
Accelerating Machine-Learning Kernels in Hadoop
Using FPGAs

Katayoun Neshatpour1, Maria Malik1, and Houman Homayoun1

1Department of Electrical and Computer Engineering, George Mason University

Abstract— Big data applications share inherent characteris-
tics that are fundamentally different from traditional desktop
CPU, parallel and web service applications. They rely on deep
machine learning and data mining applications. A recent trend
for big data analytics is to provide heterogeneous architectures
to allow support for hardware specialization to construct the
right processing engine for analytics applications. However,
these specialized heterogeneous architectures require extensive
exploration of design aspects to find the optimal architecture
in terms of performance and cost. This paper analyzes how
offloading computational intensive kernels of machine learning
algorithms to a heterogeneous CPU+FPGA platform enhances
the performance. We use the latest Xilinx Zynq boards for
implementation and result analysis. Furthermore, we perform
a comprehensive analysis of communication and computation
overheads such as data I/O movements, and calling several
standard libraries that can not be offloaded to the accelerator to
understand how the speedup of each application will contribute
to its overall execution in an end-to-end Hadoop MapReduce
environment.

Index Terms— Big data, acceleration, FPGA

I. INTRODUCTION

Emerging big data analytics applications require a sig-
nificant amount of server computational power. Big data
analytics applications heavily rely on big-data-specific deep
machine learning and data mining algorithms, and are running
complex database software stack. This set of characteristics
is necessitating a change in the direction of server-class
microarchitecture to improve their computational and memory
efficiency.

MapReduce [1] is the programming model developed by
Google to handle large-scale data analysis. The MapReduce
framework is extensively utilized for big-data application and
it is a well-utilized implementation for processing and generat-
ing large data sets in which, the programs are parallelized and
executed on a large cluster of commodity servers. MapReduce
consists of map and reduce functions where, the map functions
parcel out work to different nodes in the distributed cluster, and
the reduce functions collate the work and resolve the results.
The map functions process <key/value> pairs to generate a
set of intermediate <key/value> pairs. The reduce functions
merge all the intermediate values with the same intermediate
key.

Apache Hadoop is an open-source Java-based framework of
MapReduce implementation. It assists the processing of large
datasets in a distributed computing environment and stores
data in highly fault-tolerant distributed file system (HDFS).
Hadoop includes numerous micro-benchmarks including clus-
tering, classifiers and data compression benchmarks. The

Fig. 1. Hadoop MapReduce: Computational Framework Phases [2].

Hadoop MapReduce implementation consist of several phases
as depicted in Fig. 1.

Hardware acceleration through specialization has received
renewed interest in recent years, mainly due to the dark sili-
con challenge. Heterogeneous architectures comprise different
types of cores, domain-specific accelerators, as well as pro-
grammable fabrics (FPGA) to synthesize a custom accelerator.
Tight integration between the general-purpose processor and
the programmable logic can provide enormous opportunities
to add any type of custom-designed accelerator. An example
of such architecture is ZYNQ (ARM+FPGA).

To address the computing requirements of big data, and
based on the benchmarking and characterization results, we
envision a heterogeneous architecture for next big data server
platforms that leverage the power of FPGA to build custom
accelerators. Our baseline architecture consists of a standard
Hadoop platform which is extended with FPGA hardware
for acceleration. To evaluate how hardware acceleration can
address performance demands of big data analytics applica-
tions, we study various data mining and machine learning
algorithms to find the CPU-intensive and time consuming
kernels (hotspot functions) to offload to FPGA. We assume the
applications are fully known, therefore we can find the best
possible application-to-core+FPGA match. We calculate the
acceleration gained through the hardware-software co-design
process and evaluate how it will speedup the Hadoop end-to-
end system.

The paper is organized as follows. In Section II the related
work is discussed. Section III describes the end-to-end system
architecture. Section IV and V describe the methodology for
modeling the kernel speedup and overall Hadoop speedup,
respectively. Section VI reports the implementation results.
Section VII discusses effects of design parameters. Finally,
Section VIII concludes the paper.

II. RELATED WORK

In [3] FPMR is introduced as a MapReduce framework on
the FPGA with RankBoost as a case study, which adopts a
dynamic scheduling policy for better resource utilization and

2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-1-4799-8006-2/15 $31.00 © 2015 IEEE

DOI 10.1109/CCGrid.2015.165

1151

to enhance the load balancing. In [4], a hardware accelerated
MapReduce architecture is implemented on Tilera’s manycore
platform. In this architecture data mapping, data merging and
data reducing are offloaded to the accelerators. The Terasort
benchmark is utilized to evaluate the proposed architecture.
In [5] hardware acceleration is explored through an eight-
salve Zynq-based MapReduce architecture. It is implemented
for a standard FIR filter to show the benefits gained through
hardware acceleration in the MapReduce framework where the
entire low-pass filter is implemented on the FPGA.

In [6], a detailed MapReduce implementation of the K-
means application is done in a hardware-software framework,
which enhances the speedup of a non-parallel software imple-
mentation of K-means. While the Hadoop implementation of
the application explores their inherent data parallelism and en-
hances their performance with respect to non-MapReduce soft-
ware implementation, in this paper, we aim to model the range
of potential speedup that can be achieved through hardware-
software co-design and compare the resulting speedup to the
MapReduce implementation.

Most recent works focus on the implementation of an
entire particular machine learning application or offloading
complete phases of MapReduce to the FPGA. However, the
implementation of the entire algorithm on FPGA would result
in excessive hardware and requires significant design effort.
Thus, this paper focuses on hardware-software co-design of
the algorithm that will trade some speedup at a benefit of less
hardware and higher programmability.

III. SYSTEM MODEL

Hadoop runs the job by breaking it into tasks, i.e., map
tasks and reduce tasks. The input data is divided into fixed-
size pieces called input splits. One map task is created for
each input split, on which the user-defined map function is
running.

The system studied in this paper consists of a high-
performance CPU as the master node, which is connected to
several Zynq devices as slave nodes.

The master node runs the HDFS and is responsible for the
job scheduling between all the slave nodes and running the
HDFS among other tasks. The master node is configured to
distribute the computation workloads among the slave nodes
(worker nodes), as shown in Fig. 2. Each worker node has a
fixed number of map and reduce slots, the number of which,
is statistically configured. (In this paper one mapper slot per
each Zynq device is assumed)

We used Intel Atom C2758 as the master node; Atom server
represents a new trajectory in server design that advocates the
use of a low-power core to address the dark silicon challenge
facing servers [7]. Intel Atom C2758 server has 8 processors,
a two-level cache hierarchy (L1 and L2 cache sizes of 24KB
and 1024KB, respectively), and an operating frequency of
2.4GHz with Turbo Boost.

In our system architecture, each slave node is equipped with
a Zynq device, which is considered as a mapper slot. The
Zynq devices deployed as slave nodes are ZedBoards featuring
XC7Z020 Zynq SoCs. The ZedBoard integrates two 667MHz
ARM Cortex-A9 with an Artix-7 FPGA with 85 KB logic
cells and 560 KB block RAM.

Fig. 2. System architecture.

Thus, the Zedboard is divided into two partitions - the ARM
Cortex-A9 processor-based processing system (PS) and the
FPGA, being the programmable logic (PL). The connections
between the PL and PS is established through the AXI
interconnect.

The basic idea for designing the switching network in Fig.
2, is to have a network with enough capacity at a reasonable
cost, so that all components can communicate with each other
at an acceptable speed. For this reason, the PCI-Express is
being deployed for the interconnection. The master and slaves
nodes communicate with each other through the PCI-Express.

In order to have a better estimation of the speedup gains in
the architecture in Fig. 2, various overheads need to be taken
into account, which include the overhead of the data transfer
between the nodes in the network through the PCI express,
the overhead of the switching network, and the data transfer
time between the ARM core (PS) and the FPGA (PL) in the
Zedboard. These overheads have been marked with “OV” in
Fig. 2.

IV. KERNEL ACCELERATION THROUGH
HARDWARE-SOFTWARE CO-DESIGN

The primary step to estimate the benefit obtained through
hardware-software co-design in an end-to-end MapReduce
platform, is to carry out a comprehensive workload analysis
and performance monitoring for individual applications. To
this end, we selected four widely used applications, namely K-
means clustering, KNN classification, SVM-learn and Naive
Bayes classification, and characterized them in order to find
their hotspot functions to be offloaded to the hardware.

K-means clustering is a partitioning based clustering appli-
cation that partitions n observations into K clusters such that
each observation is mapped to the cluster with the closet mean
based on specific features. KNN classification is a pattern
recognition algorithm, which finds the K nearest neighbors of
a vector among N training vectors. SVM is a machine learning
algorithm that is used extensively in data analysis and pattern
recognition as non-probabilistic binary linear classifier. Naive
Bayes classifier is another machine learning algorithm which
is used as a probabilistic classifier using strong independent
feature model and the Bayesian theorem.

These applications were profiled using the GNU profiler.
Functions which accounted for significant part of the the
execution time were selected for hardware acceleration. Xil-
inx Vivado HLS tool was utilized to create register transfer

1152

Fig. 3. Hotspot analysis before acceleration.

level (RTL) equivalents for the hotspot functions. High-level
synthesis is the automated process of transforming a C or C++
code into an RTL design.

The speedup gained through offloading hotspot functions to
the hardware was calculated according to (1).

Tacc = Torig −
n∑

i=1

SWi,PC × Ci +
n∑

i=1

HWi,PC × Ci

+
n∑

i=1

Di,tr

BWPL,PS
× Ci, (1)

where Tacc and Torig show the total execution time in the
accelerated design and the purely software implementations,
respectively, n is the number of accelerated functions, SWi,PC

and HWi,PC are the software and hardware time per call for
the function i, respectively, Ci is the the number of calls to
function i, Di is the size of data being transferred between
the PL and PS during each call of the accelerated function
and BWPL,PS is the bandwidth of the data transfer between
the PL and PS (i.e. BW of the AXI for the Zedboard).

A. Sensitivity of Kernel Acceleration to Input Data Size
In the MapReduce platform, the input data is split into a

number of input splits. Each map task processes a logical split
of data. The splits of data go to the kernel. Thus, the size of
the data that goes to the accelerated kernels is the size of the
input splits.

It should be noted that the number of times each function
is called within each run of the algorithm, and the fraction of
the execution time devoted to that function is dependent on the
size of input data. Thus, we conducted the data size sensitivity
analysis of studied machine learning applications on the Zynq
platform to find out the trend of speedup changes with respect
to the input data size. For each application, the profiler
calculated the fraction of time spent for each accelerated
function and the corresponding speedup was calculated based
on (1).

V. HADOOP ACCELERATION

In Section IV, we elaborated how a specific algorithm is
accelerated on the Zynq platform. However, not all the execu-
tion time of a MapReduce implementation of an algorithm is
spent on the kernel. Data compression/decompression, calling
several standard libraries, data I/O movements, etc., will take
up a considerable part of the execution time. Thus, the speedup
derived in Section IV will only contribute to the fraction

Fig. 4. kernel acceleration for different input data sizes.

of the execution time that corresponds to the kernel. Based
on the fraction of time each kernel execution contributes to
the Hadoop end-to-end system, the overall speedup is derived
using Admahl’s law.

We use Intel Vtune for hotspot analysis to find the regions
of Hadoop MapReduce that remains on the CPU. Intel VTune
is a performance-profiling tool that provides an interface to
the processor performance counters [8]. Using Vtune, we
analyze the contribution of kernel execution time over the total
execution time when running Hadoop MapReduce.

Fig. 3 shows the common hotspot modules of big data
applications for 1, 4 and 8 number of mapper slots. The
input split size was set to 64MB in the simulations. In Fig. 3,
application kernel represents the computation part to perform
the tasks such as K-means, KNN, etc., Libz performs the
data compression and decompression tasks for the Hadoop
workload. The numbers in the brackets represent the number
of mapper slots in the the Hadoop platform.

VI. IMPLEMENTATION RESULTS

A. Results of kernel Speedup Sensitivity to Data Size
As discussed in Section IV, different data input sizes result

in different profiling behaviors and thus different speedups.
Fig. 4 shows the speedup results for a wide range of data sizes.
Since the execution of some of the applications including the
Naive Bayes on small data sizes resulted in very low execution
times, (less than 0.1s), the profiling results were not reliable
and thus not reported.

As results shown, the input data size have a significant
effect on the speedup in some applications. In case of the
K-means algorithm, the speedup increases significantly with
the size of input data. The size of data does not have much
effect on the speedup of Naive Bayes and KNN. Finally, the
speedup of the SVM algorithm decreases as the data size
increases in the SVM algorithm. The different trend observed
in these applications for small sizes is due to both the PS-PL
overhead and change in the fraction of execution time devoted
to different accelerated functions. However, as input data size
increases (beyond 10MB for these applications), the speedup
values start to converge.

B. Hadoop Acceleration Results
Fig. 5 shows the speedup on the Zynq platform and a fully

developed Hadoop with Atom as the master node, 4 number of
mapper slots and input splits of 64MB. The figure shows how
the speedup achieved on each application through hardware

1153

Fig. 5. Acceleration speedup on the Zynq and Hadoop platform.

acceleration is translated into a lower speedup on and end-to-
end Hadoop system.

As an example, while the acceleration of the K-means
algorithm yields a speedup in the order of ×94, the speedup is
reduced to ×2.76 on an end-to-end Hadoop implementation.
Thus, the final speedup is greatly affected by the fraction of
time the kernel execution takes in the Hadoop environment
and the original speedup due to hardware acceleration. In the
case of the SVM for instance, since the original kernel speedup
was very low (i.e. 4%), the overall speedup is also very low
(2.5%).

VII. DESIGN SPACE ANALYSIS

Mapping of applications to a heterogeneous architecture to
benefit from the diverse core and accelerators is a complex
problem, particularly because different phases of the same
application will often prefer different cores or configurations
and thus, require specific scheduling and mapping to find
the best match. Making wrong scheduling decisions can lead
to suboptimal performance and negatively impact power and
energy consumption as well [9]. Moreover, with big data
applications running various softwares like database software
stacks, including Hadoop, MapReduce, and message passing
interface (MPI), the OS and I/Os are exercised extensively,
becoming first-order performance determinants and, therefore,
mapping decisions become an even more complex and difficult
problem to solve.

The size of input splits, utilizing small or big core, the
memory configuration, etc. will impact the performance of the
overall architecture. In this section, we explore the potential
effect of input splits on the performance of the overall system.

A. Size of Data Splits
In the Hadoop platform, the input data is split into a number

of input splits. Each map task processes a logical split of
this data that resides on the HDFS. If the input splits are too
small, better load balancing can be achieved among the mapper
slots, however the overhead on managing the input splits will
increase. In order to perform data locality optimization, it is
best to run the map task on a node where the input data resides
in the HDFS. Thus, the best split size for data would be the
size of an HDFS block (64MB) [10].

The results reported in Section VI were based on input
splits of 64MB size. Fig. 4 illustrated that other data sizes
can yield better speedup for some algorithms. For the SVM
algorithm for instance, while data sizes of 64MB yield only
4% increase in the execution time, lower data size can result

in higher speedup (i.e. up to 9× speedup for data sizes of
100KB). However, the fraction of time spent in the kernel
in an end-to-end Hadoop will be different for smaller input
splits. Thus, selection of the input split sizes in an end-to-
end system implementation requires an in-depth analysis of
sensitivity of both kernel acceleration and the the end-to-end
Hadoop execution time to the input split size.

VIII. CONCLUSION AND FUTURE WORK

To significantly improve performance of processing big data
analytics applications, a heterogeneous architecture that inte-
grates general-purpose CPUs with dedicated FPGA accelera-
tors was studied. Full Hadoop MapReduce profiling was used
to find the hot regions of several widely used machine learning
and data mining applications. The hardware equivalents of hot
regions were developed using high level synthesis tools. With
hardware-software co-design, we offloaded the hot regions to
the hardware to find the design with the highest speed-up.
A comprehensive analysis of communication and computation
overheads was used to understand how the speedup of each
application will contribute to its overall execution in an end-to-
end Hadoop MapReduce implementation. Sensitivity analysis
was performed on the size of data input splits to understand
the speedup sensitivity to size of data. The results show that a
kernel speedup of upto ×94 with hardware-software co-design
can be achieved. This results in ×2.69 speedup in an end-to-
end Hadoop MapReduce environment considering various data
transfer and communication overheads.

Future work will focus on detailed implementation of
the kernels including the hardware-software co-design of
individual map and reduce functions for each application.
Comprehensive and experimental exploration of other design
aspects, including number of mapper slots, type of master
core and hotspot analysis of the Hadoop environment for a
wide range of input split sizes will allow the development of
a more generalized and accurate model to better understand
the performance gains of using FPGA to accelerate big data
analytics applications.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing
on large clusters,” in Proc. conf symp operation systems design and
implementation, 2004.

[2] “Accelerating hadoop applications using intel quickassist technology,”
http://www.intel.com/content/dam/www/public/us/en/documents/
solution-briefs/accelerating-hadoop-applications-brief.pdf, accessed:
2014-11-30.

[3] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang, “FPMR:
Mapreduce framework on FPGA,” in Proc Annual ACM/SIGDA Int Symp
Field Programmable Gate Arrays, 2010, pp. 93–102.

[4] T. Honjo and K. Oikawa, “Hardware acceleration of hadoop mapreduce,”
in 2013 IEEE Int. Conf. Big Data, Oct 2013, pp. 118–124.

[5] Z. Lin and P. Chow, “Zcluster: A zynq-based hadoop cluster,” in Int.
Conf. Field-Programmable Technology (FPT), Dec 2013, pp. 450–453.

[6] Y.-M. Choi and H.-H. So, “Map-reduce processing of k-means algorithm
with FPGA-accelerated computer cluster,” in IEEE Int Conf Application-
specific Systems, Architectures and Processors, June 2014, pp. 9–16.

[7] N. e. Hardavellas, “Toward dark silicon in servers,” IEEE Micro, vol. 31,
pp. 6–15, 2011.

[8] “Intel vtune amplifier xe performance profiler.” http://software.intel.com/
en-us/articles/intel-vtune-amplifier-xe/, accessed: 2014-11-30.

[9] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Proc. . 39th Annual Int Symp Computer Architecture
(ISCA), 2012, pp. 213–224.

[10] T. White, Hadoop: The Definitive Guide, 1st ed. O’Reilly Media, Inc.,
2009.

1154

