATING MCPAT RESULT
Once the activity factors of the various hardware components are

estimated, McPAT uses internal models to compute the breakdown
of their power consumptions. However, the output from McPAT
may have a high error rate due to the following reasons.

• McPAT considers only a subset of the hardware components,
specifically instruction fetch unit, renaming unit, load store
unit, memory management unit, execution unit, L2 cache,
L3 cache and buses. Consequently, the power consumed by
applications that intensively access other components, e.g.,
DRAM, vector unit, may be severely underestimated.
• McPAT requires precise values for a number of power con-

tributing factors. Since not all parameters are published by
the CPU manufacturers, errors in their estimations contribute
to errors in the final McPAT output.
• We estimate McPAT activity factors from hardware counter

statistics. However, some activity factors, e.g., L3.read_misses,
don’t have a one-to-one mapping to the available counters
and therefore have to be approximated, e.g., by multiplying
total cache misses PAPI_L3_TCM with the load ratio.

Our framework aims to identify the sources of inaccuracies in the
McPAT output and then correct such errors through a set of cali-
bration formulas, illustrated in table 2. Since the actual errors in
McPAT estimation depends on the hardware components involved
and their level of intensities, different formulas are needed for ap-
plications that use the hardware components at different levels. The



following first presents our offline calibration process, which sys-
tematically generates a set of calibration formulas for different ap-
plication behaviors when installing McPAT on a targeting machine.
Section 3.2 then describes how to use these formulas to correct the
McPAT dynamic power estimation of input applications.

3.1 Offline Calibration Formula Generation
A challenge of our offline calibration is to identify key patterns

of hardware resource utilizations and then generate a distinct cali-
bration formula for each of the identified patterns. To identify com-
mon patterns, we have generated a large set of micro-benchmarks
that access the hardware components in different ways. We then
identify common group behaviors from these micro-benchmarks
and derive a set of criteria to effectively categorize general-purpose
applications based on their hardware counter statistics. Finally, a
distinct calibration formula is generated for each group via regres-
sion analysis to correct power consumption estimations by McPAT.

3.1.1 Generating Micro-benchmarks
To estimate how different activity levels of the various hardware

components can impact the error rates of McPAT dynamic power
output, we automatically generate a large set of micro-benchmarks,
which access hardware components with different level of intensi-
ties. These micro-benchmarks cover activities in the floating point
unit, vector unit, L2 and L3 cache, DRAM, among others.

Algorithm 1 Algorithm for generating micro-benchmarks
Input
components : targeted hardware components and the range of their intensity
levels to emulate
Output
A set of generated micro-benchmarks
for each config ∈ generate_configurations(components) do

instructions = select_instructions(config)
block = generate_stmt_block(instructions)
loop = generate_loop(block)
generate_code(loop)

end for

Algorithm 1 shows our steps for generating micro-benchmarks,
by iterating over the entire configuration space entailed by the range
of intensity levels for each hardware component. For each con-
figuration, the select_instructions function selects a set of instruc-
tions, e.g. floating point, memory, integer, and branch instruc-
tions, to access various hardware components, by considering the
latency of each instruction to ensure that the desired activity inten-
sity of the targeted components can be achieved. Then, the gen-
erate_stmt_block function takes the selected instructions as input
and constructs a block that schedules the selected instructions to
achieve the target intensity level for each hardware component, by
introducing flow dependence among the instructions that operate
on the same components. Finally, the generate_loop function gen-
erates a loop that iterate over the block of instructions a sufficient
number of times to ensure each micro-benchmark runs at least for a
few seconds. Listing 1 shows a sample micro-benchmark generated
using our algorithm.

Listing 1: Example micro-benchmark
1 void microbench ( ) {
2 long long i i , j j ; s i z e _ t s = sizeof (double )∗AR_SZ ;
3 v a r 1 = (double∗) m a l loc ( s ) ; va r2 = (double∗) m a l lo c ( s ) ;
4 v a r 3 = (double∗) m a l loc ( s ) ; va r4 = (double∗) m a l lo c ( s ) ;
5 v a r 5 = (double∗) m a l loc ( s ) ; va r6 = (double∗) m a l lo c ( s ) ;
6 for ( i i =0 ; i i < REPEAT ; i i ++)
7 for ( j j =0 ; j j < AR_SZ ; j j ++) {
8 v a r 6 [ j j ] = va r1 [ j j ] − va r2 [ j j ] − va r3 [ j j ]
9 ∗ va r4 [ j j ] ∗ va r5 [ j j ] ;

10 } } }

3.1.2 Categorizing Application Behavior
After generating micro-benchmarks and collecting their hard-

ware counter statistics by evaluating them on the target machine,
our next step correlates the different behavior patterns represented
by the micro-benchmarks with the actual error rates of McPAT
power models. This is done by categorizing the micro-benchmarks
into different groups, so that a different correcting formula can be
derived for each group. In particular, for each micro-benchmark,
we compare the dynamic power modeling output of McPAT with
the actual dynamic power consumed by the micro-benchmark on
the physical machine, measured using a Watts up? power meter [1]
connected with the machine. Then, based on the correlation be-
tween hardware counter statistics and the accuracy level of McPAT
modeling output, we construct a decision tree, illustrated in Fig 3,
to categorize arbitrary user applications based on their intensity lev-
els of utilizing the various hardware components.

Algorithm 2 Identify hardware performance counters
Input
hpc : hardware-counter statistics from evaluating each micro benchmark.
thresHE : whether a hardware counter and McPAT error is strongly correlated
thresHH : whether two hardware counters are correlated
diffs: difference between McPAT output and power meter result for each benchmark
Output
counters: a list of hardware counters used for categorization
Step 1:
for each hardware counter h used in McPAT modeling do

corr(h) = compute_correlation (hpc[h], diffs)
end for
Step 2: counters = ∅
for each hardware counter h in the descending order of corr(h) do

if |corr(h)| > thresHE and ∃ c ∈McPAT _counters,
|compute_correlation(hpc[h], hpc[c])| < thresHH then
counters = counters ∪ {h}

end if
end for
return counters

Algorithm 2 shows the steps we use to identify relatively in-
dependent performance counters whose activity levels have strong
correlations with the accuracy of McPAT modeling results. In par-
ticular, step (1) computes the Pearson product-moment correlation
coefficient (saved in variable corr) for each performance counter
used in the McPAT modeling in relation to the overall discrep-
ancy between McPAT modeling output and power-meter reported
results. Then, step (2) of the algorithm selects independent counters
that have correlation coefficients greater than thresHE , a threshold
we define to indicate whether there is a strong correlation between
a counter and McPAT accuracy level. The independence of the
selected performance counters are enforced by selecting counters
in the descending order of their correlation coefficient with Mc-
PAT output and by selecting only counters that have no correlation
(|coefficient| ≤ thresHH ) with other already selected counters.
We set thresHE = 0.6 as the threshold for strong correlation and
thresHH = 0.2 as the threshold for weak or no correlation [2].

When applying this algorithm to calibrate McPAT for our Intel
Sandy Bridge machine, the activity levels of four hardware coun-
ters, DRAM accesses, floating point instructions, vector unit in-
structions, and backend stall cycles, have been identified to strongly
correlate with the accuracy of McPAT output and are independent
of each other. In particular, DRAM accesses and vector instructions
are not directly modeled by McPAT, so high activity levels in these
components imply a greater portion of the overall dynamic power
consumption being omitted in the McPAT output. The high cor-
relation between floating point instructions intensity and McPAT
accuracy level is a result of our approximation of McPAT floating
point unit accesses using the floating point instructions hardware



Figure 3: Decision tree for application categorization on Intel Sandy Bridge machine. Runtime statistics of the Hardware performance
counters are normalized by total cycles. Each leaf represents an application behavior group.

Group Stall DRAM FP Vector Calibration Formula

3 < 0.18 < 0.01 ≥ 0.18 < 0.2

− PAPI_FP _INS ∗ 1.11 + perf :: L1 − DCACHE − LOADS ∗ 131.43 − perf :: DTLB − LOADS ∗ 54.89

− MEM_UOPS_RETIRED : ALL_LOADS ∗ 80.39 − PAPI_BR_CN ∗ 3.26 + UOPS_RETIRED : ANY ∗ 0.66

+ perf :: PERF _COUNT _HW _STALLED_CY CLES_FRONTEND ∗ 0.56

15 ≥ 0.18 ≥ 0.01 ≥ 0.18 < 0.2

− PAPI_FP _INS ∗ 4.32 − OFFCORE_RESPONSE_0 : ANY _RFO ∗ 165.95 + PAPI_L2_TCW ∗ 541.6

+ MEM_UOPS_RETIRED : ALL_LOADS ∗ 18.9 − PAPI_TLB_DM ∗ 118 − −PAPI_L3_TCW ∗ 318.8

+ PAPI_BR_INS ∗ 27.3 − perf :: PERF _COUNT _HW _STALLED_CY CLES_FRONTEND ∗ 5.43

− perf :: L1 − DCACHE − LOADS ∗ 9.14 + PERF _COUNT _HW _CACHE_L1I ∗ 1977.2PAPI_V EC_DP ∗ 39.5

Table 2: Calibration Formulas for application behavior groups (all hardware performance counters are normalized by total cycles). The two
groups correspond to two leaves on the decision tree (Figure 3).

counter, as no existing counter can be directly used to count float-
ing point unit accesses. Similarly, the high correlation of backend
stall cycles is a result of our approximation of the instruction win-
dow statistics using the backend stall cycles performance counter.

To categorize application behavior based on the intensity lev-
els of the selected hardware counter utilizations, we manually in-
spected the impact of various intensity levels on the accuracy of
McPAT output to find the breaking points where the accuracy of
output changes dramatically. Figures 4a, 4b, 4c and 4d show
the correlation between McPAT accuracy and the intensity levels
of DRAM accesses, floating point instructions, vector instructions,
and backend stalls respectively. From the graphs, increases in the
utilization intensity level of each hardware counter in turn results
in a linear change in McPAT output accuracy until a breaking point
which begins a line with a significantly different slope. The break-
ing points identified (marked with red vertical lines in the graph)
for the selected hardware performance counters: DRAM Accesses,
Floating Point Instructions, Vector Instructions, and Backend stall
cycles are 0.01, 0.18, 0.2, and 0.18 respectively.

These breaking points are then combined together to form a de-
cision tree, illustrated in Figure 3, which will be used to catego-
rize an arbitrary unknown input application into one of the 16 pre-
determined behavior patterns from its runtime hardware statistics.
Note that all the counter statistics are normalized by the total num-
ber of cycles used in application evaluation, so the categorization is
not biased by the duration of the application execution. The deci-
sion tree starts with Backend Stall Cycles, which is at the root of the
tree, followed by DRAM accesses, floating point instructions and
vector instructions. The ordering of the hardware counters within
the decision tree is not significant, as these counters have weak cor-
relation among themselves.

3.1.3 Generating Calibration Formulas
Once the application behavior categorization is complete, a dis-

tinct calibration formula needs to be generated to define the amount
of dynamic power to be added to or subtracted from McPAT out-
put to obtain the actual dynamic power consumed by an applica-
tion. Each formula is a linear combination of the hardware counter

statistics that have strong correlation with the difference between
McPAT output and the actual power consumption when categoriz-
ing our auto-generated micro-benchmarks.

Table 2 illustrates two of the formulas we generated for the In-
tel Sandy Bridge machine for two application groups, 3 and 15,
from the decision tree in Figure 3. Each formula is generated
through two steps: (1) identifying hardware counters whose run-
time statistics are not modeled accurately by McPAT, and (2) iden-
tifying the actual ratios of the hardware counter statistics that are
mis-modeled by McPAT and then using the ratios as coefficients
of the corresponding term in the final calibration formula. The
hardware counters are selected by computing the Pearson product-
moment correlation coefficient of each hardware counter statistics
in relation to the difference between McPAT dynamic power es-
timation and power meter output, and then choosing the counters
that have strong correlation (> 0.6, Salkin [2]) with the difference.
The coefficients of the counters are calculated by applying multi-
variate Ordinary Least Square (OLS), which is a standard method
for identifying unknown parameters in a linear regression model.

Our approach essentially uses regression analysis to generate a
linear combination of the hardware counter statistics to predict the
difference between McPAT dynamic power estimation and power
meter output. Therefore, the correctness of these calibration for-
mulas depends on the validity of the following two hypotheses:
• For each application, a linear combination of its hardware

counter statistics can be used to represent the difference be-
tween McPAT dynamic power estimation and power meter
output. This difference can come from two sources: i) the
hardware components mis-modeled by our adapted McPAT,
the amount of which can be estimated by multiplying activity
factors of each hardware component with their actual ratios
of mis-modeling, and ii) the hardware components currently
not being modeled by McPAT, the amount of which can be
estimated by multiplying activity factors of each hardware
component with the cost of performing the activities. Since
the contribution of both sources can be expressed as a lin-
ear combination of hardware performance counter statistics,
their sum can be represented in a similar fashion.



(a) DRAM accesses (b) FP Instructions

(c) Vector Instructions (d) Backend Stalls

Figure 4: Estimating breaking points for selected hardware counters

• The decision tree constructed by our framework correctly
categorizes applications into groups, so that for each group,
a formula can be used to accurately calculate the difference
between McPAT dynamic power estimation and power meter
output. Our application categorization algorithm identifies
behavior patterns that utilize hardware resources with simi-
lar levels of intensity, so each group would be mis-modeled
by McPAT in a similar fashion. To estimate the accuracy of
our regression analysis, we verified their coefficients of de-
termination (R2), where a coefficient that is close to one in-
dicates the model is accurate, We found R2 > 0.9 for all the
formulas we generated on the Intel Sandy Bridge machine,
indicating the regression analysis is accurate.

3.2 Applying the Calibration Formulas
After generating the set of calibration formulas through Offline

Calibration, these formulas are used by the Result Calibration com-
ponent in Figure 2 to calculate the amount of dynamic power that
need to be added to or subtracted from McPAT modeling output
for an arbitrary input application. In particular, the Result Cali-
bration Component takes two inputs: i) McPAT power modeling
result, and ii) runtime hardware counter statistics collected when
evaluating the application. It then uses the pre-generated decision
tree and calibration formulas to modify the McPAT modeling out-
put and produces a calibrated dynamic power estimation through
the following three steps.

1. Categorize the input application as a member of one of the
pre-generated behavior pattern groups, by navigating a deci-
sion tree (Figure 3) pre-generated by the offline calibration
process, using the runtime hardware performance counter
statistics collected when evaluating the application.

2. Find the calibration formula pre-customized for the selected
group and invoke it using the runtime counter statistics of
evaluating the application as input, to compute the amount
of McPAT power estimation to be adjusted.

3. The McPAT modeling output is modified accordingly, and
the calibrated dynamic power consumption is output.

While the result calibration component is invoked every time an
application is modeled by our framework, it takes minimal time as
it uses pre-generated decision trees and formulas.

4. ESTIMATING TEMPERATURE
As shown in Figure 2, after producing the calibrated power con-

sumption breakdown of an application, our framework uses the
HotSpot thermal model [10] to estimate the temperature of each
hardware component. While modern microprocessors (e.g. In-
tel Sandy Bridge) are now equipped with circuit-level temperature
sensors, only one sensor can be placed per core, limiting them from
measuring the temperature of individual hot spots within the pro-
cessor, an objective targeted by our framework.

To estimate the temperature of a microprocessor, HotSpot [10]
requires a floor plan describing the size and location of all the com-
ponents inside the processor, and the power consumption of each
component in the floor plan. Using these as input HotSpot models
temperature in two phases. First, it calculates the steady state tem-
perature, which represents the initial temperature of the processor
component. Then, for each power trace, it generates the transient
temperature of all the available hardware components defined in
the floor plan. This HotSpot output can be used to improve the ac-
curacy of McPAT leakage power estimation, which depends on the
temperature of the components being modeled, in addition to sup-
porting temperature-aware optimization of application executions.

5. GENERALITY AND EFFECTIVENESS
Our work enables architectural power and thermal models to

guide application optimizations by providing timely feedback of
detailed power consumption and temperature breakdown on real
hardware. We have demonstrated the effectiveness of our approach
using McPAT [17] and HotSpot [10] to model the dynamic power
consumption and temperature respectively on an Intel Sandy Bridge
machine. While our framework currently works with only McPAT
and HotSpot, our approach can be similarly used to adapt other ar-
chitecture power or thermal models to use hardware counter statis-
tics as input and to produce accurate timely feedback to guide appli-
cation level optimizations. To extend our work for a different pow-
er/temperature model or a different machine, the mapping between
the model specific hardware activities and and the machine-specific
hardware counter statistics need to be modified. Further, the offline
calibration component, shown in Figure 2, needs to be invoked to
generate a different decision tree for application categorization and
a different set of calibration formulas. Our current calibration pro-



cess requires manual selection of the hardware counters and identi-
fication of the breaking points of their runtime statistics. However,
machine learning techniques can be used to automate such proce-
dures, which is a subject of our future work.

6. EXPERIMENTAL RESULTS
To validate the accuracy of our calibrated McPAT model, we

compare its modeling output for a variety of computational kernels
and benchmark applications, with the actual dynamic power con-
sumption of the physical machine when running these applications,
measured using a Watts up? Pro power meter [1]1. Similarly, the
temperature output of our adapted HotSpot thermal model is com-
pared with the actual temperature of the processor measured using
an on-chip hardware thermal sensor. The following first introduces
the benchmarks and machines we used to validate our calibrated
models. The results are then discussed in detail.

6.1 Benchmarks and Machine Configuration
We selected seven scientific kernels, including three stencil com-

putations, (jacobi7, jacobi27, and gauss7), three dense matrix com-
putations (gemm, gemv, and ger), and one sparse matrix computa-
tion (SPMV); a library benchmark (LINPACK [7]); two synthetic
benchmarks (WhetStone and DhryStone); and 10 application bench-
marks from NAS [3]. The selection aims to represent a wide vari-
ety of application behaviors in the scientific computing domain,
which are traditionally considered the main target of high perfor-
mance computing but have been increasingly put under the power
and temperature constraints by modern architecture design.

Each benchmark is first compiled using gcc 4.7 with the -O3
optimization flag and then evaluated on a 12-core Intel Xeon E5-
2420 Sandy Bridge-EN 1.9GHz Processor. The psrun utility from
PerfSuite [16], which uses PAPI[18] underneath, is used to collect
the runtime statistics of each benchmark evaluation. The hardware
counter statistics are then used as input to our calibrated McPAT
model, and the McPAT modeling output is compared with the ac-
tual dynamic power consumption of the whole machine measured
using a power meter [1]. When evaluating each benchmark, the
machine is kept idle otherwise, so the dynamic power of the whole
machine equals that from evaluating the benchmark.

We used the on-chip physical thermal sensors inside the Intel
Sandy Bridge processor to validate our thermal modeling results.
Since these sensors can only output temperature of the whole core,
we validated our thermal modeling results only at the core level.

6.2 Calibrated Power Model Validation
For each benchmark, Figure 5 compares its dynamic power con-

sumption estimated by our calibrated McPAT model with that mea-
sured by the power meter and that reported by McPAT without any
calibration. From the graph, the dynamic power output by our cal-
ibrated McPAT model closely matches that reported by the power
meter, with the average error rate about 2% for all the benchmarks.
Note that the power meter itself has a 1.5% measurement error rate,
which roughly matches those of our calibrated power model.

When comparing the power meter output with the power model-
ing output of McPAT before applying the calibration formulas, we
see that our calibration formulas have successfully corrected most
of the mis-predictions by the out-of-the-box McPAT. In particular,
without calibration, the average error rate of the McPAT model-
ing output is about 25.1%, which roughly matches the error rates

1We also collected RAPL coutners present in Intel Sandy Bridge
machine. However, as the experiment did not finish in time, we
have not used it to validate our model

reported by [17] when using McPAT to model several other proces-
sors. Typically, McPAT underestimates the overall system dynamic
power consumption if a benchmark (e.g., ger, jacobi7, mg, cg, and
ua) intensively uses some components (e.g., DRAM) that are not
directly modeled by McPAT. On the other hand, it may overestimate
the actual power consumed when the input hardware counter statis-
tics do not fully represent the activity intensities of the hardware
components. Our calibration process combines application catego-
rization and regression analysis to fully accommodate the various
scenarios, thereby able to reduce the average error rate to 2%.

6.3 Temperature Model Validation

Figure 6: Thermal Model Validation

To determine whether our HotSpot modeling output can accu-
rately capture the instantaneous temperature variations caused by
changes of application behaviors, we have modified the jacobi7
stencil kernel to alternate between two stages: (1) performing a
fixed number of iterations of stencil computations and (2) sleep-
ing for a few seconds. Figure 6 compares the core-level tempera-
ture variations estimated by HotSpot with those measured by using
Intel on-chip hardware thermal sensor, throughout the duration of
evaluating the modified jacobi7 code. From the graph, the two al-
ternating stages are clearly reflected by our HotSpot temperature
output, as by the temperature variations measured by the on-chip
thermal sensor. While the HotSpot modeling output is consistently
below the temperature measured by the sensor, their alternating pat-
tern closely resemble each other. After adding a constant (8 ◦C) to
the HotSpot output as part of the calibration process, it achieves an
error rate of 1.8%, which is within the reported error rate of the
temperature sensors.

7. GUIDING OPTIMIZATION DECISIONS
The feedback provided by our modeling framework can be used

to better balance the power consumptions of different hardware
components when executing the software applications. For ex-
ample, some program transformations, e.g., loop unrolling, can be
used to boost instruction level parallelism and thereby change the
relative activity levels of the processor front-end (e.g., Instruction
Fetch Unit) and execution units (e.g., Floating Point Unit). Apply-
ing such transformations in a way that can adjust the relative bal-
ance of activity levels of hardware components can thereby reduce
wasted energy in overly active components.

To demonstrate the viability of such an optimization approach,
we have applied loop unrolling with a wide variety of different un-
rolling factors to the innermost loops of a set of matrix (gemm,
gemv, ger), stencil (jacobi7, jacobi27, gauss), and BLAS kernels
(daxpy, dscal).Then, the relative balance of the dynamic power con-
sumed by the Instruction Fetch Unit (IFU) and Floating Point Unit
(FPU) are plotted and correlated with the overall energy efficiency
of each kernel evaluation, represented by the energy-delay prod-
uct (EDP) of each evaluation [9] (the lower the EDP is, the more
energy efficient is the optimized code).



*Dynamic power consumption is calculated by dividing total energy consumption by execution time of the application. To match with the granularity of Watts up? Pro power

meter, we ran McPAT at per second granularity. Each benchmark was evaluated at least for ten seconds to reduce noise.

Figure 5: Validating the Calibrated Model using Power Meter

Figure 7 shows variations of the relative balance between the
power consumed by IFU and FPU of the benchmarks when dif-
ferent factors are used to unroll the innermost loop of the kernel,
together with the overall energy efficiency (EDP) of each differ-
ently unrolled kernel. From the graph, a strong correlation (>
0.96) can be observed between the IFU/FPU ratio and the EDP
(overall energy efficiency) for all the kernels, where a reduction
in IFU/FPU ratio, in turn reduces EDP and improves the over-
all energy efficiency of the code. Therefore, the component-wise
breakdown of power consumption reported by our framework can
be used to guide loop unrolling by reducing the IFU/FPU ratio
and thereby improving the overall energy efficiency of applications.

Figure 7: Relation between power consumption ratio of IFU/FPU
and Energy Delay Product

8. RELATED WORK
Most of existing work [25, 5, 17, 10] on modeling the power and

temperature of microprocessors is based on architecture level simu-
lation and designed for offline use due to the prohibitively long time
required by instruction-level simulation. Our framework adapts
such models to provide accurate and detailed dynamic power feed-
back of hardware components by using hardware counter statistics
as input, to make them order of magnitude faster.

Existing work has correlated performance counters with the power
consumptions of computer systems both through regression-based
approach [6, 22, 8, 26] and by modeling the activity intensities of
the function units within the processors [23, 14, 12, 19, 13, 11, 27].
In particular, our work is similar to that by Joesph et al [14], who
used performance counters with the Wattch [5] and SimpleScalar
simulators to model component-wise power consumption. Our work
is unique in that we focus on developing a systematic calibration
approach to improve the accuracy of such models so that they can
be used to guide application-level dynamic optimizations.

We used McPAT [17] and HotSpot [10] to model the component-
wise power consumption and temperature of microprocessors. Other
existing power and temperature modeling frameworks include CACTI
[25], which estimates dynamic and leakage power by modeling de-

vices based on the industry standard ITRS roadmap, and Wattch [5],
which computes dynamic power dissipation from switching events
obtained from architecture simulation and compute capacitance mod-
els of the micro-architecture components. Our framework can be
extended to use other power/temperature models. Our contribution
is to extend these modeling frameworks to use hardware counter
statistics as input and to demonstrate a regression based approach
that can significantly enhance the accuracy of the modeling results
so that they can be used to guide application-level optimizations by
developers or compilers.

Valluri and John [24] studied the impact of different compiler op-
timization levels on processor power and energy consumption on a
Dec Alpha 21064 CPU. Kandemir et al [15] studied the power/en-
ergy impact of both low-level compiler optimizations and three
loop reordering optimizations on both the CPU and the memory
system using a matrix multiplication computation. Seng and Tullsen
[21] studied the power/energy effects of different compiler opti-
mization levels and three compiler optimizations: loop unrolling,
vectorization, and function inlining, on an Intel Pentium 4 Proces-
sor. Previous research has shown that compiler optimizations [15]
have high impact on system power consumption, and that optimiz-
ing for performance is not the same as optimizing for power con-
sumption [24]. Rahman et al [20] used a hardware-counter-based
system-level power model to guide compiler optimizations. Our
framework serves a similar purpose and aims to provide timely ac-
curate component-wise power and temperature feedback to guide
optimizations in a more meaningful fashion.

9. CONCLUSION
This paper presents a framework that uses existing architectural

models to provide accurate timely feedback about the power con-
sumption and temperatures of hardware components, thereby en-
abling software applications to be better optimized for energy ef-
ficiency by making quick informed decisions. Our contributions in-
clude adapting existing architectural models to use hardware counter
statistics as input and a systematic approach to calibrate the mod-
eling output to produce accurate results that match those measured
by physical power meters or hardware sensors. The dynamic power
consumption reported by our framework is able to attain 98% ac-
curacy when compared with those actually measured using a Watts
up? Pro power meter [1]. Our future work will use machine learn-
ing techniques to automate the calibration process and to use the re-
sults to guide more sophisticated runtime optimization and schedul-
ing decisions to enhance overall system energy efficiency.
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